Into the Future

with Large Underground Experiments

Volodymyr Takhistov

University of California, Los Angeles

(UCLA)

The era of large underground experiments

 Exploration of neutrino physics and direct DM detection led by large experiments (Super-Kamiokande, Xenon1T ...)

- Further advances call upon even larger experiments
 - neutrino physics (δ_{cp} , mass hierarchy) \rightarrow Hyper-K, DUNE
 - direct DM detection (probe WIMPs deeper) \rightarrow DARWIN, Argo ...

Field leadership by many experts @ IPMU/U. Tokyo

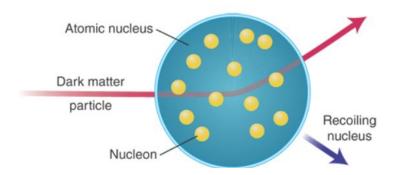
experiment: Kajita, Nakahata, Moriyama, Martens, Vagins ... *theory:* Matsumoto, Ibe ...

The era of large underground experiments

 These experiments constitute great sites of physics exploration beyond just their main target searches ...

Highlight their potential via 2 complimentary research programs

- DM experiments as "neutrino telescopes"
- Neutrino detectors as "BSM laboratories"

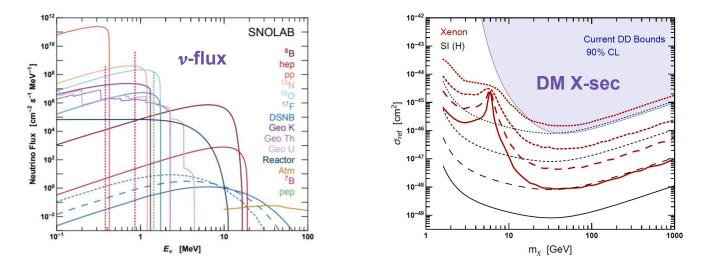

<u>Part I</u>

Dark Matter Detectors as Neutrino Telescopes

Direct DM detection experiments

Look for particle DM interactions in detector → nuclear (and electron) recoils

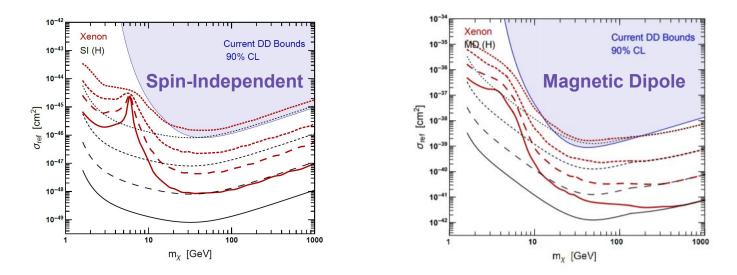
- Typical setup:
 - heavy target material (A ~ 30-130)
 - low threshold (~ keV)
 - potentially scalable (Argon, Xenon)


PRESTON HUEY/SCIENCE

Upcoming (Gen-2): ton-scale → future (Gen-3): multi-ton

(e.g. XENONnT O(10) ton - Martens, Moriyama)

Neutrino floor


- No convincing signs of DM → probe further (also other studies, e.g. light DM Melia)
- Eventually will encounter irreducible neutrino-background: "neutrino floor"

[Gelmini, VT, Witte, 2018]

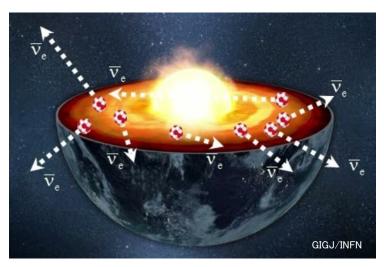
Neutrino floor

- Results depend on DM interaction
- Can exploit target materials with different properties (e.g. spin, magnetic moment)

[Gelmini, VT, Witte, 2018]

