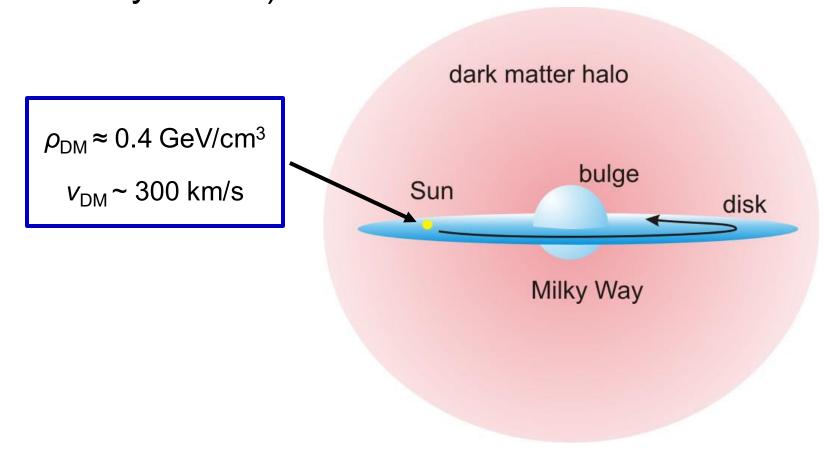
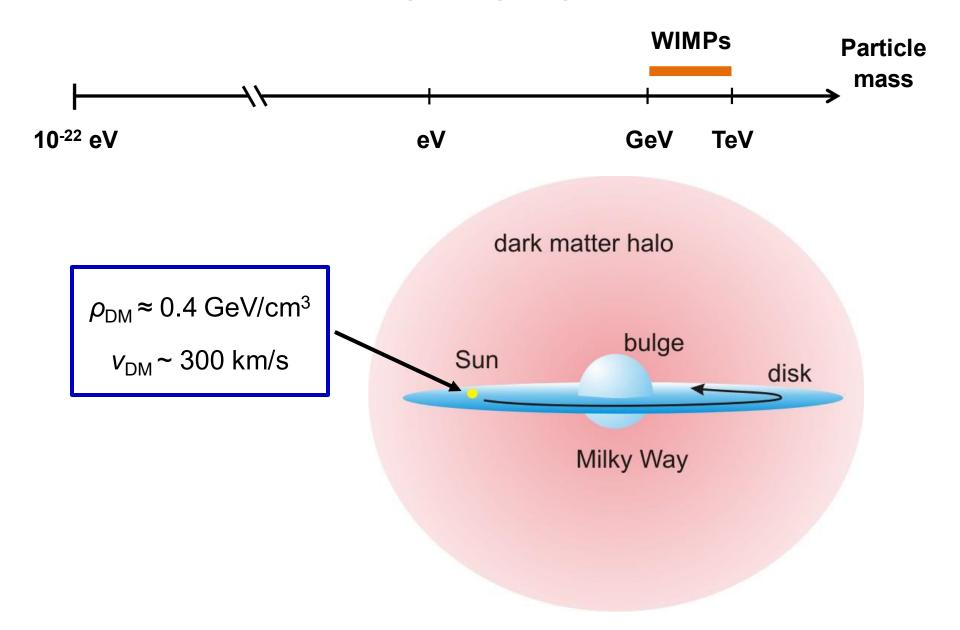
Novel Approaches to Dark Matter Detection with Atomic, Molecular and Optical Experiments

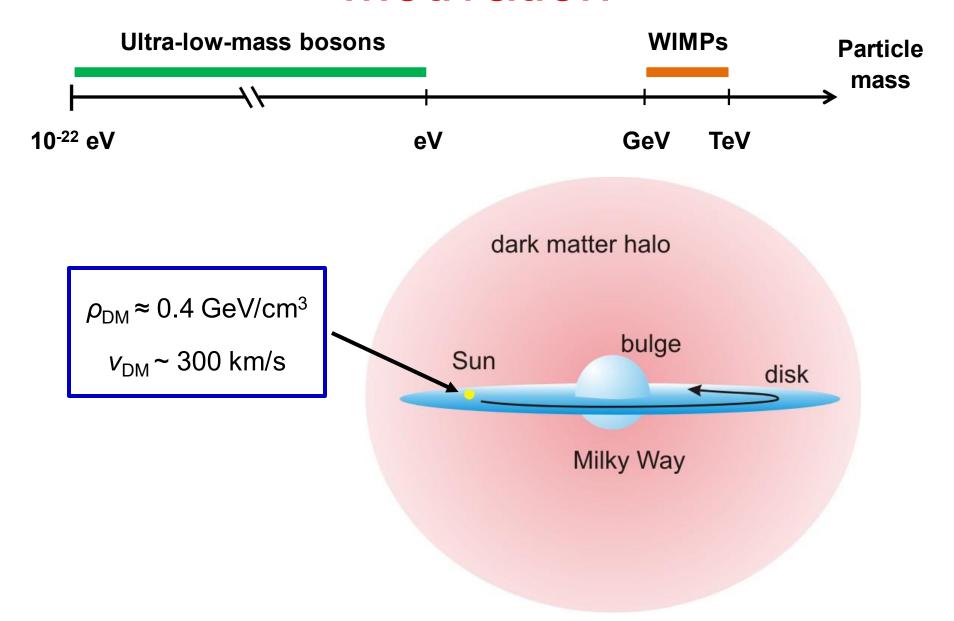
Yevgeny Stadnik

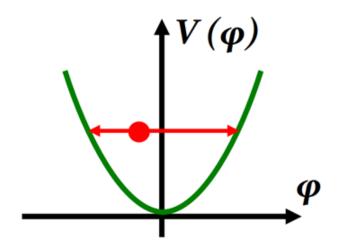
Kavli Fellow


Kavli IPMU, University of Tokyo, Japan



Motivation


Strong astrophysical evidence for existence of **dark matter** (~5 times more dark matter than ordinary matter).


Motivation

Motivation

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>\approx m_{\varphi}^2\varphi_0^2/2~(\rho_{\rm DM,local}\approx 0.4~{\rm GeV/cm}^3)$

$$V(\phi) = \frac{m_{\phi}^2 \phi^2}{2}$$

$$\ddot{\phi} + m_{\phi}^2 \phi \approx 0$$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>\approx m_{\varphi}^2\varphi_0^2/2~(\rho_{\rm DM,local}\approx 0.4~{\rm GeV/cm}^3)$
- Coherently oscillating field, since cold $(E_{\varphi} \approx m_{\varphi}c^2)$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>\approx m_{\varphi}^2\varphi_0^2/2~(\rho_{\rm DM,local}\approx 0.4~{\rm GeV/cm}^3)$
- Coherently oscillating field, since cold $(E_{\varphi} \approx m_{\varphi}c^2)$
- $\Delta E_{\varphi} / E_{\varphi} \sim \langle v_{\varphi}^2 \rangle / c^2 \sim 10^{-6} = \tau_{\text{coh}} \sim 2\pi / \Delta E_{\varphi} \sim 10^6 T_{\text{osc}}$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>\approx m_{\varphi}^2\varphi_0^2/2~(\rho_{\rm DM,local}\approx 0.4~{\rm GeV/cm}^3)$
- Coherently oscillating field, since cold $(E_{\varphi} \approx m_{\varphi}c^2)$
- $\Delta E_{\varphi} / E_{\varphi} \sim \langle v_{\varphi}^2 \rangle / c^2 \sim 10^{-6} = \tau_{\text{coh}} \sim 2\pi / \Delta E_{\varphi} \sim 10^6 T_{\text{osc}}$
- Classical field for $m_{\varphi} \lesssim 1$ eV, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>\approx m_{\varphi}^2\varphi_0^2/2~(\rho_{\rm DM,local}\approx 0.4~{\rm GeV/cm}^3)$
- Coherently oscillating field, since cold $(E_{\varphi} \approx m_{\varphi}c^2)$
- $\Delta E_{\varphi} / E_{\varphi} \sim \langle v_{\varphi}^2 \rangle / c^2 \sim 10^{-6} = \tau_{\text{coh}} \sim 2\pi / \Delta E_{\varphi} \sim 10^6 T_{\text{osc}}$
- Classical field for $m_{\varphi} \lesssim 1$ eV, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$
- $10^{-22} \text{ eV} \le m_{\varphi} \le 1 \text{ eV} \le 10^{-8} \text{ Hz} \le f \le 10^{14} \text{ Hz}$

$$\lambda_{\mathrm{dB},\varphi}/2\pi \leq L_{\mathrm{dwarf\,galaxy}} \sim 1 \; \mathrm{kpc} \qquad \mathrm{Classical\,\,field}$$

