Indirect Searches for Axion Dark Matter

Thomas D. P. Edwards, Marco Chianese, Bradley J. Kavanagh, Mikaël Leroy, Samaya Nissanke, and Christoph Weniger

Edwards et al. 2019, Leroy et al. 2019

Dark Matter

10

20 30 Radius (kpc)

40

50

0

Axions

The strong interaction also admits a **CP violating term in its** Lagrangian

Promoting theta to a field allows the CP-violating term to dynamically reach zero

Goldstones theorem then produces a boson, the axion

 $\mathcal{L} = -\frac{g_s^2\theta}{32\pi^2}G_{\mu\nu}\tilde{G}^{\mu\nu}$

$|\theta| < 10^{-10}$

 $|\theta| \neq \mathcal{O}(1)$

Axion Coupling to Photons

<u>Galan et al. 2015</u>

Astrophysical Magnetic Fields

$B \sim 10^{-4} \,\mathrm{G}$ $B \sim 10^{-1} \,\mathrm{G}$ $B \sim 10^{6-9} \,\mathrm{G}$ $B \sim 10^{9-15} \,\mathrm{G}$ $B \sim 10^{-7} \,\mathrm{G}$

Thomas D. P. Edwards | IPMU 2020 | <u>1906.05800</u>, <u>1912.08815</u>

Searching for Axions:

- **1.** Astrophysics
- 2. Radio Observations of Nearby Neutron Stars
- 3. With Multi-messenger Signals

Astrophysical Searches for Axions

Cooling in Massive Stars

X-ray Searches of Neutron Stars

Dessert et al. 2019

Recently Reported Excess

Archival Chandra shows a **5 sigma** excess and a couple of **3 sigma** excesses through observations of the M7

No **expected background**, although several plausible mechanisms

Observations at higher energies will be almost background free

Stimulated Decay

Neutron Stars for Axion Searches

Neutron stars

$B\sim 10^{9-15}\,{\rm G}$

Thomas D. P. Edwards | IPMU 2020 | <u>1906.05800</u>, <u>1912.08815</u>

Neutron stars - Goldreich Julien Model

$$\omega_p \left(r, \, \theta, \, \phi; \, t \right) \simeq 69.2 \,\,\mu \text{eV} \times \left| 3 \cos \theta \, \hat{\mathbf{m}} \cdot \hat{\mathbf{r}} - \cos \theta_m \right|^{1/2} \\ \times \left[\frac{B_0}{10^{14} \text{ G}} \, \frac{1 \text{ s}}{P} \, \left(\frac{r_{\text{NS}}}{r} \right)^3 \right]^{1/2}$$

Mapping the Phase Space from Infinity to Close By

 $f(\mathbf{r},\mathbf{v}) = f_{\infty}(\mathbf{r}_{\infty},\mathbf{v}_{\infty})$

$$\varrho(r) = \frac{2\varrho_{\infty}^{\rm DM}}{\sqrt{\pi}} \sqrt{\frac{2GM_{\rm NS}}{r}} \frac{1}{v_0}$$

Is the phase space completely isotropic or completely radial?

PSD is compressed in space by a factor of 100

Axion-Photon Conversion

$$P_{a \to \gamma} := \frac{k_{\gamma}(z)^2}{k_{\phi}(0)^2} \left| \frac{a_x(z,t)}{\phi(0,t)} \right|^2$$

Similar to light shining through a wall calculations, but the inverse process

Calculated using the plane wave and WKB approximatons

$$P_{a \to \gamma} \simeq \frac{\pi (gB)^2}{2|\omega_p'|v_\phi}$$

Thomas D. P. Edwards | IPMU 2020 | <u>1906.05800</u>, <u>1912.08815</u>

Radial Approximation

$$\begin{aligned} \frac{d\mathcal{P}\left(\theta = \frac{\pi}{2}, \theta_m = 0\right)}{d\Omega} \approx 4.5 \times 10^8 \mathrm{W}\left(\frac{g_{a\gamma\gamma}}{10^{-12} \mathrm{GeV}^{-1}}\right)^2 \\ \left(\frac{r_0}{10 \mathrm{km}}\right)^2 \left(\frac{m_a}{1 \mathrm{GHz}}\right)^{5/3} \left(\frac{B_0}{10^{14} \mathrm{G}}\right)^{2/3} \left(\frac{P}{1 \mathrm{sec}}\right)^{4/3} \\ \left(\frac{\rho_{\infty}}{0.3 \mathrm{GeV/cm}^3}\right) \left(\frac{M_{\mathrm{NS}}}{1 M_{\odot}}\right) \left(\frac{200 \mathrm{km/s}}{v_0}\right) \end{aligned}$$

$$\left(\frac{r_0}{10 \text{ km}}\right)^2$$

Thomas D. P. Edwards | IPMU 2020 | <u>1906.05800</u>, <u>1912.08815</u>

Going to the full PSD

- 1. Define a grid. All photons trajectories are parallel since the source is far away
- Trace back trajectories (assumed to be straight) on to the magnetosphere to calculate conversion radius
- 3. Compute luminosity at conversion radius and sum up overall signal