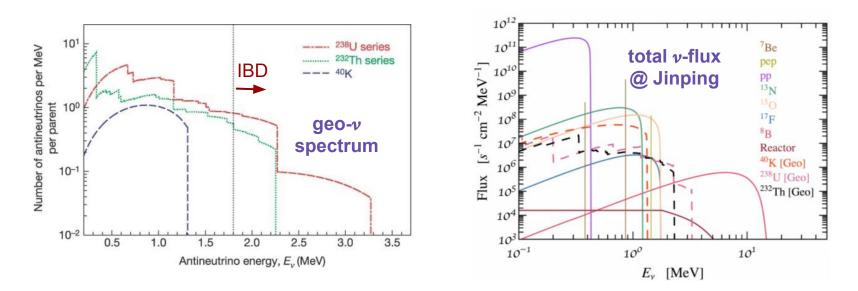
DM detectors as neutrino telescopes

- Neutrinos will be seen in big DM experiments → "effective neutrino telescopes"
- Complementarity to dedicated neutrino experiments, which typically rely on Inverse Beta Decay ($\overline{
 u}+p
 ightarrow e^++n$)
 - enhanced coherent scattering (σ ~ N²)
 → bypass IBD kinematic threshold of ~MeV
 - \rightarrow probe all v's flavors
 - very low detector energy threshold


Exploring Earth formation with geoneutrinos

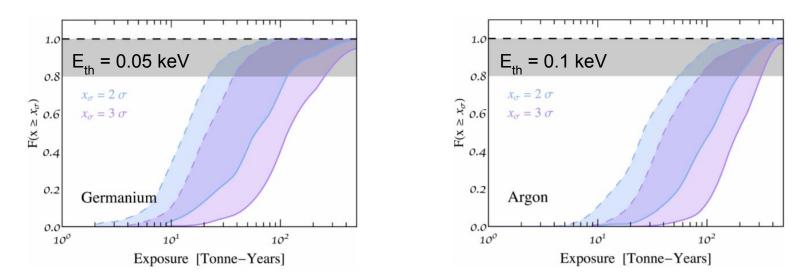
Geo-neutrinos

 Earth emits heat, is the origin primordial (from Earth formation) or radiogenic (nuclear reactions now)?


 Nuclear decays (²³⁸U, ²³²Th, ⁴⁰K) in Earth produce heat + (geo-)neutrinos

- Geo-neutrinos critical for geology
 - How Earth formed?
 - How Earth's magnetic field generated?

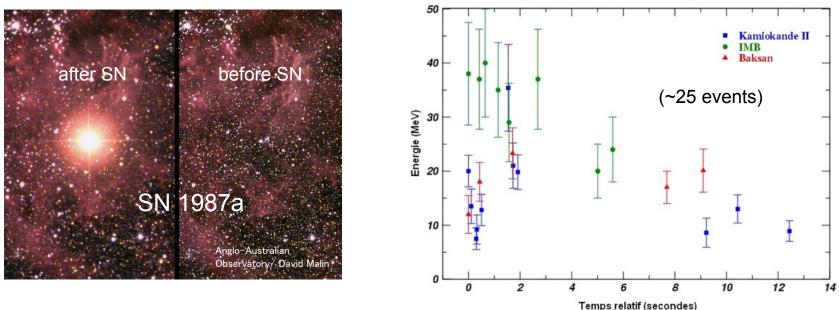
Geo-neutrinos


• First detection (with IBD) by KamLAND, 2005 [Araki+ (KamLAND), Nature, 2005] - Inoue

[Gelmini, VT, Witte, 2018]

Geo-neutrinos

- Low thresholds allow geo-v's to be potentially visible in future DM detectors
- ⁴⁰K geo- ν fully invisible for IBD \rightarrow but possible in DM exp. via coherent scattering!

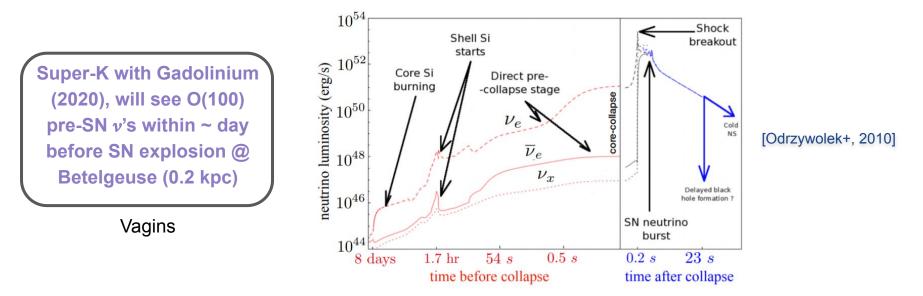

[Gelmini, VT, Witte, 2018]