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_\varphi c^2 t/\hbar)$, with energy density $<\rho_\varphi>\approx m_\varphi^2 \varphi_0^2/2 \ (\rho_{\rm DM,local}\approx 0.4 \ {\rm GeV/cm^3})$
- Coherently oscillating field, since cold $(E_{\varphi} \approx m_{\varphi}c^2)$
- $\Delta E_{\varphi} / E_{\varphi} \sim \langle v_{\varphi}^2 \rangle / c^2 \sim 10^{-6} = \tau_{\text{coh}} \sim 2\pi / \Delta E_{\varphi} \sim 10^6 T_{\text{osc}}$
- Classical field for $m_{\varphi} \lesssim 1$ eV, since $n_{\varphi}(\lambda_{\mathrm{dB},\varphi}/2\pi)^3 >> 1$
- $10^{-22} \text{ eV} \le m_{\varphi} \le 1 \text{ eV} \le 10^{-8} \text{ Hz} \le f \le 10^{14} \text{ Hz}$

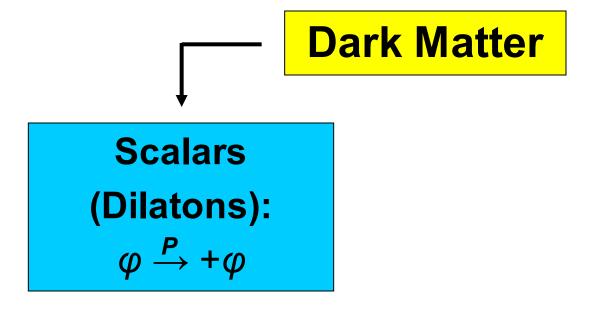
Wave-like signatures [cf. particle-like signatures of WIMP DM]

Scalars

(Dilatons):

$$\varphi \xrightarrow{P} + \varphi$$

→ Time-varying


fundamental constants

- Atomic clocks
- Cavities and interferometers
 - Fifth-force searches
 - Astrophysics (e.g., BBN)

Pseudoscalars (Axions): $\varphi \xrightarrow{P} -\varphi$

→ Time-varying spindependent effects

- Co-magnetometers
- Nuclear magnetic resonance
 - Torsion pendula

→ Time-varying

fundamental constants

- Atomic clocks
- Cavities and interferometers
 - Fifth-force searches
 - Astrophysics (e.g., BBN)

$$\mathcal{L}_{\gamma} = \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda_{\gamma}}$$

$$\mathcal{L}_{\gamma} = \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda_{\gamma}}$$

$$\mathcal{L}_{f} = -\frac{\phi}{\Lambda_{f}} m_{f} \bar{f} f \implies \frac{\delta m_{f}}{m_{f}} \approx \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda_{f}}$$

$$\mathcal{L}_{\gamma} = \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda_{\gamma}}$$

$$\mathcal{L}_{f} = -\frac{\phi}{\Lambda_{f}} m_{f} \bar{f} f \implies \frac{\delta m_{f}}{m_{f}} \approx \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda_{f}}$$

$$\phi = \phi_0 \cos(m_{\phi} t - \boldsymbol{p}_{\phi} \cdot \boldsymbol{x}) \implies \boldsymbol{F} \propto \boldsymbol{p}_{\phi} \sin(m_{\phi} t)$$

$$\mathcal{L}_{\gamma} = \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda_{\gamma}}$$

$$\mathcal{L}_{f} = -\frac{\phi}{\Lambda_{f}} m_{f} \bar{f} f \implies \frac{\delta m_{f}}{m_{f}} \approx \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda_{f}}$$

$$\phi = \phi_0 \cos(m_{\phi} t - \boldsymbol{p}_{\phi} \cdot \boldsymbol{x}) \implies \boldsymbol{F} \propto \boldsymbol{p}_{\phi} \sin(m_{\phi} t)$$

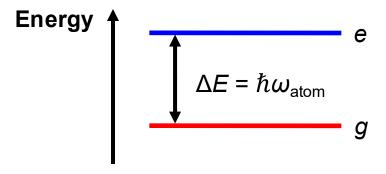
$$\mathcal{L}'_{\gamma} = \frac{\phi^2}{(\Lambda'_{\gamma})^2} \frac{F_{\mu\nu}F^{\mu\nu}}{4}$$
$$\mathcal{L}'_{f} = -\frac{\phi^2}{(\Lambda'_{f})^2} m_f \bar{f} f$$

$$\mathcal{L}_{\gamma} = \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda_{\gamma}}$$

$$\mathcal{L}_{f} = -\frac{\phi}{\Lambda_{f}} m_{f} \bar{f} f \implies \frac{\delta m_{f}}{m_{f}} \approx \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda_{f}}$$

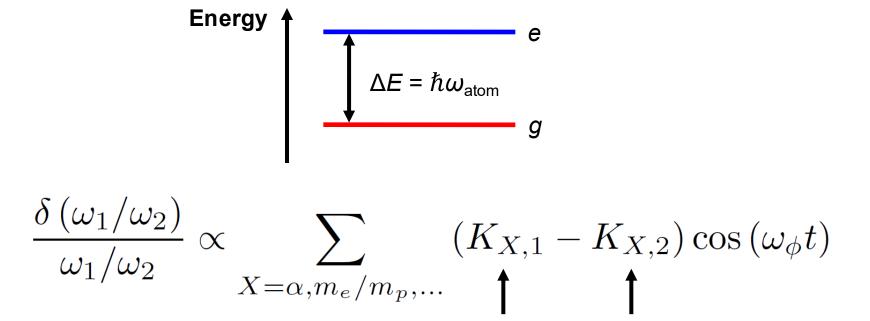
$$\phi = \phi_0 \cos(m_{\phi} t - \underline{\boldsymbol{p}}_{\phi} \cdot \boldsymbol{x}) \implies \underline{\boldsymbol{F}} \propto \underline{\boldsymbol{p}}_{\phi} \sin(m_{\phi} t)$$

$$\mathcal{L}'_{\gamma} = \frac{\phi^2}{(\Lambda'_{\gamma})^2} \frac{F_{\mu\nu} F^{\mu\nu}}{4}$$


$$\mathcal{L}'_{f} = -\frac{\phi^2}{(\Lambda'_{f})^2} m_f \bar{f} f$$

$$= > \frac{\delta \alpha}{\alpha} \propto \frac{\delta m_f}{m_f} \propto \delta \rho_{\phi}$$

$$\mathbf{F} \propto \mathbf{\nabla} \rho_{\phi}$$

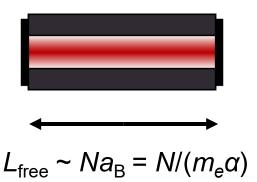

Atomic Spectroscopy Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Arvanitaki, Huang, Van Tilburg, PRD 91, 015015 (2015)], [Stadnik, Flambaum, PRL 114, 161301 (2015)]

Atomic Spectroscopy Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Arvanitaki, Huang, Van Tilburg, PRD 91, 015015 (2015)], [Stadnik, Flambaum, PRL 114, 161301 (2015)]

 $\omega_{\varphi} = m_{\varphi}$ (linear-in- φ coupling) or $\omega_{\varphi} = 2m_{\varphi}$ (quadratic-in- φ coupling)

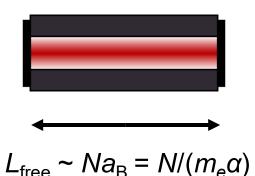

Sensitivity coefficients *

^{*} Sensitivity coefficients K_X calculated extensively by Flambaum group, see the reviews [Flambaum, Dzuba, Can. J. Phys. 87, 25 (2009); Hyperfine Interac. 236, 79 (2015)]

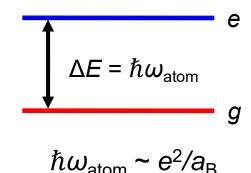
Cavity-Based Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]

Solid material



Cavity-Based Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

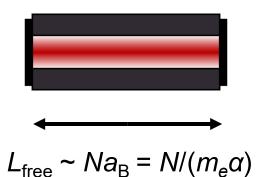

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]

cf.

