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Motivation 
 Strong astrophysical evidence for existence of            

dark matter (~5 times more dark matter than 

ordinary matter).                                                          
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• Wave-like signatures [cf. particle-like signatures of WIMP DM] 
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• Astrophysics (e.g., BBN) 
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• Nuclear magnetic resonance 
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[Arvanitaki, Huang, Van Tilburg, PRD 91, 015015 (2015)], [Stadnik, Flambaum, PRL 114, 161301 (2015)] 

Atomic Spectroscopy Searches for Oscillating Variations 

in Fundamental Constants due to Dark Matter 

ΔE = ℏωatom 

g 

e 
 Energy 



[Arvanitaki, Huang, Van Tilburg, PRD 91, 015015 (2015)], [Stadnik, Flambaum, PRL 114, 161301 (2015)] 

ωφ = mφ (linear-in-φ coupling) or ωφ = 2mφ (quadratic-in-φ coupling) 

Atomic Spectroscopy Searches for Oscillating Variations 

in Fundamental Constants due to Dark Matter 

Sensitivity coefficients * 

ΔE = ℏωatom 

g 

e 
 Energy 

* Sensitivity coefficients KX calculated extensively by Flambaum group, see the reviews 

[Flambaum, Dzuba, Can. J. Phys. 87, 25 (2009); Hyperfine Interac. 236, 79 (2015)] 



[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)] 
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Fundamental Constants due to Dark Matter 

Solid material 
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[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)] 

Cavity-Based Searches for Oscillating Variations in 

Fundamental Constants due to Dark Matter 

ΔE = ℏωatom 

g 

e 

Solid material Electronic transition 

cf. 

ℏωatom ~ e2/aB Lfree ~ NaB = N/(meα) 



[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)] 

Cavity-Based Searches for Oscillating Variations in 

Fundamental Constants due to Dark Matter 

Solid material Freely-suspended mirrors 

cf. 

Lfixed ≈ const. Lfree ~ NaB = N/(meα) 



[Grote, Stadnik, arXiv:1906.06193; Phys. Rev. Research (In press)] 

Laser Interferometry Searches for Oscillating Variations 

in Fundamental Constants due to Dark Matter 

Michelson interferometer (GEO 600) 
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Laser Interferometry Searches for Oscillating Variations 

in Fundamental Constants due to Dark Matter 

• Geometric asymmetry from beam-splitter: δ(Lx - Ly) ~ δ(n l ) 

• Both broadband and resonant narrowband searches 

possible: fDM ≈ fvibr,BS ~ vsound /l , Q ~ 106 enhancement 



δ(Lx - Ly)BS ~ δ(n l ) 

[Grote, Stadnik, arXiv:1906.06193; Phys. Rev. Research (In press)] 

Michelson vs Fabry-Perot-Michelson Interferometers 

δ(Lx - Ly)BS ~ δ(n l )/Neff 

Michelson interferometer 

(GEO 600, Fermilab holometer) 

Fabry-Perot-Michelson interferometer 

(LIGO, VIRGO, KAGRA) 

Neff ~ few x 102 



δ(Lx - Ly)BS ~ δ(n l ) 

[Grote, Stadnik, arXiv:1906.06193; Phys. Rev. Research (In press)] 

Michelson vs Fabry-Perot-Michelson Interferometers 

 Change thickness 

of arm mirrors by 

amount Δ w  

 δ(Lx - Ly) ≈ δ(Δ w ) 

Michelson interferometer 

(GEO 600, Fermilab holometer) 

Fabry-Perot-Michelson interferometer 

(LIGO, VIRGO, KAGRA) 



Experiments 
Clock/clock comparisons: 10-23 eV < mφ < 10-16 eV 

• Dy/Cs (Mainz): [Van Tilburg et al., PRL 115, 011802 (2015)],                                

[Stadnik, Flambaum, PRL 115, 201301 (2015)] 

• Rb/Cs (SYRTE): [Hees et al., PRL 117, 061301 (2016)],                                                        

[Stadnik, Flambaum, PRA 94, 022111 (2016)] 

• Rb/Cs (GPS network)*: [Roberts et al., Nature Commun. 8, 1195 (2017)] 

• Yb+(E3)/Sr (PTB): [Huntemann, Peik et al., In preparation] 

• Al+/Yb, Yb/Sr, Al+/Hg+ (NIST + JILA): [Hume, Leibrandt et al., In preparation] 

Clock/cavity comparisons: 10-20 eV < mφ < 10-15 eV 

• Sr/ULE cavity (Torun)*: [Wcislo et al., Nature Astronomy 1, 0009 (2016)] 

• Sr/Si cavity (JILA): [Robinson, Ye et al., Bulletin APS, H06.00005 (2018)] 

• Various (global network): [Wcislo et al., Sci. Adv. 4, eaau4869 (2018)] 

• Sr+/ULE cavity (Weizmann): [Aharony et al., arXiv:1902.02788] 

• Cs/cavity (Mainz): [Antypas et al., PRL 123, 141102 (2019)] 

* Searches for domain wall dark matter. 



Constraints on Linear Interaction of 

Scalar Dark Matter with the Photon 
 Clock/clock constraints: [Van Tilburg et al., PRL 115, 011802 (2015)], [Hees et al., PRL 117, 061301 

(2016)]; Clock/cavity constraints: [Robinson, Ye et al., Bulletin APS, H06.00005 (2018)] 

4 orders of magnitude improvement!  
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Constraints on Quadratic Interaction of 

Scalar Dark Matter with the Photon 
 Clock/clock + BBN constraints: [Stadnik, Flambaum, PRL 115, 201301 (2015); PRA 94, 022111 

(2016)]; MICROSCOPE + Eöt-Wash constraints: [Hees et al., PRD 98, 064051 (2018)] 

15 orders of magnitude improvement!  