Time Variation

Thomas D. P. Edwards | IPMU 2020 | <u>1906.05800</u>, <u>1912.08815</u>

Sensitivity of a Radio Telescope

The important quantity of a radio telescope is the SEFD (noise level)

Since radio lines are common, ON/OFF observations are necessary to conclusively observe radio line

Thomas D. P. Edwards | IPMU 2020 | <u>1906.05800</u>, <u>1912.08815</u>

These lines are considering the same NS J0806.4-4123 but assume different observations

Axion Miniclusters

Axions can form dense miniclusters if te PQ symmetry is broken after inflation

They are around the size of the solar system and are around 10⁻¹² solar masses

Importantly, they can be a factor of 10-10⁵ more dense at formation

Thomas D. P. Edwards | IPMU 2020 | <u>1906.05800</u>, <u>1912.08815</u>

Buschmann et al. 2019

Survival Probability and the Goldilocks zone

There is a Goldilocks zone where there is a **significant rate of encounters today**

Multi-Messenger Signals of Axion Dark Matter

Multi-Messenger Astrophysics is Here

<u>1710.05834</u>

Multi-Messenger Signal of QCD Axion

Restricted Axion Mass Range

h $\mathcal{m}\mathcal{C}$

Thomas D. P. Edwards | IPMU 2020 | <u>1906.05800</u>, <u>1912.08815</u>

$m > 10^{-7} \mathrm{eV}$

<u>1904.12803</u>

Intermediate Mass Black Holes and DM Spikes

<u>1311.6918 1702.02149</u>

Thomas D. P. Edwards | IPMU 2020 | <u>1906.05800</u>, <u>1912.08815</u>

<u>9906391, 0501625, 1904.12803</u>

 $f_{\rm ini}(E,L) \to f_{\rm fin}(E,L)$

Structure of the Mini-Spike

Dynamical Friction

Thomas D. P. Edwards | IPMU 2020 | <u>1906.05800</u>, <u>1912.08815</u>

$f_{\rm DF} = 12\pi G^2 m_{\rm NS}^2 \frac{\rho_{\rm DM}(r)}{v_{\rm NS}^2}$

Dephasing of the GW Signal

Majority of the phase difference occurs at large separations

Number of cycles low in the final stages of the evolution

<u>1408.3534</u>

Gravitational Waves Constrain the Slope of the Density Profile Time to merger

Radio Counterpart

Thomas D. P. Edwards | IPMU 2020 | <u>1906.05800</u>, <u>1912.08815</u>

Phase Space Density close to the IMBH

We use **Eddingtons inversion formula**, a unique solution to collision less particles in a background potential in equilibrium

$$f(\mathcal{E}) = \frac{1}{\sqrt{8\pi^2}} \left[\int_0^{\mathcal{E}} \frac{\mathrm{d}\Psi}{\sqrt{\mathcal{E}} - \Psi} \frac{\mathrm{d}^2 \rho}{\mathrm{d}\Psi^2} + \frac{1}{\sqrt{\mathcal{E}}} \left(\frac{\mathrm{d}\rho}{\mathrm{d}\Psi} \right)_{\Psi=0} \right]$$

$$\mathcal{E} = \Psi(r) - \frac{1}{2}v^2$$

Thomas D. P. Edwards | IPMU 2020 | <u>1906.05800</u>, <u>1912.08815</u>

LISA Rates

Sensitivity of SKA

Upper cut off - conversion to photons must happen **outside of the NS**

Two Messengers can be Combined for Robust Signal

Difficult to set robust limits due to the **uncertainty in the NS properties**, magnetic field etc.

If many are found, utilising **NS population properties** will allow for a more robust constraint

Conclusions

- **BSM** physics

1. Axions and axion like particles are primary candidates for both dark matter and

2. Astrophysical searches are useful way to constrain and potentially detect axions