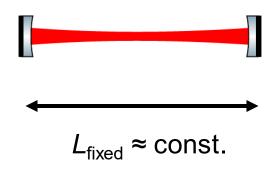
Solid material

Electronic transition

$$\Phi = \frac{\omega_{\text{atom}} L_{\text{free}}}{c} \propto \left(\frac{e^2}{a_{\text{B}}\hbar}\right) \left(\frac{Na_{\text{B}}}{c}\right) = N\alpha$$

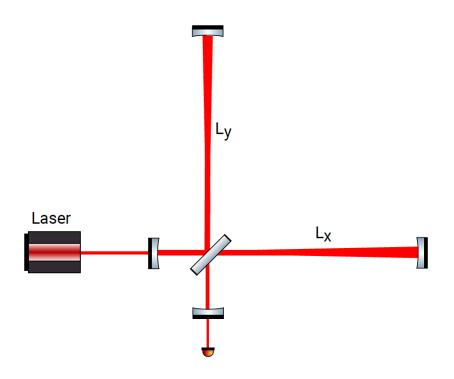

$$=> \frac{\delta\Phi}{\Phi} \approx \frac{\delta\alpha}{\alpha}$$

Cavity-Based Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

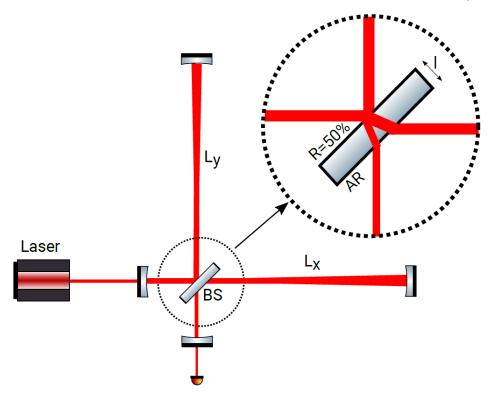

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]

cf.

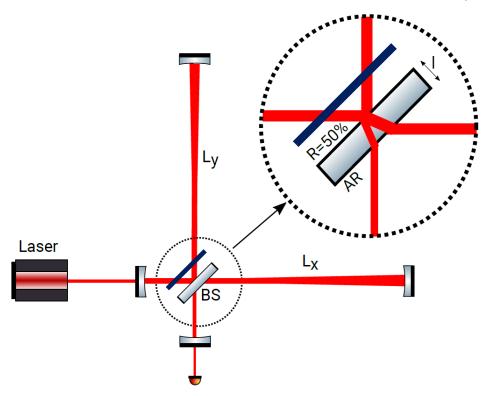
Solid material



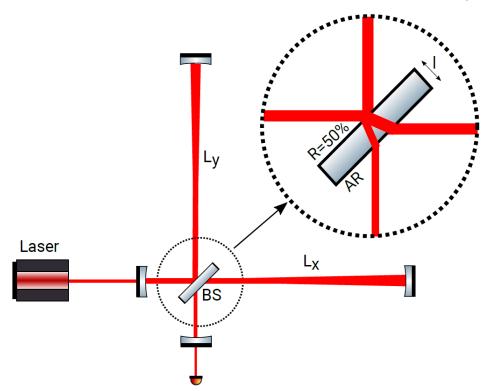
Freely-suspended mirrors


$$\Phi \propto L_{\rm free} \propto a_{\rm B} = > \frac{\delta \Phi}{\Phi} \approx -\frac{\delta \alpha}{\alpha} - \frac{\delta m_e}{m_e}$$

[Grote, Stadnik, arXiv:1906.06193; Phys. Rev. Research (In press)]


Michelson interferometer (GEO 600)

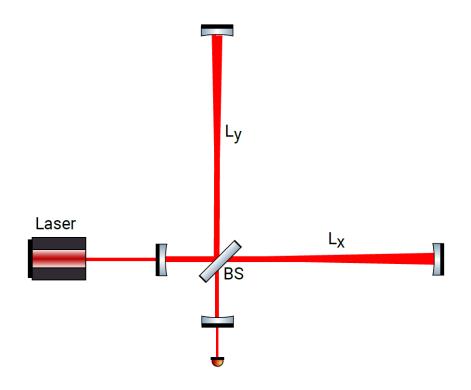
[Grote, Stadnik, arXiv:1906.06193; Phys. Rev. Research (In press)]


• Geometric asymmetry from beam-splitter: $\delta(L_x - L_y) \sim \delta(nI)$

[Grote, Stadnik, arXiv:1906.06193; Phys. Rev. Research (In press)]

• Geometric asymmetry from beam-splitter: $\delta(L_x - L_v) \sim \delta(nI)$

[Grote, Stadnik, arXiv:1906.06193; Phys. Rev. Research (In press)]


- Geometric asymmetry from beam-splitter: $\delta(L_x L_y) \sim \delta(nI)$
- Both broadband and resonant narrowband searches possible: $f_{\rm DM} \approx f_{\rm vibr,BS} \sim v_{\rm sound} / I$, $Q \sim 10^6$ enhancement

Michelson vs Fabry-Perot-Michelson Interferometers

[Grote, Stadnik, arXiv:1906.06193; Phys. Rev. Research (In press)]

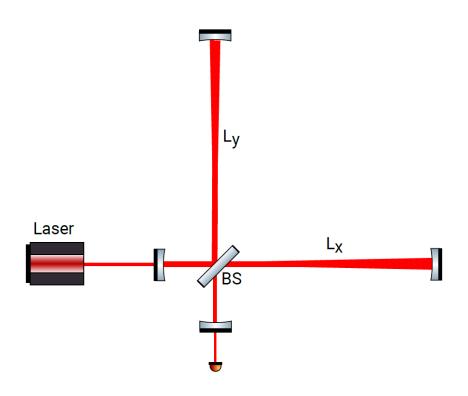
Michelson interferometer (GEO 600, Fermilab holometer)

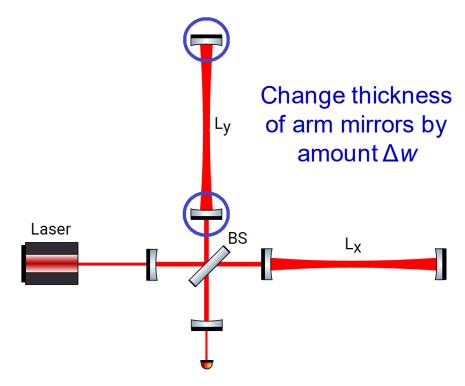
Fabry-Perot-Michelson interferometer (LIGO, VIRGO, KAGRA)

Laser

BS L_X $N_{\text{eff}} \sim \text{few x } 10^2$

$$\delta(L_{x} - L_{y})_{BS} \sim \delta(nI)$$


$$\delta(L_x - L_y)_{BS} \sim \delta(nI)/N_{eff}$$


Michelson vs Fabry-Perot-Michelson Interferometers

[Grote, Stadnik, arXiv:1906.06193; Phys. Rev. Research (In press)]

Michelson interferometer (GEO 600, Fermilab holometer)

Fabry-Perot-Michelson interferometer (LIGO, VIRGO, KAGRA)

$$\delta(L_{x} - L_{y})_{BS} \sim \delta(nI)$$

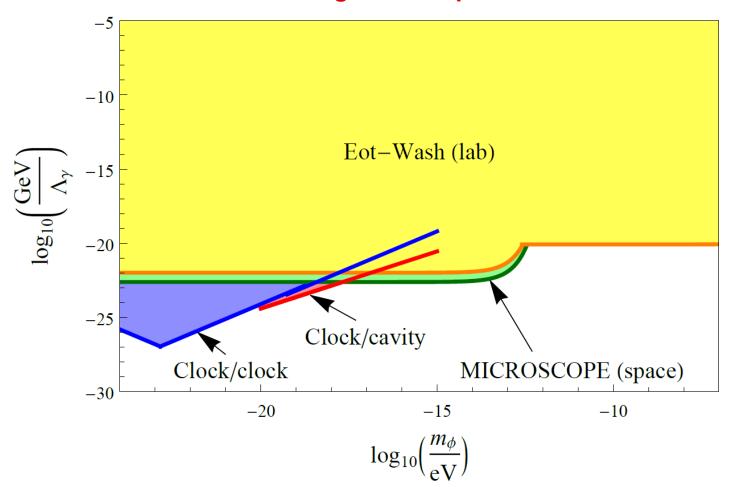
$$\delta(L_{x} - L_{y}) \approx \delta(\Delta w)$$

Experiments

Clock/clock comparisons: $10^{-23} \text{ eV} < m_{\varphi} < 10^{-16} \text{ eV}$

- Dy/Cs (Mainz): [Van Tilburg et al., PRL 115, 011802 (2015)],
 [Stadnik, Flambaum, PRL 115, 201301 (2015)]
 - Rb/Cs (SYRTE): [Hees et al., PRL 117, 061301 (2016)],
 [Stadnik, Flambaum, PRA 94, 022111 (2016)]
- Rb/Cs (GPS network)*: [Roberts et al., Nature Commun. 8, 1195 (2017)]
 - Yb+(E3)/Sr (PTB): [Huntemann, Peik et al., In preparation]
- Al⁺/Yb, Yb/Sr, Al⁺/Hg⁺ (NIST + JILA): [Hume, Leibrandt et al., In preparation]