Forecasting supernova with pre-SN neutrinos

Historic neutrino astronomy breakthrough: SN 1987a

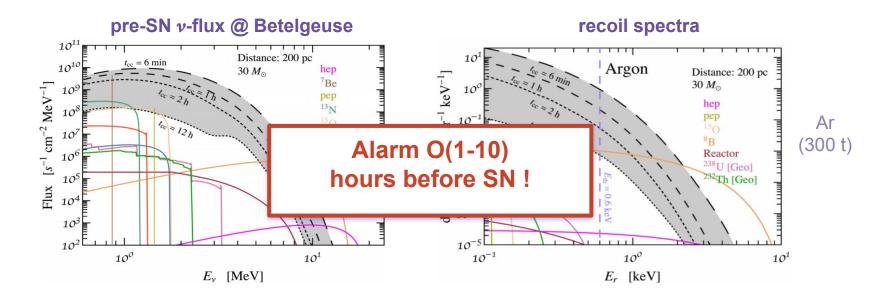
• Core-collapse SN: most energy released as neutrinos → mechanism confirmed by SN1987a

Neutrinos



Optical

Many unknowns → hunt for v's from next Galactic SN (rate ~1/30 yrs) a major target


Pre-SN v's

- Will easily see Galactic SN in large experiments (~10k events in SK) ...but when?
 - \rightarrow pre-SN neutrinos: probe final star evolution stages, supernova alarm

Pre-SN v's

• Large DM experiments (Ar, Xe) can help \rightarrow see all flavors, no oscillation effects

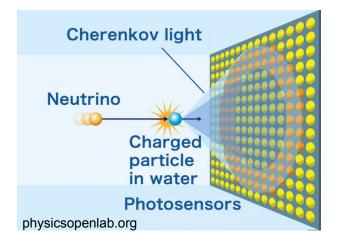
[Raj, VT, Witte, 2019]

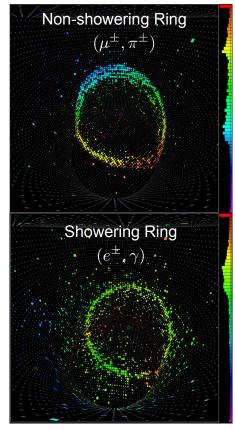
<u>Part II</u>

Large Neutrino Detectors as BSM Physics Laboratories

State-of-the-Art: Super-Kamiokande

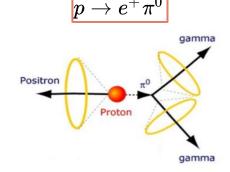
- Large water Cherenkov experiment
 - \circ ~25 kton FV, ~20 years of data, ~10-10⁴ MeV range
 - \rightarrow huge success with leadership by U. Tokyo
- Amazing for many neutrino topics
 - \circ oscillations, supernova, solar- ν , neutrino astronomy....


• Great for physics beyond SM (nucleon decay, DM ...)


 \rightarrow much more BSM physics to explore !

Very general detection technique

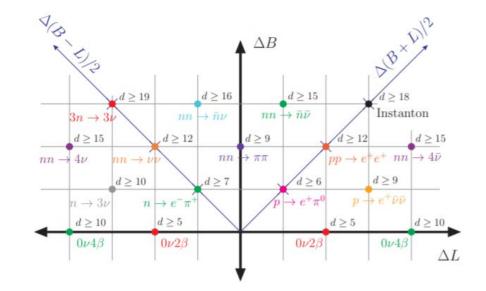
<u>Cherenkov Radiation</u> ... just need a not very slow charged particle !


(real data events, 1998)

Testing models with baryon-number violation

Baryon-number violating processes

Proton decay key prediction of Grand Unified Theories (Murayama, Yanagida, Ibe, Shirai...)
 → probe energies unreachable to accelerators


• Many searches performed, already ruled out minimal models • lifetime limits ($p \rightarrow e^+\pi^0$) pushing >10³⁴ yr [Abe+ (SK), 2016]

 Searches mainly focused on simplest 2-body nucleon decays, testing low-dimension effective operators

Baryon-number violating processes

- However, baryon number violation appears in many BSM theories beyond just GUTs
- High-dimension operators can dominate → many different processes can be important

[Heeck, VT, 2019]

Studies are far from exhaustive

 For 3-body processes, many never searched in any experiment before (even several 2-body remain...)

