Compact gravitational systems with negative pressure

Paolo Gondolo University of Utah

Gravitational structures with negative pressure

Work with student Philip Beltracchi on

formation of dark energy stars Beltracchi, Gondolo PRD 99 (2019) 044037

collapse of a constant-density star into a dark energy star Beltracchi, Gondolo PRD 99 (2019) 084021

a curious dark energy object resembling a singular isothermal sphere Beltracchi, Gondolo, arXiv:1910.08166

Gravitational structures with negative pressure

False/true vacuum bubble (non-static, has past/future singularities)

Coleman, De Luccia 1980, Sato, Sasaki, Kodama, Maeda 1981+, Blau, Guendelman, Guth 1987, Farhi, Guth 1987; ...

Interior-deSitter/exterior-Schwarzschild geometry (static)

A spherically symmetric geometry that is asymptotically de Sitter as $r \rightarrow 0$ and asymptotically Schwarzschild as $r \rightarrow \infty$. For example, regular black holes with $p = -\rho$ at the center, G-lumps, gravastars, ...

Sakharov 1966, Gliner 1966, Dymnikova 1992+, Mazur, Mottola 2002+, Catoen, Faber, Visser 2005, Ansoldi, Sindoni 2008, ...

Gravastars

Originally, a star with a $p = -\rho$ interior of volume V matched to a Schwarzschild exterior of mass $M = \rho V$ and having no horizons or spacetime singularities.

Mazur, Mottola 2002+, Catoen, Faber, Visser 2005, ...

- A center with negative pressure
- Radius > Schwarzschild radius
- Initial model by Mazur and Mottola: a pure dark energy core, stiff matter shell, and vacuum exterior, with infinitesimal boundary layers
- Cattoen, Faber, and Visser replaced boundary layers with anisotropic stress

DeBenedictis, Horvat, Ilijic, Kloster, Viswanathan (2007)

Gravastars

Gravitational lensing

- gravastars do not require event horizons
- it may be possible to have light pass through
- interesting lensing trajectories

Gravitational waves

 matter on surface can possibly give a "seismic" signature in gravitational waves

Sakai, Saida, Tamaki 2014

Gravastars

- "Gravitational condensates": temperature/entropy term must be zero
 Mazur, Mottola 2002
- Numerical simulations indicate (slow) rigid rotation and angular momentum are possible, Schwarzschild interior dark energy star nearly matches Kerr source

Chirenti, Rezzolla 2008, Posada 2016

• Gravastars can be electrically charged *Horvat, Ilijic, Marunovic 2008*

• Gravastar stability has been studied. Possible to oscillate between radii rather than settle (bounded excursion)

Chirenti, Rezzolla 2007; Rocha et al 2008

• Formation from normal matter configurations

Beltracchi, Gondolo 2019

Gravitational structures with negative pressure

Work with student Philip Beltracchi on

formation of dark energy stars Beltracchi, Gondolo PRD 99 (2019) 044037

collapse of a constant-density star into a dark energy star Beltracchi, Gondolo PRD 99 (2019) 084021

a curious dark energy object resembling a singular isothermal sphere Beltracchi, Gondolo, arXiv:1910.08166

Beltracchi, Gondolo 2019a

A dark energy star is a gravitationally-bound object with a finite-volume dark energy ($p=-\rho$) core.

Time-dependent spherically-symmetric anisotropic solution

$$ds^{2} = -e^{2\Phi(t,r)} dt^{2} + \frac{dr^{2}}{1 - \frac{2Gm(t,r)}{r}} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2}$$
$$T_{\hat{\mu}\hat{\nu}} = \begin{pmatrix} \rho & -S_{r} & 0 & 0\\ -S_{r} & p_{r} & 0 & 0\\ 0 & 0 & p_{T} & 0\\ 0 & 0 & 0 & p_{T} \end{pmatrix}$$

pressure anisotropy $\Delta = p_T - p_r$ radial momentum flow S_r

Beltracchi, Gondolo 2019a

Einstein's equations

$$\begin{aligned} \frac{\partial m}{\partial r} &= 4\pi r^2 \rho \\ \frac{\partial \Phi}{\partial r} &= \frac{G\left(m + 4\pi r^3 p_r\right)}{r^2 \left(1 - \frac{2Gm}{r}\right)} \\ \frac{\partial \rho}{\partial \tau} &= -\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \sqrt{1 - \frac{2Gm}{r}} S_r\right) \\ -\frac{\partial p_r}{\partial r} &- \frac{G\left(m + 4\pi r^3 p_r\right) \left(\rho + p_r\right)}{r^2 \left(1 - \frac{2Gm}{r}\right)} + \frac{2\Delta}{r} = \sqrt{1 - \frac{2Gm}{r}} \frac{\partial}{\partial \tau} \left(\frac{S_r}{1 - \frac{2Gm}{r}}\right) \end{aligned}$$

au is proper time at fixed $r, heta, \phi$ $(d au = e^{\Phi(t,r)} dt)$

Beltracchi, Gondolo 2019a

Einstein's equations

$$\frac{\partial m}{\partial r} = 4\pi r^2 \rho$$

$$\frac{\partial \Phi}{\partial r} = \frac{G\left(m + 4\pi r^3 p_r\right)}{r^2 \left(1 - \frac{2Gm}{r}\right)}$$