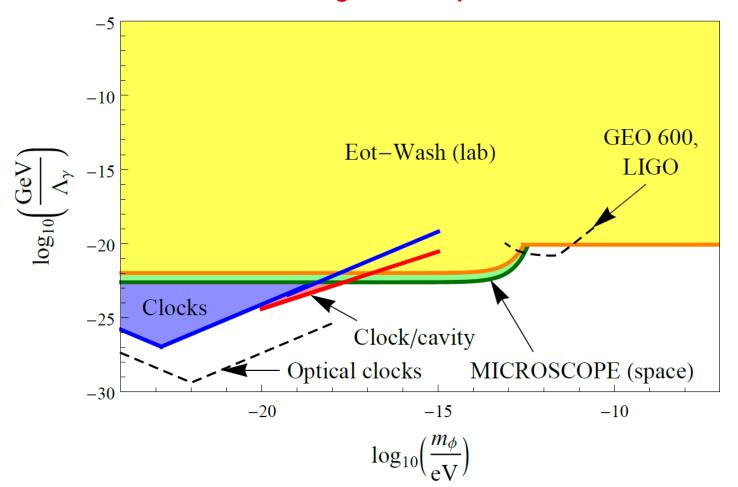
Clock/cavity comparisons: $10^{-20} \text{ eV} < m_{\varphi} < 10^{-15} \text{ eV}$

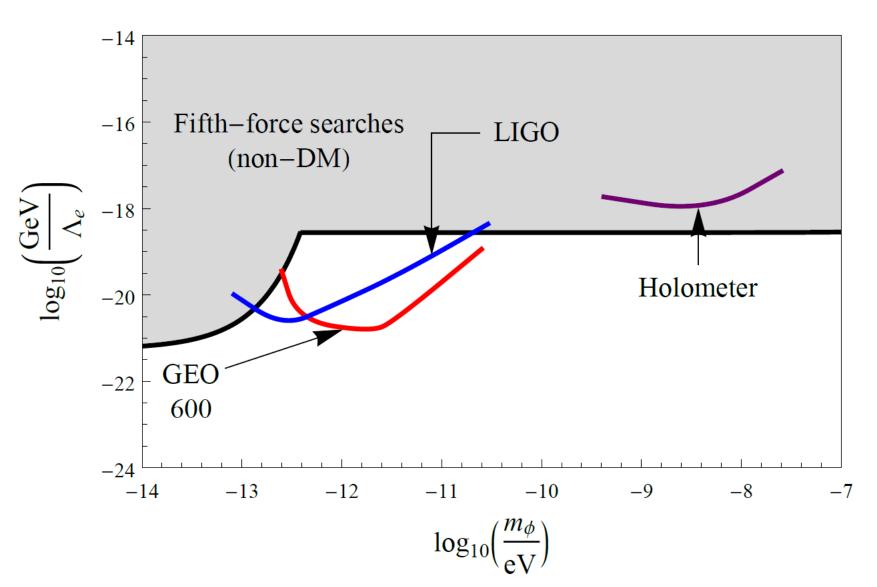

- Sr/ULE cavity (Torun)*: [Wcislo et al., Nature Astronomy 1, 0009 (2016)]
- Sr/Si cavity (JILA): [Robinson, Ye et al., Bulletin APS, H06.00005 (2018)]
 - Various (global network): [Wcislo et al., Sci. Adv. 4, eaau4869 (2018)]
 - Sr⁺/ULE cavity (Weizmann): [Aharony et al., arXiv:1902.02788]
 - Cs/cavity (Mainz): [Antypas et al., PRL 123, 141102 (2019)]

^{*} Searches for domain wall dark matter.

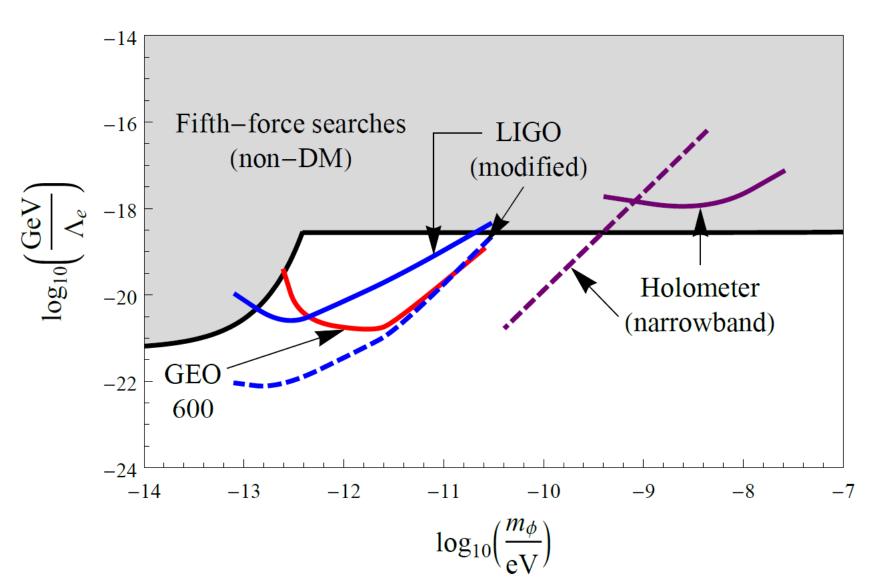
Constraints on Linear Interaction of Scalar Dark Matter with the Photon

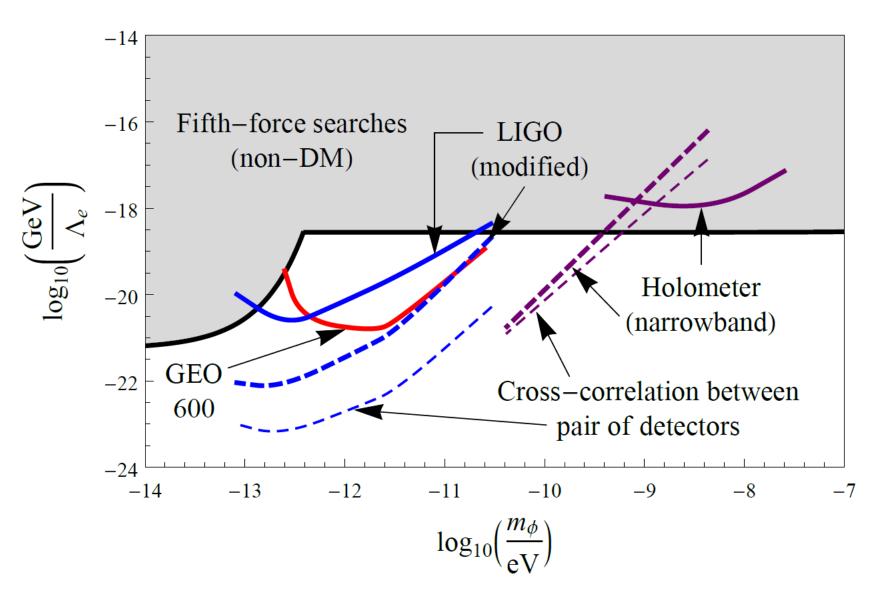
Clock/clock constraints: [Van Tilburg et al., PRL 115, 011802 (2015)], [Hees et al., PRL 117, 061301 (2016)]; Clock/cavity constraints: [Robinson, Ye et al., Bulletin APS, H06.00005 (2018)]


4 orders of magnitude improvement!

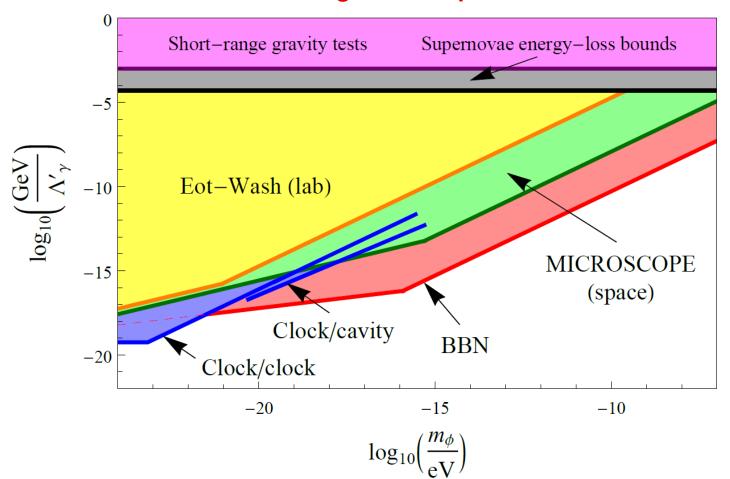

Constraints on Linear Interaction of Scalar Dark Matter with the Photon

Clock/clock constraints: [Van Tilburg et al., PRL 115, 011802 (2015)], [Hees et al., PRL 117, 061301 (2016)]; Clock/cavity constraints: [Robinson, Ye et al., Bulletin APS, H06.00005 (2018)]


4 orders of magnitude improvement!