Low-mass Spin-0 Dark Matter 

Dark Matter 

Pseudoscalars             

(Axions):  

φ → -φ 

→ Time-varying spin-

dependent effects 

P 

• Co-magnetometers 

• Nuclear magnetic resonance 

• Torsion pendula 

QCD axion resolves 

strong CP problem 
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[Flambaum, talk at Patras Workshop, 2013], [Stadnik, Flambaum, PRD 89, 043522 (2014)] 
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Dark Matter-Induced Spin-Dependent Effects 

[Flambaum, talk at Patras Workshop, 2013], [Stadnik, Flambaum, PRD 89, 043522 (2014)] 

Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)] 

Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)] 

“Axion Wind” Spin-Precession Effect 

Oscillating Electric Dipole Moments  
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hνL = 2μB 

Proposal + Experiment (p̄): [BASE collaboration, Nature 575, 310 (2019)] 

 DM effect         

(non-magnetic) 

Cold antiprotons 
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 nEDM constraints: [nEDM collaboration, PRX 7, 041034 (2017)] 

3 orders of magnitude improvement! 
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Constraints on Interaction of               

Axion Dark Matter with the Electron 
 Torsion pendulum constraints: [Terrano et al., PRL 122, 231301 (2019)] 

Expected sensitivity (atomic co-magnetometry) 

35-fold improvement (laboratory bounds)! 



Constraints on Interaction of Axion          

Dark Matter with the Antiproton 
 Antiproton constraints: [BASE collaboration, Nature 575, 310 (2019)] 

Expected sensitivity (atomic co-magnetometry) 

5 orders of magnitude improvement! 



Summary 
 

• New classes of dark-matter effects that are                 

first power in the underlying interaction constant      

=> Up to 15 orders of magnitude improvement 

with precision, low-energy AMO experiments 

(often table-top):  

- Spectroscopy (clocks) 

- Cavities and interferometry 

- Magnetometry 

- Torsion pendula 

       ⁞ 



Back-Up Slides 



Temporal Coherence 
• Low-mass spin-0 particles form a coherently oscillating 

classical  field φ(t) = φ0 cos(mφc
2t/ℏ), with energy density   

<ρφ> ≈ mφ
2φ0

2/2 (ρDM,local ≈ 0.4 GeV/cm3) 

• ΔEφ /Eφ ~ <vφ
2>/c2 ~ 10-6  => τcoh ~ 2π/ΔEφ ~ 106

 Tosc 

Probability distribution function of φ0 

φ0 

Evolution of φ0 with time 

t/τcoh 



Dark Matter-Induced Cosmological 

Evolution of the Fundamental Constants 
[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)], 

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)] 

 



Dark Matter-Induced Cosmological 

Evolution of the Fundamental Constants 

 Consider quadratic couplings of an oscillating classical 

scalar field, φ(t ) = φ0 cos(mφt ), with SM fields. 

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)], 

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)] 

 



Dark Matter-Induced Cosmological 

Evolution of the Fundamental Constants 

 Consider quadratic couplings of an oscillating classical 

scalar field, φ(t ) = φ0 cos(mφt ), with SM fields. 

 ‘Slow’ drifts [Astrophysics     

(high ρDM): BBN, CMB]                  

+ Gradients [Fifth forces] 

 Oscillating variations       

[Laboratory (high precision)] 

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)], 

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)] 

 



Linear couplings (φX̄X) Quadratic couplings (φ2X̄X) 

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)] 

 Consider the effect of a massive body (e.g., Earth) on 

the scalar DM field 

Gradients + screening/amplification 

Fifth Forces: Linear vs Quadratic Couplings 
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Linear couplings (φX̄X) Quadratic couplings (φ2X̄X) 

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)] 

 Consider the effect of a massive body (e.g., Earth) on 

the scalar DM field 

Gradients + screening/amplification 

Fifth Forces: Linear vs Quadratic Couplings 

“Fifth-force” experiments: torsion 
pendula, atom interferometry 

Motional gradients: φ0 cos(mφt - pφ·x ) 



Constraints on Linear Interaction of 

Scalar Dark Matter with the Electron 



Quartic Self-Interaction of Scalar 



Constraints on Linear Interaction of 

Scalar Dark Matter with the Higgs Boson 
 Rb/Cs constraints:                                                       

[Stadnik, Flambaum, PRA 94, 022111 (2016)]      

2 – 3 orders of magnitude improvement! 



BBN Constraints on ‘Slow’ Drifts in          
Fundamental Constants due to Dark Matter 

• Largest effects of DM in early Universe (highest ρDM) 

• Big Bang nucleosynthesis (tweak ≈ 1s – tBBN ≈ 3 min) 

• Primordial 4He abundance sensitive to n/p ratio             

(almost all neutrons bound in 4He after BBN) 

[Stadnik, Flambaum, PRL 115, 201301 (2015)] 



Back-Reaction Effects in BBN 
[Sörensen, Sibiryakov, Yu, PRELIMINARY – In preparation] 



Constraints on Quadratic Interaction of 

Scalar Dark Matter with the Photon 
 Clock/clock + BBN constraints: [Stadnik, Flambaum, PRL 115, 201301 (2015); PRA 94, 022111 

(2016)]; MICROSCOPE + Eöt-Wash constraints: [Hees et al., PRD 98, 064051 (2018)] 

15 orders of magnitude improvement!  



Oscillating Electric Dipole Moments 
Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)] 

Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)] 

Nucleon EDMs CP-violating intranuclear forces 

 In nuclei, tree-level CP-violating intranuclear forces dominate over 

loop-induced nucleon EDMs [loop factor = 1/(8π2)]. 