Give $\rho(t,r)$ and $p_r(t,r)$

Find $S_r(t,r)$ and $\Delta(t,r)$

Check energy conditions

$$\begin{aligned} \frac{\partial \rho}{\partial \tau} &= -\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \sqrt{1 - \frac{2Gm}{r}} S_r \right) \\ &- \frac{\partial p_r}{\partial r} - \frac{G \left(m + 4\pi r^3 p_r \right) \left(\rho + p_r \right)}{r^2 \left(1 - \frac{2Gm}{r} \right)} + \frac{2\Delta}{r} = \sqrt{1 - \frac{2Gm}{r}} \frac{\partial}{\partial \tau} \left(\frac{S_r}{1 - \frac{2Gm}{r}} \right) \end{aligned}$$

| au is proper time at fixed $r, heta,\phi$ $(d au=e^{\Phi(t,r)}\,dt)$

Form a $p_r = p_T = -\rho = \text{const}$ core of increasing radius

Evolution parameter f = f(t) controls formation of singularities and horizons

Beltracchi, Gondolo 2019a

Evolution of density, pressure, and energy flow

Beltracchi, Gondolo 2019a

Weak energy condition

 $T_{\mu\nu} k^{\mu} k^{\nu} \ge 0$ for all time-like vectors k^{μ}

Null energy condition

 $T_{\mu\nu} k^{\mu} k^{\nu} \ge 0$ for all light-like vectors k^{μ}

The weak and the null energy conditions are satisfied at any position and time.

Beltracchi, Gondolo 2019a

Form a $p_r = p_T = -\rho = \text{const}$ core of increasing radius

Force balance in equilibrium configuration

In the inversion zone, the pressure gradient force and the gravitational force point inwards and are balanced by the anisotropy force.

Gravitational structures with negative pressure

Work with student Philip Beltracchi on

formation of dark energy stars Beltracchi, Gondolo PRD 99 (2019) 044037

collapse of a constant-density star into a dark energy star Beltracchi, Gondolo PRD 99 (2019) 084021

a curious dark energy object resembling a singular isothermal sphere Beltracchi, Gondolo, arXiv:1910.08166

An exact time-dependent interior Schwarzschild solution

Schwarzschild stars

A spherically-symmetric, static, constant density star

Schwarzschild 1916

$$ds^{2} = -f(r) dt^{2} + \frac{dr^{2}}{h(r)} + r^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2})$$

with

$$f(r) = \begin{cases} \frac{1}{4}(3a-b)^2, & r \le R, \\ 1 - \frac{R_s}{r}, & r \ge R, \end{cases}$$
$$h(r) = \begin{cases} b^2, & r \le R, \\ 1 - \frac{R_s}{r}, & r \ge R. \end{cases}$$

where

$$a = \sqrt{1 - \frac{R_s}{R}}, \qquad b = \sqrt{1 - \frac{R_s r^2}{R}}$$

Schwarzschild stars

- The pressure is everywhere finite if $R/R_s > 9/8 = 1.125$ (Buchdahl bound).
- For $R/R_s < 9/8$, the pressure diverges at finite radius $R_0 = 3R_{\sqrt{1-\frac{8}{9}\frac{R}{R_s}}}$
- The singularity is integrable in the sense that

$$M_{\rm grav}(V) = \int_V (\rho + p_x + p_y + p_z) \sqrt{-g_{tt}} \, dV$$

is finite in any volume V Mazur, Mottola 2015

Formation of a Schwarzschild star

Beltracchi, Gondolo 2019b

Exact time-dependent solution of Einstein's equations

Ansatz: the radius of the Schwarzschild star depends on time, R = R(t)Then $T_{\hat{\mu}\hat{\nu}} = \begin{pmatrix} \rho & S_r & 0 & 0 \\ S_r & p_r & 0 & 0 \\ 0 & 0 & p_T & 0 \\ 0 & 0 & 0 & p_T \end{pmatrix}$ anisotropic pressure $p_r \neq p_T$ momentum flow S_r

Continuity of p_r and p_T at the surface of the star gives

$$2R\ddot{R}(R_s - R) + \dot{R}^2(R_s + 8R) = 0,$$

which can solved analytically to find

$$\frac{t-t_0}{t_s} = F\left(\frac{R_s}{R}\right)$$

where t_0 and t_s are integration constants and

$$F(x) = \frac{1}{2942} \left(\frac{8 - 28x + 35x^2}{8(1 - x)^{7/2}} - 1 \right).$$

At t_0 , R was infinite. At $t_0 + t_s$, the pressure becomes singular.