Linear Interaction of Scalar Dark Matter with the Electron

Linear Interaction of Scalar Dark Matter with the Electron


Linear Interaction of Scalar Dark Matter with the Electron

Constraints on Quadratic Interaction of Scalar Dark Matter with the Photon

Clock/clock + BBN constraints: [Stadnik, Flambaum, *PRL* 115, 201301 (2015); *PRA* 94, 022111 (2016)]; MICROSCOPE + Eöt-Wash constraints: [Hees *et al.*, *PRD* 98, 064051 (2018)]

15 orders of magnitude improvement!

Dark Matter

QCD axion resolves strong CP problem

Pseudoscalars (Axions): $\varphi \xrightarrow{P} -\varphi$

→ Time-varying spindependent effects

- Co-magnetometers
- Nuclear magnetic resonance
 - Torsion pendula

Dark Matter-Induced Spin-Dependent Effects

"Axion Wind" Spin-Precession Effect

[Flambaum, talk at Patras Workshop, 2013], [Stadnik, Flambaum, PRD 89, 043522 (2014)]

$$\mathcal{L}_f = -\frac{C_f}{2f_a} \partial_i [a_0 \cos(m_a t - \boldsymbol{p}_a \cdot \boldsymbol{x})] \bar{f} \gamma^i \gamma^5 f$$

$$=> H_{\mathrm{wind}}(t) = \boldsymbol{\sigma}_f \cdot \boldsymbol{B}_{\mathrm{eff}}(t) \propto \boldsymbol{\sigma}_f \cdot \boldsymbol{p}_a \sin(m_a t)$$

Dark Matter-Induced Spin-Dependent Effects

"Axion Wind" Spin-Precession Effect

[Flambaum, talk at Patras Workshop, 2013], [Stadnik, Flambaum, PRD 89, 043522 (2014)]

$$\mathcal{L}_f = -\frac{C_f}{2f_a} \partial_i [a_0 \cos(m_a t - \boldsymbol{p}_a \cdot \boldsymbol{x})] \bar{f} \gamma^i \gamma^5 f$$

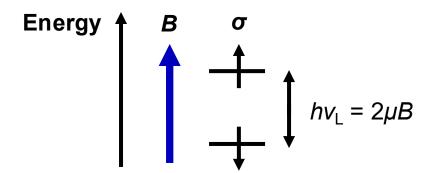
$$=> H_{\mathrm{wind}}(t) = \boldsymbol{\sigma}_f \cdot \boldsymbol{B}_{\mathrm{eff}}(t) \propto \boldsymbol{\sigma}_f \cdot \boldsymbol{p}_a \sin(m_a t)$$

Oscillating Electric Dipole Moments

Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)]

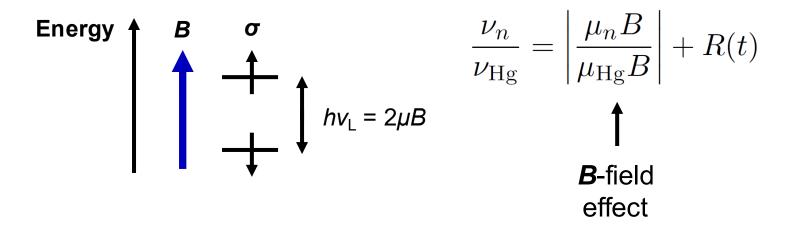
Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)]

$$\mathcal{L}_g = \frac{C_G a_0 \cos(m_a t)}{f_a} \frac{g^2}{32\pi^2} G\tilde{G}$$

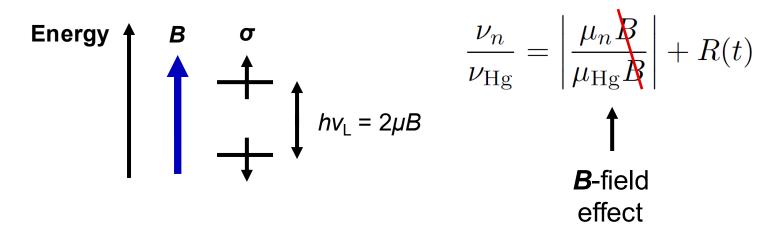

$$=> H_{\rm EDM}(t) = \boldsymbol{d}(t) \cdot \boldsymbol{E}, \ \boldsymbol{d}(t) \propto \boldsymbol{J} \cos(m_a t)$$

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

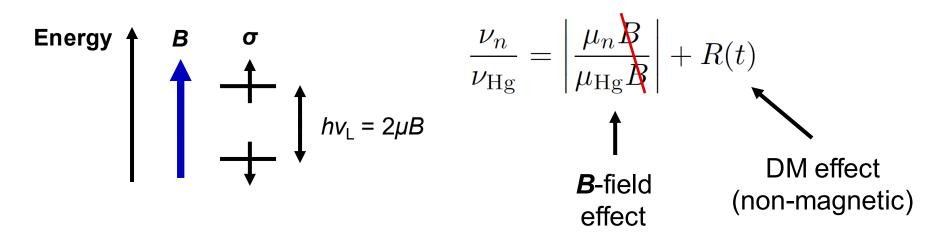
Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons, torsion pendula


Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons forsion pendula

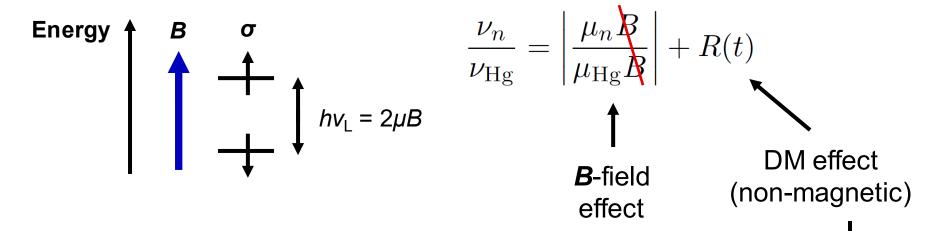

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons torsion pendula


Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons torsion pendula

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

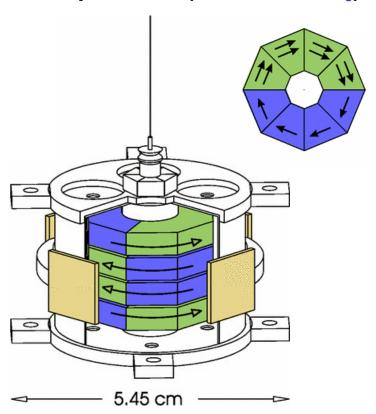

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons torsion pendula

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use *spin-polarised sources*: Atomic magnetometers, ultracold neutrons forsion pendula

Experiment (n/Hg): [nEDM collaboration, PRX 7, 041034 (2017)]

Proposal + Experiment (p): [BASE collaboration, *Nature* 575, 310 (2019)]

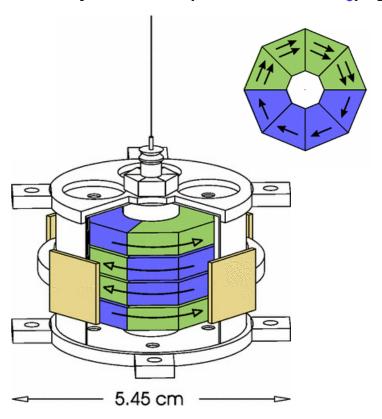

Cold antiprotons
$$\left(\frac{\nu_{\rm L}}{\nu_{\rm c}} \right)_{\bar{\rm p}} = \frac{|g_{\bar{\rm p}}|}{2} + R(t) \ \, \blacksquare$$

Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use spin-polarised sources: Atomic magnetometers,

ultracold neutrons, torsion pendula

Experiment (Alnico/SmCo₅): [Terrano *et al.*, *PRL* **122**, 231301 (2019)]