first 3-body SK search → [Takhistov+ (SK), PRL, 2014]

channel	$ \Delta(B - L) $	10 ³⁰ yr
$p \rightarrow e^- + e^+ + e^+$	0	793 [62
$p \rightarrow e^- + e^+ + \mu^+$	0	529 [62
$p \rightarrow e^+ + e^+ + \mu^-$	0	529* [62
$p \rightarrow e^- + \mu^+ + \mu^+$	0	6 [61] (359* [62]
$p \rightarrow e^+ + \mu^- + \mu^+$	0	359 [62
$p \rightarrow \mu^- + \mu^+ + \mu^+$	0	675 [62
$p \rightarrow e^+ + 2\nu$	0,2	170 [78
$p \rightarrow \mu^+ + 2\nu$	0,2	220 [78
$p \rightarrow e^- + 2\pi^+$	2	30 [59] (82* [62])
$p \rightarrow e^- + \pi^+ + \rho^+$	2	
$p \rightarrow e^- + K^+ + \pi^+$	2	75 62
$p \rightarrow e^+ + 2\gamma$	0	100 [79] (793* [62])
$p \rightarrow e^+ + \pi^- + \pi^+$	0	82 [62
$p \rightarrow e^+ + \rho^- + \pi^+$	0	
$p \rightarrow e^+ + K^- + \pi^+$	0	75* [62
$p \rightarrow e^+ + \pi^- + \rho^+$	0	
$p \rightarrow e^+ + \pi^- + K^+$	0	75* [62
$p \rightarrow e^+ + 2\pi^0$	0	147 (00
$p \rightarrow e^+ + \pi^0 + \eta$	0	
$p \rightarrow e^+ + \pi^0 + \rho^0$	0	
$p \rightarrow e^+ + \pi^0 + \omega$	0	
$p \rightarrow e^+ + \pi^0 + K^0$	0	
$p \rightarrow \mu^- + 2\pi^+$	2	17 [59] (133 [62]
$p \rightarrow \mu^- + K^+ + \pi^+$	2	245 [62
$p \rightarrow \mu^+ + 2\gamma$	0	529* [62
$p \rightarrow \mu^+ + \pi^- + \pi^+$	0	133 [62
$p \rightarrow \mu^+ + K^- + \pi^+$	0	245* [62
$p \rightarrow \mu^+ + \pi^- + K^+$	0	245* [62
$p \rightarrow \mu^+ + 2\pi^0$	0	101 [62
$p \rightarrow \mu^+ + \pi^0 + \eta$	0	
$p \to \mu^+ + \pi^0 + K^0$	0	
$p \rightarrow \nu + \pi^+ + \pi^0$	0,2	
$p \rightarrow \nu + \pi^+ + \eta$	0,2	
$p \rightarrow \nu + \pi^+ + \rho^0$	0,2	
$p \rightarrow \nu + \pi^+ + \omega$	0,2	
$p \rightarrow \nu + \pi^+ + K^0$	0,2	
$p \rightarrow \nu + \rho^+ + \pi^0$	0,2	
$p \rightarrow \nu + K^+ + \pi^0$	0,2	