Formation of a Schwarzschild star

Energy density and pressure profiles

after the pressure diverges

Beltracchi, Gondolo 2019b

Violates the weak and null energy conditions

Ends in a gravastar

Formation of a Schwarzschild star

Beltracchi, Gondolo 2019b

Location of curvature singularities in spacetime

Gravitational structures with negative pressure

Work with student Philip Beltracchi on

formation of dark energy stars Beltracchi, Gondolo PRD 99 (2019) 044037

collapse of a constant-density star into a dark energy star Beltracchi, Gondolo PRD 99 (2019) 084021

a curious dark energy object resembling a singular isothermal sphere Beltracchi, Gondolo, arXiv:1910.08166

Uniaxial dark energy

Uniaxial continuum

A continuum with stress-energy tensor that can be diagonalized at every spacetime point into the diagonal form

$$T^{\mu}{}_{\nu} = \begin{pmatrix} -\rho & & \\ & -\rho & & \\ & & p_{\perp} & \\ & & & p_{\perp} \end{pmatrix}$$

Invariant under rotations about an axis and Lorentz boosts along that axis

- It may be characterized by an (effective) equation of state
- Examples:
 - cosmological constant ($p_{\perp} = -\rho, p = -\rho$)
 - Maxwell's electromagnetic theory ($p_{\perp} = \rho$, $p = \rho/3$)
 - Nonlinear electrodynamics, including Born-Infeld theory
- Not a scalar field that varies in space or time
- Segre type [(11)(1,1)] and its degeneracy [(111,1)]

$$p_{\perp} = p_{\perp}(\rho)$$
$$p \equiv \frac{-\rho + 2p_{\perp}}{3} = p(\rho)$$

Static spherically-symmetric uniaxial continuum

- The boost-invariance axis is in the radial direction, $p_r = -\rho$, $p_T = p_{\perp}$.
- The metric is of Kerr-Schild type

$$ds^{2} = -\left(1 - \frac{2Gm(r)}{c^{2}r}\right) dt^{2} + \frac{dr^{2}}{1 - \frac{2Gm(r)}{c^{2}r}} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2}$$
with $m(r) = \int_{0}^{r} \rho(r') 4\pi r'^{2} dr'$ and $\frac{r}{2} \frac{d\rho}{dr} + \rho = -p_{T}(\rho)$
TOV equation but no gravitational force because $p_{r} = -\rho$.
Same density profile as in the absence of gravity.
(Coulomb field gives $M=0$ Reissner-Nordstrom metric)

Solutions obey a superposition principle

$$T_{\mu\nu} = T_{\mu\nu}^{(1)} + T_{\mu\nu}^{(2)} \qquad \qquad m(r) = m^{(1)}(r) + m^{(2)}(r)$$

The Reissner-Nordstrom-de Sitter metric has $g_{tt} = 1 - \frac{2GM}{c^2r} + \frac{GQ^2}{4\pi\epsilon_0c^4r^2} - H^2r^2$

Static spherically-symmetric uniaxial continuum The special case $p_{\perp} = 0$

$$T^{\mu}{}_{\nu} = \begin{pmatrix} -\rho & & \\ & -\rho & \\ & & 0 \\ & & & 0 \end{pmatrix}$$

For $\rho = \mu \, \delta(z)$, this is the stress-energy tensor of a cosmic string. Thus this system can be thought of as a collection of very many cosmic strings through a single point, like a koosh.

The metric is
$$ds^2 = -\kappa^2 dt^2 + \frac{dr^2}{\kappa^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2$$

 $\kappa = \sqrt{1 - \frac{2G\lambda}{c^2}} = \text{constant}$ "hyperconical"

Letelier 1979; Barriola, Vilenkin 1989

Static spherically-symmetric uniaxial continuum The special case $p_{\perp} = 0$

It is the magnetic monopole solution of a nonlinear electrodynamic theory with Lagrangian density $\mathcal{L} = a (F^{\mu\nu}F_{\mu\nu})^{1/2}$

It is the metric of an O(3) global monopole at the large distances

It is the metric of a Born-Infeld magnetic monopole at the small distances

The density profile is the same as a singular isothermal sphere

$$\rho = \frac{\lambda}{4\pi r^2} \qquad \qquad m = \lambda \, r$$

Gravitational lensing looks the same as for a singular isothermal sphere

deflection angle
$$lpha=\pirac{1-\kappa}{\kappa}$$
 independent of distance from center

Static spherically-symmetric uniaxial continuum The special case $p_{\perp} = 0$

Massive and massless particles follow the same trajectories

$$r\cos(\kappa\phi) = \kappa b$$
 $\kappa = \sqrt{1 - \frac{2G\lambda}{c^2}}$

There are no bound orbits

Conclusions

Gravitationally-bound dark energy structures

We have been examining theoretical possibilities to form gravitationally bound dark energy objects.

We found an exact time-dependent solution of Einstein's equations describing the collapse of a constant-density star into a gravastar (it violates the weak energy condition).

We found explicit time-dependent semi-analytic solutions of Einstein's equations giving the collapse of a spherical object to a dark energy star (they have no horizons/singularities and they obey the weak energy condition).

We are exploring dark energy with anisotropic stress, and found a curious dark energy object that resembles the singular isothermal sphere in some aspects but with no bound orbits (it may be thought of as infinitely-many strings through a center: a koosh).