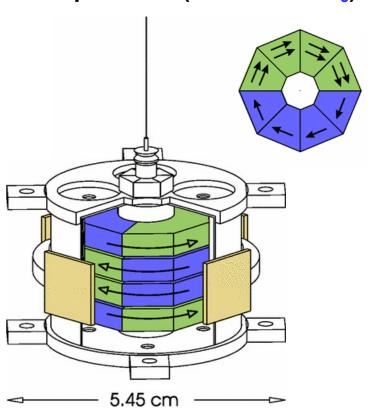
Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use spin-polarised sources: Atomic magnetometers,

ultracold neutrons, torsion pendula

Experiment (Alnico/SmCo₅): [Terrano et al., PRL 122, 231301 (2019)]

$$\mu_{
m pendulum}pprox 0$$


$$(\boldsymbol{\sigma}_e)_{\mathrm{pendulum}} \neq \mathbf{0}$$

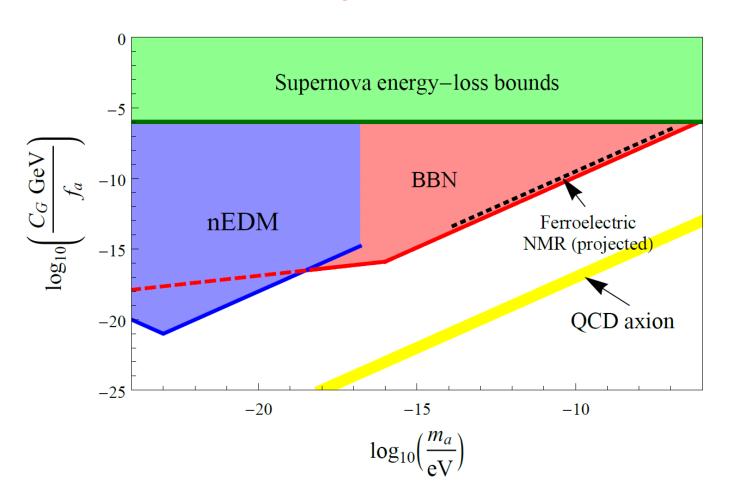
Proposals: [Flambaum, talk at *Patras Workshop*, 2013; Stadnik, Flambaum, *PRD* **89**, 043522 (2014); Stadnik, thesis (Springer, 2017)]

Use spin-polarised sources: Atomic magnetometers,

ultracold neutrons, torsion pendula

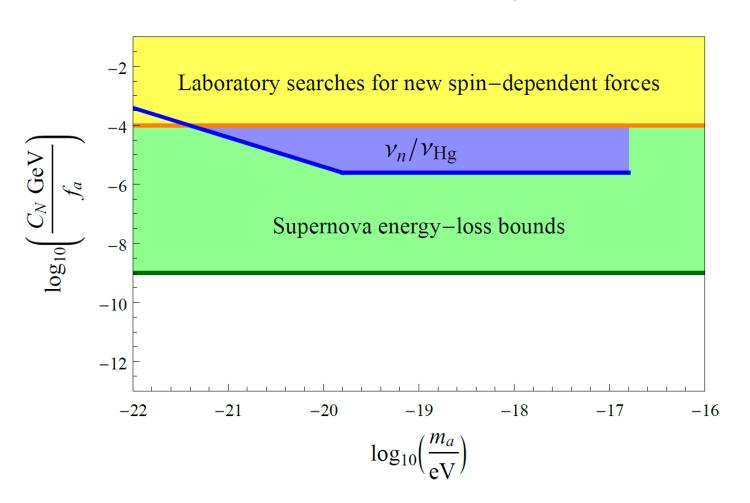
Experiment (Alnico/SmCo₅): [Terrano et al., PRL 122, 231301 (2019)]

$$\mu_{
m pendulum}pprox 0$$

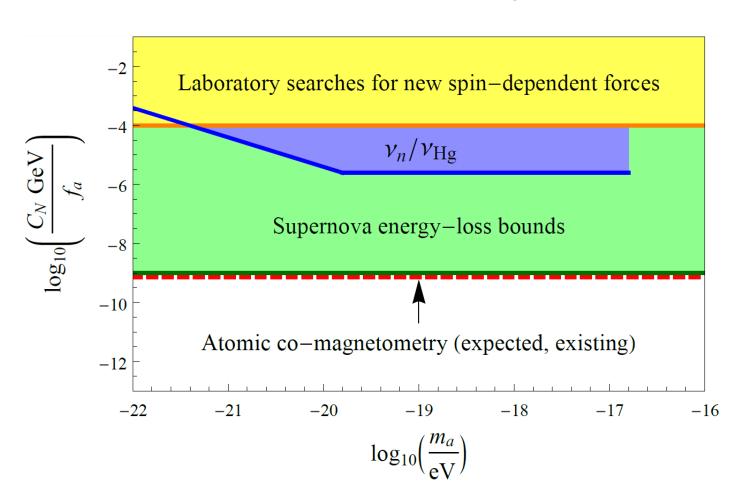

$$(\boldsymbol{\sigma}_e)_{\mathrm{pendulum}} \neq \mathbf{0}$$

$$\boldsymbol{\tau}\left(t\right) \propto \left(\boldsymbol{\sigma}_{e}\right)_{\mathrm{pendulum}} \times \boldsymbol{B}_{\mathrm{eff}}\left(t\right)$$

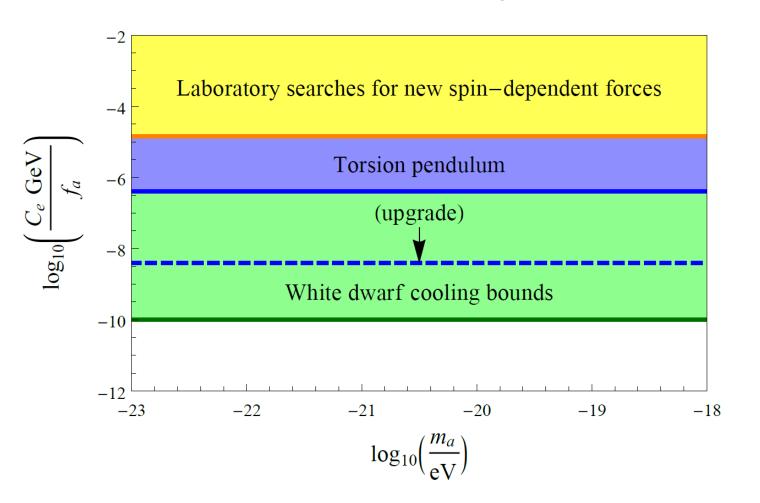
Constraints on Interaction of Axion Dark Matter with Gluons


nEDM constraints: [nEDM collaboration, PRX 7, 041034 (2017)]

3 orders of magnitude improvement!

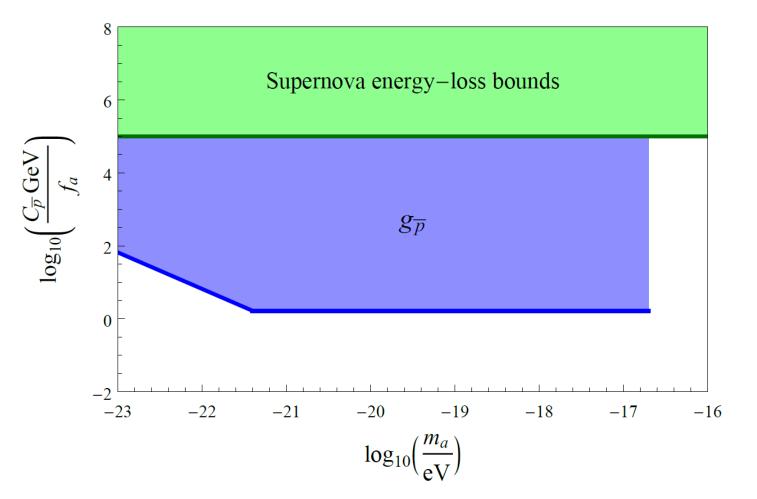

Constraints on Interaction of Axion Dark Matter with Nucleons

v_n/v_{Hg} constraints: [nEDM collaboration, *PRX* **7**, 041034 (2017)] **40-fold improvement (laboratory bounds)!**


Constraints on Interaction of Axion Dark Matter with Nucleons

v_n/v_{Hg} constraints: [nEDM collaboration, *PRX* **7**, 041034 (2017)] **40-fold improvement (laboratory bounds)!**

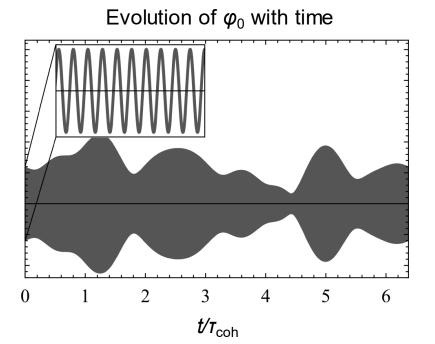
Constraints on Interaction of Axion Dark Matter with the Electron

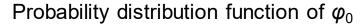

Torsion pendulum constraints: [Terrano *et al.*, *PRL* **122**, 231301 (2019)] **35-fold improvement (laboratory bounds)!**

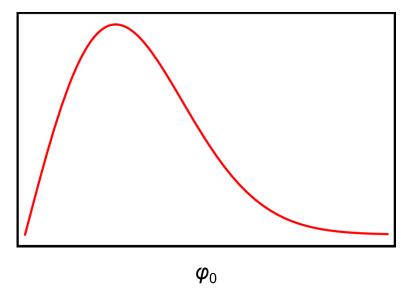
Constraints on Interaction of Axion Dark Matter with the Antiproton

Antiproton constraints: [BASE collaboration, *Nature* **575**, 310 (2019)]

5 orders of magnitude improvement!


