Understanding and mitigating the cosmological impact of radiative transfer on the clustering of Lyman- α emitters

Shun Saito

Missouri S&T, USA

Jan 17th 2020

MISSOURI SET

Special Seminar@Kavli IPMU, JAPAN

New Astrophysics Group at Missouri S&T

In Rolla, Missouri (100 mile from St. Louis)

Marco Cavaglia

- Gravitational Wave
- LIGO

Shun Saito (me)

- cosmology, LSS
- HETDEX, PFS

Missouri S&T joins dark energy experiment to solve accelerating cosmos mystery

Posted by Delia Croessmann On September 26, 2019

- "Institute for Multi-messenger Astrophysics & Cosmology (*iMAC*)"
- Keep your eyes on future faculty hiring (+5 in principle...)

Advertisement

Shun Saito (Missouri S&T)

Introduction

- Mapping out LSS through the 3D distribution of galaxies.
- Galaxy Clustering at low redshift & Intensity Mapping at high redshift.

Emission Line from young star-forming galaxies

◆ Planned LAE Surveys: **HETDEX** (1.9<z<3.5; 2019-), **SPHEREx** (z>5; 2023-)

Large-Scale Galaxy Clustering

→ distance-redshift relation

$$\rightarrow \mathbf{x} = (X, Y, Z)$$

fluctuation in number count
$$\delta_{
m g}({f x})=rac{n_{
m g}({f x})-ar{n}_{
m g}}{ar{n}_{
m g}}$$

Two-point statistics

Power Spectrum in Fourier Space $\langle \delta_g(\mathbf{k}) \delta_g(\mathbf{k}') \rangle = (2\pi)^3 \delta_D(\mathbf{k} + \mathbf{k}') P_g(\mathbf{k})$

Correlation Function in Configuration Space

$$\langle (1 + \delta_{g}(\mathbf{x}))(1 + \delta_{g}(\mathbf{x} + \mathbf{r})) \rangle = 1 + \xi(\mathbf{r})$$

Redshift Space Distortion

• (Any kind of) peculiar velocity of galaxies contaminate to their redshifts

(21)

(20)

No detection of LyA IM yet!

1) QSO-LyAIM detection at z~2 in Croft+ (2016)

2) No LyAF-LyAIM detection in Croft+ (2018)

Croft+(2016) claimed that the FoG is consistent with the RT effect in Zheng+(2011).

Shun Saito (Missouri S&T)

Why Radiative Transfer matters?

- Large amounts of hydrogen everywhere*
- Huge cross-section
- Falls into ground-state (quickly)
- Scatterings (even if largely ionized)
- Region of emission ≠ observed flux origin

 $\frac{\mathrm{Ly}\alpha}{\mathrm{H}\alpha} \gtrsim 10$

➔ Scatterings

Need RT

Probe CGM

Why Radiative Transfer matters?

Warning: Depiction dangerously oversimplified!

Introduction

- 4

Shun Saito (Missouri S&T)

Impact of LyA RT on the large-scale clustering

Q1) Is the **IGM** coupling introduced by Zheng+(2011) important at $z\sim 2$?

Behrens, Byrohl, SS, Niemeyer (2018)

Q2) Can we really ignore the impact of the LyA RT at **ISM/CGM** scales?

Byrohl, SS, Behrens (2019)

Q3) Can we mitigate such impact?

Gurung-Lopez, SS+, in prep.

IGM coupling in Zheng+(2011)

• The RT effect in **IGM** sensitive to *velocity gradient* **BUT at z~5.7**

Q1) IGM Coupling

Shun Saito (Missouri S&T)

IGM coupling in Zheng+(2011)

Our LyA Radiative Transfer Simulation

- ➤ Towards a better understanding of LyA
 - run LyA RT on the *Illustris* simulation Vogelsberger+(2014)
 - assumptions (focus on *the large-scale clustering*):
 - initial gaussian profile with virial velocity & $L_{int} = \frac{\text{SFR}}{M_{\odot}/\text{yr}} \times 10^{42} \text{erg/s}$
 - Physical but Unrealistic: Inconsistent LyA LFs. Dust not included etc...

Behrens, Byrohl, SS, Niemeyer (2018)

RT resolution is important

large-scale velocity gradient

- Zheng+(2011) overestimated the IGM coupling due to the poor resolution.
- The impact becomes less significant at lower z as expected.

What about Redshift Space?

• LAE's radial position is identified as **a peak of its spectrum**.

What about Redshift Space?

Modeling Nonlinear RSD

Byrohl, SS, Behrens (2019)

► Redshift-space density field (exact under plain-parallel approx.)

$$\delta_g^s(\vec{k}) = \int d^3x \left\{ \delta_g(\vec{x}) - f \partial_z u_z(\vec{x}) \right\} e^{i\vec{k}\cdot\vec{x} + ifk_z u_z(\vec{x})}$$

► Redshift-space power spectrum Scoccimarro (2004), Taruya, Nishimichi, SS (2010)

$$P_{g}^{s}(\vec{k}) = \int d^{3}r \ e^{i\vec{k}\cdot\vec{r}} \exp\left\{\left\langle e^{-ifk_{z}\Delta u_{z}}\right\rangle_{c}\right\} \qquad \mathcal{A}(\vec{x}) \equiv \delta_{g}(\vec{x}) + f\partial_{z}u_{z}(\vec{x})$$
$$\times \left\{\left\langle e^{-ifk_{z}\Delta u_{z}}\mathcal{A}(\vec{x})\mathcal{A}(\vec{x}')\right\rangle_{c} + \left\langle e^{-ifk_{z}\Delta u_{z}}\mathcal{A}(\vec{x})\right\rangle_{c} \left\langle e^{-ifk_{z}\Delta u_{z}}\mathcal{A}(\vec{x})\right\rangle_{c}\right\}$$

► Overall factor depends on 1pt cumulant. Zheng & Song (2016), Vlah+(2018)

$$D_{\text{FoG}}(k,\mu) = \left| \left\langle e^{ifk\mu u_z} \right\rangle \right|^2 = \left| \int du_z \underline{P(u_z)} e^{ifk\mu u_z} \right|^2$$

Velocity PDF

Diffusion induces an additional FoG

Byrohl, SS, Behrens (2019)

- ► Find a new *Finger-of-God* damping due to RT (diffusion).
 - double peak leads to the oscillation in the damping.
 - Caveats:

1) Neutral hydrogen in Illustris galaxies seems overestimated. Outflow is likely smeared out.

2) Our simulation is NOT realistic w.r.t. observations.

Can we mitigate the impact of the diffusion FoG?

Byrohl, SS, Behrens (2019)

► Spectral information can potentially help us identify the original position. Verhamme+(2018)

Switch to a more empirical dsimilatid prithms

► Better statistics from a SAM simulation. Gurung-Lopez+(2018)

Correcting & radiat 663 ton 80 riths spectrum

Lyα identification agoing the FoG effect

Q3) Mitigation

Mitigating the FoG effect in a more realistic situation

Towards simulating a more realistic LAE

- ≻ Chris Byrohl (MPA) has developed a new
 - RT code.

Simple empirical rescaling works?

Summary

➤ LyA Radiative Transfer involves multi-scale physics, and its impact on the largescale clustering cannot be ignored.

➤ Q1) The IGM coupling introduced by Zheng+(2011) was overestimated due to their poor RT spacial resolution. Not so important at z~2.

► Q2) Diffusion could induce an additional FoG effect.

► Q3) Could mitigate the diffusion effect from spectral information.