channel	$ \Delta(B-L) $	10 ³⁰ yr
$n \rightarrow \nu + e^- + e^+$	0,2	257 [62]
$n \rightarrow \nu + e^- + \mu^+$	0,2	83 [62]
$n \rightarrow \nu + e^+ + \mu^-$	0,2	83* [62]
$n \rightarrow \nu + \mu^- + \mu^+$	0,2	79 [62]
$n \rightarrow 3\nu$	0,2,4	0.58 [80]
$n \rightarrow e^- + \pi^+ + \pi^0$	2	$29 [59] (52^* [62])$
$n \rightarrow e^- + \pi^+ + \eta$	2	
$n \rightarrow e^- + \pi^+ + \rho^0$	2	
$n \rightarrow e^- + \pi^+ + \omega$	2	
$n \rightarrow e^- + \pi^+ + K$		
$n \rightarrow e^- + \rho^+ + \pi^0$	2	
$n \rightarrow e^- + K^+ + \pi$		
$n \rightarrow e^+ + \pi^- + \pi^0$	0	52 [62]
$n \rightarrow e^+ + \pi^- + \eta$	0	
$n \rightarrow e^+ + \pi^- + \rho^0$	0	
$n \to e^+ + \pi^- + \omega$	0	
$n \rightarrow e^+ + \pi^- + K$	0 0	18 [79]
$n \rightarrow e^+ + \rho^- + \pi^0$	0	
$n \rightarrow e^+ + K^- + \pi$		
$n \rightarrow \mu^- + \pi^+ + \pi^0$	0 2	34 [59] (74* [62])
$n \rightarrow \mu^- + \pi^+ + \eta$	2	
$n \rightarrow \mu^- + \pi^+ + K$		
$n \rightarrow \mu^- + K^+ + \pi$		
$n \rightarrow \mu^+ + \pi^- + \pi^0$	0	74 [62]
$n \rightarrow \mu^+ + \pi^- + \eta$	0	
$n \rightarrow \mu^+ + \pi^- + K$		
$n \rightarrow \mu^+ + K^- + \pi$	r ⁰ 0	
$n \rightarrow \nu + 2\gamma$	0,2	257* [62]
$n \rightarrow \nu + \pi^- + \pi^+$	0,2	
$n \rightarrow \nu + \rho^- + \pi^+$	0,2	
$n \rightarrow \nu + K^- + \pi^+$	0,2	
$n \rightarrow \nu + \pi^- + \rho^+$	0,2	
$n \rightarrow \nu + \pi^- + K^+$	0,2	
$n \rightarrow \nu + 2\pi^0$	0,2	
$n \rightarrow \nu + \pi^0 + \eta$	0,2	
$n \rightarrow \nu + \pi^0 + \rho^0$	0,2	
$n \rightarrow \nu + \pi^0 + \omega$	0,2	
$n \rightarrow \nu + \pi^0 + K^0$	0,2	

[Heeck, VT, 2019]

 Processes with ΔB > 1 almost completely unexplored, even simplest channels

$nn \rightarrow e^+ + e^-$	2		4200 [69]
$nn \rightarrow e^+ + \mu^-$	2		4400 [69]
$nn ightarrow \mu^+ + e^-$	2		4400 [69]
$nn \rightarrow \mu^+ + \mu^-$	2		4400 [69]
$nn \rightarrow e^+ + \tau^-$	2		\wedge
$nn \rightarrow \tau^+ + e^-$	2		
$nn \rightarrow 2\nu$	0,2,4		1.4 [80]
$nn \rightarrow 2\gamma$	2		4100 [69
$nn \rightarrow \gamma + \pi^0$	2		
$nn \rightarrow \gamma + \eta$	2		
$nn \rightarrow \gamma + \rho^0$	2		
$nn \rightarrow \gamma + \omega$	2		
$nn \rightarrow \gamma + \eta'$	2		
$nn \rightarrow \gamma + K^0$	2		
$nn \rightarrow \gamma + K^{*,0}$	2		
$nn \rightarrow \gamma + D^0$	2		
$nn ightarrow \gamma + \phi$	2		
$nn \rightarrow \pi^- + \pi^+$	2	0.7 [59]	72* [111])
$nn ightarrow \pi^+ + ho^-$	2		
$nn \to K^- + \pi^+$	2		
$nn \rightarrow K^{*,-} + \pi^+$	2		
$nn o \pi^- + \rho^+$	2		
$nn \rightarrow K^+ + \pi^-$	2		
$nn ightarrow K^{*,+} + \pi^-$	2		
$nn \rightarrow 2\pi^0$	2		404 [111]
$nn ightarrow \eta + \pi^0$	2		
$nn o \pi^0 + \rho^0$	2		
$nn o \pi^0 + \omega$	2		
$nn ightarrow \eta' + \pi^0$	2		
$nn \to K^0 + \pi^0$	2		
$nn \rightarrow K^{*,0} + \pi^0$	2		

channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$	
$nn \rightarrow \pi^0 + \phi$	2		
$nn \rightarrow 2\eta$	2		
$nn \rightarrow \eta + \rho^0$	2		
$nn \rightarrow \eta + \omega$	2		
$nn \rightarrow \eta + \eta'$	2		
$nn \rightarrow \eta + K^0$	2		
$nn \to \eta + K^{*,0}$	2		
$nn \rightarrow \eta + \phi$	2		
$nn \rightarrow 2\rho^0$	2		
$nn \rightarrow \rho^0 + \omega$	2		
$nn ightarrow \eta' + ho^0$	2 2		
$nn \to K^0 + \rho^0$	2		
$nn \rightarrow K^{*,0} + \rho^0$	2		
$nn \rightarrow \rho^0 + \phi$	2		
$nn \rightarrow \rho^- + \rho^+$	2		
$nn \rightarrow K^+ + \rho^-$	2		
$nn \rightarrow K^{*,+} + \rho^-$	2		
$nn \rightarrow K^- + \rho^+$	2		
$nn \rightarrow K^{*,-} + \rho^+$	2		
$nn \rightarrow 2\omega$	2		
$nn \rightarrow \eta' + \omega$	2		
$nn \rightarrow K^0 + \omega$	2		
$nn \rightarrow K^{*,0} + \omega$	2		
$nn \rightarrow \omega + \phi$	2		
$nn \rightarrow \eta' + K^0$	2		
$nn \rightarrow \eta' + K^{*,0}$	2		
$nn \rightarrow K^- + K^+$	2 1	70* [112]	
$nn \rightarrow K^+ + K^{*,-}$	2		
$nn \rightarrow K^- + K^{*,+}$	2		
$nn \rightarrow 2K^0$	2		
$nn \rightarrow K^{*,0} + K^0$	2		
$nn \rightarrow K^0 + \phi$	2		
$nn \rightarrow 2K^{*,0}$	2		
$nn \rightarrow K^{*,-} + K^{*,+}$	2		

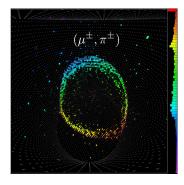
channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{10} \text{ yr}}$
$pn \rightarrow e^+ + \nu$	0,2	260 [27]
$pn \rightarrow \mu^+ + \nu$	0,2	200 [27]
$pn \rightarrow \tau^+ + \nu$	0,2	29 [27]
$pn \rightarrow \gamma + \pi^+$	2	$\mathbf{\Lambda}$
$pn \rightarrow \gamma + \rho^+$	2	
$pn \rightarrow \gamma + K^+$	2	
$pn \rightarrow \gamma + K^{*,+}$	2	
$pn \rightarrow \gamma + D^+$	2	
$pn \rightarrow \pi^+ + \pi^0$	2	170 [111]
$pn \rightarrow \eta + \pi^+$	2	
$pn \rightarrow \pi^+ + \rho^0$	2	
$pn \rightarrow \pi^+ + \omega$	2	
$pn \rightarrow \eta' + \pi^+$	2	
$pn \rightarrow K^0 + \pi^+$	2	
$pn \rightarrow K^{*,0} + \pi^+$	2	
$pn \rightarrow \pi^+ + \phi$	2	
$pn \rightarrow \pi^0 + \rho^+$	2	
$pn \rightarrow K^+ + \pi^0$	2	
$pn \rightarrow K^{*,+} + \pi^0$	2	
$pn \rightarrow \eta + \rho^+$	2	
$pn \rightarrow \eta + K^+$	2	
$pn \rightarrow \eta + K^{*,+}$	2	
$pn \rightarrow \rho^+ + \rho^0$	2	
$pn \rightarrow K^+ + \rho^0$	2	
$pn \rightarrow K^{*,+} + \rho^0$	2	
$pn \rightarrow \rho^+ + \omega$	2	
$pn \rightarrow \eta' + \rho^+$	2	
$pn \rightarrow K^0 + \rho^+$	2	
$pn \rightarrow K^{*,0} + \rho^+$	2	
$pn \rightarrow \rho^+ + \phi$	2	
$pn \rightarrow K^+ + \omega$	2	
$pn \rightarrow K^{*,+} + \omega$	2	
$pn \rightarrow \eta' + K^+$	2	
$pn \rightarrow \eta' + K^{*,+}$	2	
$pn \rightarrow K^+ + K^0$	2	
$pn \rightarrow K^+ + K^{*,0}$	2	
$pn \rightarrow K^+ + \phi$	2	
$pn \rightarrow K^{*,+} + K^0$	2	
$pn \to K^{*,+} + K^{*,0}$	2	

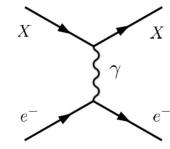
[Heeck, VT, 2019]

Inclusive and invisible searches

- Very many processes still to explore...
- Best limits obtained by exclusive (final state) searches
 - \rightarrow in future going to multi-body modes it will become impractical to search exhaustively