Summary


- New classes of dark-matter effects that are
 <u>first power</u> in the underlying interaction constant
 => Up to <u>15 orders of magnitude improvement</u>
 with precision, low-energy AMO experiments
 (often table-top):
 - Spectroscopy (clocks)
 - Cavities and interferometry
 - Magnetometry
 - Torsion pendula


Back-Up Slides

Temporal Coherence

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_{\varphi}c^2t/\hbar)$, with energy density $<\rho_{\varphi}>\approx m_{\varphi}^2\varphi_0^2/2~(\rho_{\rm DM,local}\approx 0.4~{\rm GeV/cm}^3)$
- $\Delta E_{\varphi} / E_{\varphi} \sim \langle v_{\varphi}^2 \rangle / c^2 \sim 10^{-6} = \tau_{\text{coh}} \sim 2\pi / \Delta E_{\varphi} \sim 10^6 T_{\text{osc}}$

Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

$$\mathcal{L}_{\gamma} = \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda_{\gamma}}$$

$$\mathcal{L}_{f} = -\frac{\phi}{\Lambda_{f}} m_{f} \bar{f} f \implies \frac{\delta m_{f}}{m_{f}} \approx \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda_{f}}$$

$$\phi = \phi_0 \cos(m_{\phi} t - \underline{\boldsymbol{p}}_{\phi} \cdot \boldsymbol{x}) \implies \underline{\boldsymbol{F}} \propto \underline{\boldsymbol{p}}_{\phi} \sin(m_{\phi} t)$$

$$\mathcal{L}'_{\gamma} = \frac{\phi^2}{(\Lambda'_{\gamma})^2} \frac{F_{\mu\nu} F^{\mu\nu}}{4}$$

$$\mathcal{L}'_{f} = -\frac{\phi^2}{(\Lambda'_{f})^2} m_f \bar{f} f$$

$$= > \frac{\delta \alpha}{\alpha} \propto \frac{\delta m_f}{m_f} \propto \delta \rho_{\phi}$$

$$\mathbf{F} \propto \mathbf{\nabla} \rho_{\phi}$$

Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* **114**, 161301 (2015); *PRL* **115**, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* **98**, 064051 (2018)]

Consider <u>quadratic couplings</u> of an oscillating classical scalar field, $\varphi(t) = \varphi_0 \cos(m_{\varphi}t)$, with SM fields.

$$\mathcal{L}_{f} = -\frac{\phi^{2}}{(\Lambda'_{f})^{2}} m_{f} \bar{f} f \text{ c.f. } \mathcal{L}_{f}^{SM} = -m_{f} \bar{f} f \implies m_{f} \to m_{f} \left[1 + \frac{\phi^{2}}{(\Lambda'_{f})^{2}} \right]$$
$$= > \frac{\delta m_{f}}{m_{f}} = \frac{\phi_{0}^{2}}{(\Lambda'_{f})^{2}} \cos^{2}(m_{\phi} t) = \boxed{\frac{\phi_{0}^{2}}{2(\Lambda'_{f})^{2}}} + \boxed{\frac{\phi_{0}^{2}}{2(\Lambda'_{f})^{2}} \cos(2m_{\phi} t)}$$

$$\rho_{\phi} = \frac{m_{\phi}^2 \phi_0^2}{2} \implies \phi_0^2 \propto \rho_{\phi}$$

Dark Matter-Induced Cosmological **Evolution of the Fundamental Constants**

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)], [Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider *quadratic couplings* of an oscillating classical scalar field, $\varphi(t) = \varphi_0 \cos(m_{\omega}t)$, with SM fields.

$$\mathcal{L}_f = -\frac{\phi^2}{(\Lambda_f')^2} m_f \bar{f} f \quad \text{c.f.} \quad \mathcal{L}_f^{\text{SM}} = -m_f \bar{f} f \quad \Longrightarrow \quad m_f \rightarrow m_f \left[1 + \frac{\phi^2}{(\Lambda_f')^2} \right]$$

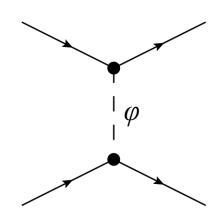
$$=>\frac{\delta m_f}{m_f}=\frac{\phi_0^2}{(\Lambda_f')^2}\cos^2(m_\phi t)=\left|\frac{\phi_0^2}{2(\Lambda_f')^2}\right|+\left|\frac{\phi_0^2}{2(\Lambda_f')^2}\cos(2m_\phi t)\right|$$

'Slow' drifts [Astrophysics

(high ρ_{DM}): BBN, CMB]

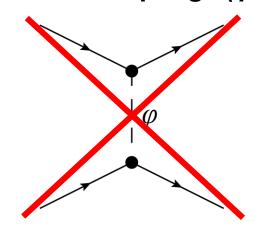
+ Gradients [Fifth forces]

Oscillating variations


[Laboratory (high precision)]

Fifth Forces: Linear vs Quadratic Couplings

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

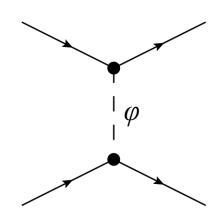

Consider the effect of a massive body (e.g., Earth) on the scalar DM field

Linear couplings $(\varphi \bar{X}X)$

$$\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r}$$

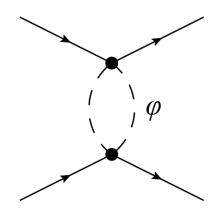
Quadratic couplings $(\varphi^2 \bar{X} X)$

$$\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r} \qquad \phi = \phi_0 \cos(m_\phi t) \left(1 - \frac{B}{r}\right)$$


Gradients + screening/amplification

Fifth Forces: Linear vs Quadratic Couplings

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

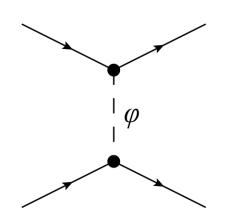

Consider the effect of a massive body (e.g., Earth) on the scalar DM field

Linear couplings $(\varphi \bar{X}X)$

$$\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r}$$

Quadratic couplings $(\varphi^2 \bar{X} X)$

$$\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r} \qquad \phi = \phi_0 \cos(m_\phi t) \left(1 - \frac{B}{r}\right) - C \frac{e^{-2m_\phi r}}{r^3}$$

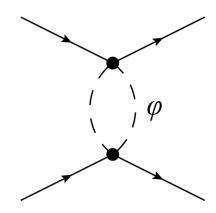

Gradients + screening/amplification

Fifth Forces: Linear vs Quadratic Couplings

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on the scalar DM field

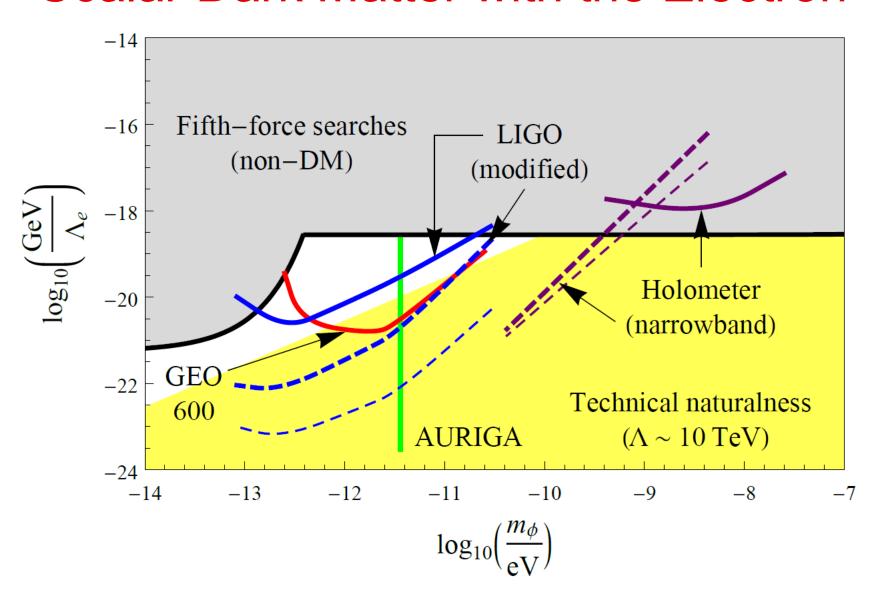
Linear couplings $(\varphi \bar{X}X)$

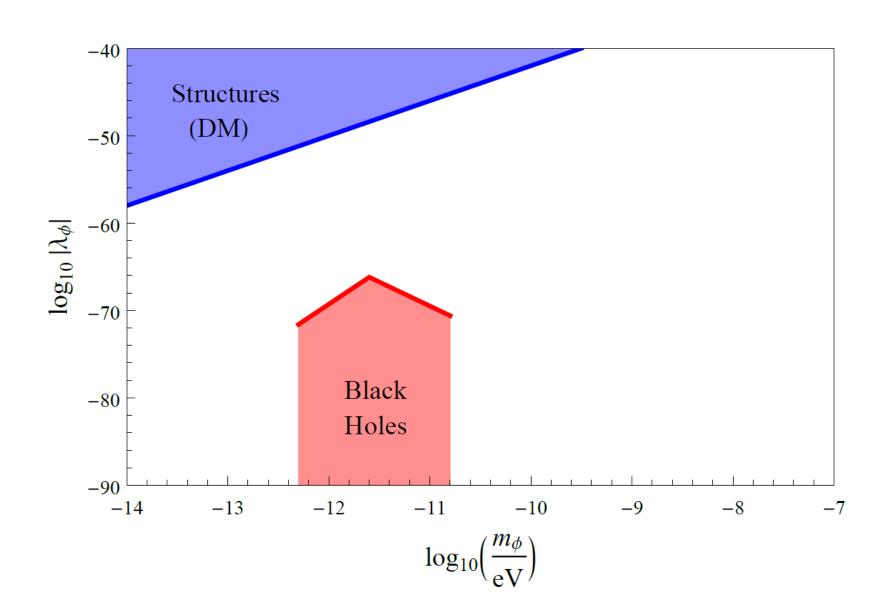


$$\phi = \underline{\phi_0 \cos(m_\phi t)} - A \frac{e^{-m_\phi r}}{r}$$

Motional gradients: $\varphi_0 \cos(m_{\varphi}t - p_{\varphi} \cdot x)$

"Fifth-force" experiments: torsion pendula, atom interferometry

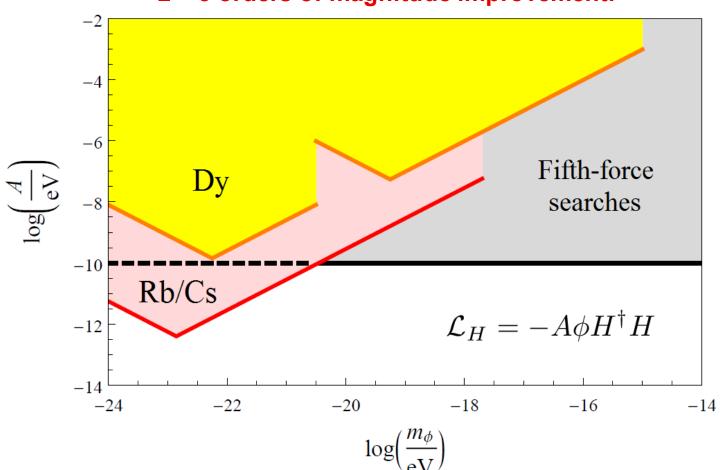

Quadratic couplings ($\varphi^2 \bar{X} X$)


$$\phi = \underline{\phi_0 \cos(m_\phi t)} - A \frac{e^{-m_\phi r}}{r} \qquad \phi = \underline{\phi_0 \cos(m_\phi t)} \left(1 - \frac{B}{r}\right) - C \frac{e^{-2m_\phi r}}{r^3}$$
 Motional gradients: $\varphi_0 \cos(m_\phi t - p_\phi \cdot x)$

Gradients + screening/amplification

Constraints on Linear Interaction of Scalar Dark Matter with the Electron

Quartic Self-Interaction of Scalar



Constraints on Linear Interaction of Scalar Dark Matter with the Higgs Boson

Rb/Cs constraints:

[Stadnik, Flambaum, *PRA* **94**, 022111 (2016)]

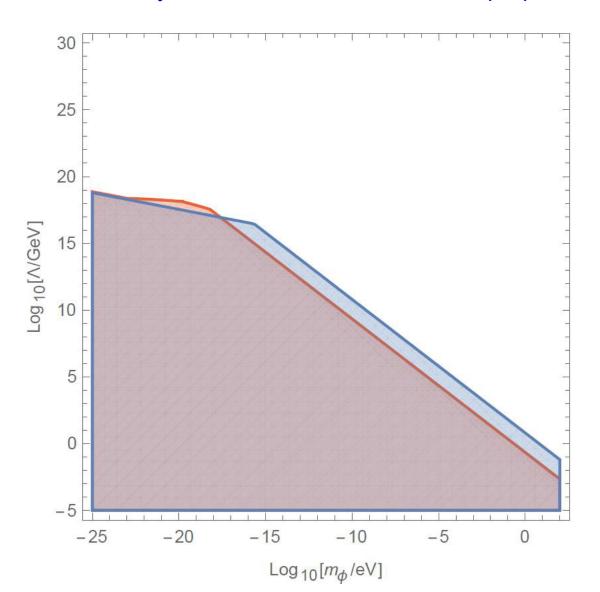
2 – 3 orders of magnitude improvement!

BBN Constraints on 'Slow' Drifts in Fundamental Constants due to Dark Matter

[Stadnik, Flambaum, PRL 115, 201301 (2015)]

- Largest effects of DM in early Universe (highest $\rho_{\rm DM}$)
- Big Bang nucleosynthesis $(t_{\text{weak}} \approx 1 \text{s} t_{\text{BBN}} \approx 3 \text{ min})$
- Primordial ⁴He abundance sensitive to n/p ratio
 (almost all neutrons bound in ⁴He after BBN)

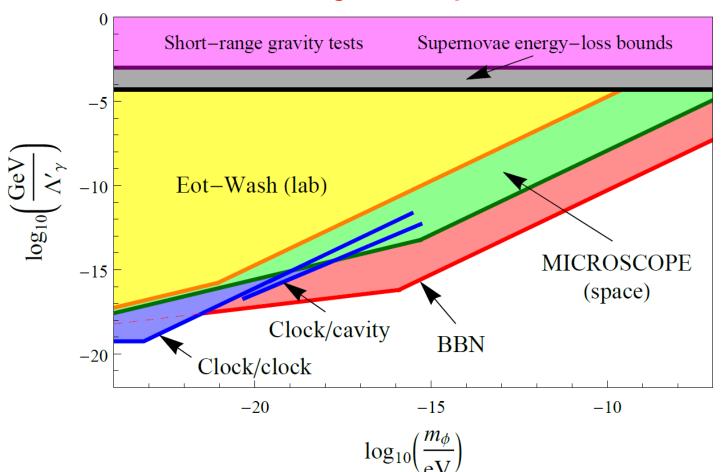
$$\frac{\Delta Y_p(^{4}\text{He})}{Y_p(^{4}\text{He})} \approx \frac{\Delta (n/p)_{\text{weak}}}{(n/p)_{\text{weak}}} - \Delta \left[\int_{t_{\text{weak}}}^{t_{\text{BBN}}} \Gamma_n(t) dt \right]$$


$$p + e^{-} \rightleftharpoons n + \nu_{e}$$

$$n + e^{+} \rightleftharpoons p + \bar{\nu}_{e}$$

$$n \to p + e^{-} + \bar{\nu}_{e}$$

Back-Reaction Effects in BBN

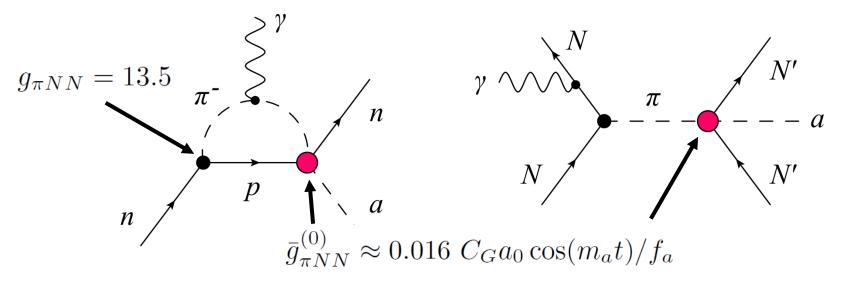

[Sörensen, Sibiryakov, Yu, PRELIMINARY – In preparation]

Constraints on Quadratic Interaction of Scalar Dark Matter with the Photon

Clock/clock + BBN constraints: [Stadnik, Flambaum, *PRL* 115, 201301 (2015); *PRA* 94, 022111 (2016)]; MICROSCOPE + Eöt-Wash constraints: [Hees *et al.*, *PRD* 98, 064051 (2018)]

15 orders of magnitude improvement!

Oscillating Electric Dipole Moments


Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)]

Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)]

$$\mathcal{L}_g = \frac{C_G a_0 \cos(m_a t)}{f_a} \frac{g^2}{32\pi^2} G\tilde{G}$$

Nucleon EDMs

CP-violating intranuclear forces

In nuclei, <u>tree-level</u> *CP*-violating intranuclear forces dominate over <u>loop-induced</u> nucleon EDMs [loop factor = $1/(8\pi^2)$].