Inclusive searches (e.g. $p \rightarrow e^+ + anything$) and **invisible searches** (e.g. neutron disappearance, $n \rightarrow anything$) can provide model-independent handles on many processes simultaneously


Hunting for fractionally charged particles


Fractionally charged particles

Millicharge particles

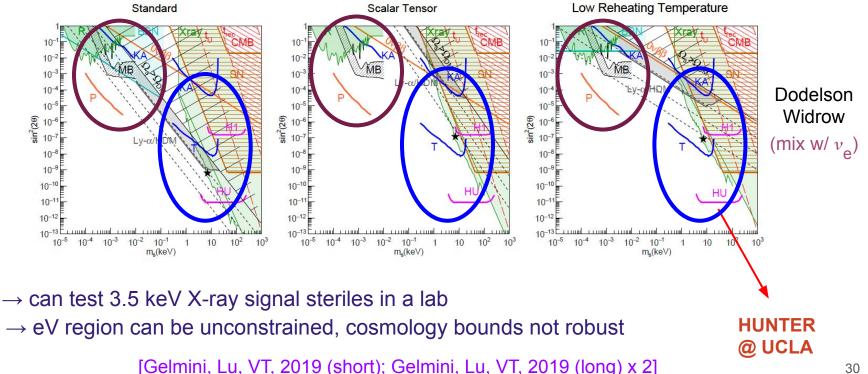
- arise in SM extensions with extra U(1)
- test charge quantization
- can contribute to DM
- can be accelerated in astro-sources like regular cosmic rays
- Depending in charge, can see in Super-K as:

"faint muon" (q ≳ 10⁻²)

electron scattering (q ≲ 10⁻²)

[Hu, Kusenko, VT, 2016]

Exploring cosmology with sterile neutrinos


Sterile neutrinos

• Laboratory anomalies possibly hint at O(eV) sterile (e.g. MiniBooNE)

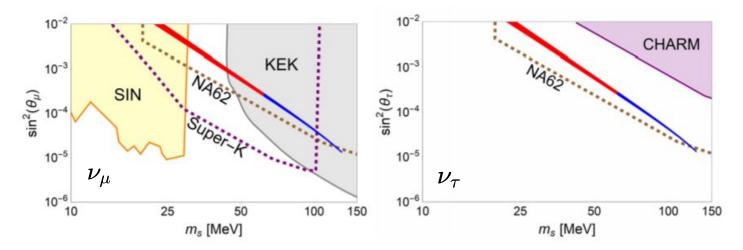
• O(keV) sterile could play role in DM and pulsar kicks [Fuller, Kusenko+, 2003]

Probing cosmology with sterile neutrinos

In motivated models (e.g. moduli, extra-dim) cosmology can be different than usually assumed \rightarrow steriles produced in early Universe are sensitive probes

Heavy sterile neutrinos can also be interesting...

Hubble constant discrepancy


• H0 - parametrizes Universe expansion rate

- H0 measurements inconsistent @ 4-sigma
 - local (independent of cosmology) \rightarrow H0 = 74.03 +/- 1.42 km/s/Mpc
 - CMB \rightarrow H0 = 67.66 +/- 0.42 km/s/Mpc

• Systematics don't appear helpful, many BSM proposals

Sterile neutrinos rescue Hubble

- H depends on energy densities and N_{eff} (effective # of relativistic neutrinos)
- Extra radiation at CMB resolves H0 discrepancy (change SM N_{eff} ~ 3 by +0.4)
 - \rightarrow naturally achieved by heavy steriles decaying to SM particles before BBN

 \rightarrow can test in Lab !

[Gelmini, Kusenko, VT, 2019]

Sterile neutrinos rescue Hubble

• New Super-K sterile search (decay $v_h \rightarrow e^+e^-v$ inside SK, first proposal [Kusenko+, 2004]) \rightarrow different from standard sterile oscillation analysis of atmospheric data

Super-K can shed light on important issues of cosmology

*** Decaying steriles can lead to rich phenomenology with BBN
 → exploring further with help of BBN experts (Kawasaki)

Let's build Hyper-K!

Conclusions

Advances in DM searches and neutrino physics call for large underground experiments

- Very general instruments, with promising physics programs beyond main target
 - DM detectors as "neutrino telescopes"
 - Neutrino detectors as "BSM laboratories"

important to continue exploring their capabilities to fully exploit potential