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Introduction

Introduction

Revised PFS cosmological forecasts
•Construct mock               data 

and their associated C.
•Same model as in the final 

BOSS analyses. 

•Model params:

•Using these data define 

•Forecasts in agreement with 
Takada et al. (2013).
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Galaxy  
Clustering

Intensity  
Mapping

CMB

◆ Mapping out LSS through the 3D distribution of galaxies.  

◆ Galaxy Clustering at low redshift & Intensity Mapping at high redshift.

Kovetz+, Astro2020
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Emission Line from young star-forming galaxies

Introduction

©Elisabeth Stanway

◆ Lyman-𝛂 Emission Line is so prominent to probe the LSS at high z.   

◆ Planned LAE Surveys: HETDEX (1.9<z<3.5; 2019-), SPHEREx (z>5; 2023-)

SS, de la Torre, Ilbert+(2019)
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Large-Scale Galaxy Clustering

Introduction

3-dimensional galaxy map ( ra, dec, z(redshift) )  
→ distance-redshift relation  
→ x = ( X, Y, Z )

Power Spectrum in Fourier Space

Correlation Function in Configuration Space

fluctuation in number count

Two-point statistics

ra

dec z
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Redshift Space Distortion

Introduction

Redshift-space distortion (RSD) in general
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A distance to a galaxy is measured by “redshift” which cannot be distinguished 
from its peculiar velocity along the l.o.s.

Makes l.o.s. special so that the clustering pattern is distorted anisotropically.

- Velocity field information only along l.o.s

�s = �r +
�v · ẑ

aH(z)
ẑredshift space

real space
line of sight direction

∂u(x, τ)

∂τ
+ H(τ) u(x, τ) = −∇Φ(x, τ), (19)

where θ(x, τ) ≡ ∇ · u(x, τ) is the divergence of the velocity field. These
equations are now straightforward to solve. The velocity field, as any vector
field, can be completely described by its divergence θ(x, τ) and its vorticity
w(x, τ) ≡ ∇× u(x, τ) , whose equations of motion follow from Eq. (19)

∂θ(x, τ)

∂τ
+ H(τ) θ(x, τ) +

3

2
Ωm(τ)H2(τ)δ(x, τ) = 0, (20)

∂w(x, τ)

∂τ
+ H(τ) w(x, τ) = 0. (21)

The vorticity evolution readily follows from Eq. (21), w(τ) ∝ a−1, i.e. in the
linear regime any initial vorticity decays away due to the expansion of the
Universe. The density contrast evolution follows by taking the time derivative
of Eq. (20) and replacing in Eq. (18),

d2D1(τ)

dτ 2
+ H(τ)

dD1(τ)

dτ
=

3

2
Ωm(τ)H2(τ)D1(τ), (22)

where we wrote δ(x, τ) = D1(τ)δ(x, 0), with D1(τ) the linear growth factor.
This equation, together with the Friedmann equations, Eqs. (4-5), determines
the growth of density perturbations in the linear regime as a function of cos-
mology. Since it is a second-order differential equation, it has two independent
solutions, let’s denote the fastest growing mode D(+)

1 (τ) and the slowest one

D(−)
1 (τ). The evolution of the density is then

δ(x, τ) = D(+)
1 (τ)A(x) + D(−)

1 (τ)B(x), (23)

where A(x) and B(x) are two arbitrary functions of position describing the ini-
tial density field configuration, whereas the velocity divergence [using Eq. (18)]
is given by

θ(x, τ) = −H(τ) [f(Ωm, ΩΛ)A(x) + g(Ωm, ΩΛ)B(x)] , (24)

f(Ωm, ΩΛ) ≡ d lnD(+)
1

d ln a
=

1

H
d ln D(+)

1

dτ
g(Ωm, ΩΛ) =

1

H
d ln D(−)

1

dτ
. (25)

The most important cases are

(1) When Ωm = 1, ΩΛ = 0, we have the simple solution

D(+)
1 = a, D(−)

1 = a−3/2, f(1, 0) = 1, (26)

thus density fluctuations grow as the scale factor.

17

linear Euler equation

gravity test

degeneracy w/ AP test

Redshift-space distortion (RSD) in general
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ẑ

is
an

u
n
it

ve
ct

or
in

th
e

li
n
e-

of
-s

ig
ht

d
ir

ec
ti

on
.

W
e

h
av

e
ad

op
te

d
th

e
d
is

ta
nt

-o
b
se

rv
er

ap
p
ro

xi
m

at
io

n
,
w

h
ic

h
ig

n
or

es
th

e
ra

d
ia

l
d
ep

en
d
en

ce
of

re
d
sh

if
t-

sp
ac

e
d
is

to
rt

io
n
.

T
h
e

nu
m

b
er

of
ga

la
xi

es
in

a
p
ar

ti
cu

la
r

re
gi

on
is

p
re

se
rv

ed
,
i.
e.

,
n

s
(x

s
)d

3
x

s
=

n
(x

)d
3
x
,
an

d
th

e
Ja

co
b
ia

n
of

th
is

tr
an

sf
or

m
at

io
n

is
gi

ve
n

by

J
=

∣ ∣ ∣ ∣ ∣dx ds

∣ ∣ ∣ ∣ ∣=

(

1
+

∂ ∂
z

[
v⃗
·ẑ
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·ẑ

aH
(a

)])
−

1

.
(3

.1
08

)

T
hu

s
th

e
tr

an
sf

or
m

at
io

n
to

re
d
sh

if
t
sp

ac
e

is
n
on

li
n
ea

r
m

ap
p
in

g,
w

h
ic

h
m

ak
e

it
d
iffi

cu
lt

to
m

od
el

th
e

n
on

li
n
ea

r
p
ow

er
sp

ec
tr

u
m

in
re

d
sh

if
t

sp
ac

e.
In

tu
it

iv
el

y,
th

e
re

d
sh

if
t

d
is

to
rt

io
n

eff
ec

t
is

u
n
d
er

st
oo

d
in

tw
o

w
ay

s.
F
ig

.
3.

5
il
lu

st
ra

te
s

th
e

tw
o

re
d
sh

if
t
d
is

to
rt

io
n

eff
ec

ts
,
se

p
ar

at
el

y.
A

t
su

ffi
ci

en
tl

y
la

rg
e

sc
al

es
,
a

sl
ig

ht
ly

ov
er

d
en

se
re

gi
on

ap
p
ea

rs
sq

u
as

h
ed

to
w

ar
d

th
e

ce
nt

er
of

ov
er

d
en

se
re

gi
on

.
O

n
th

e
ot

h
er

h
an

d
,
in

m
or

e
co

ll
ap

se
d

ob
je

ct
se

en
at

sm
al

l
sc

al
es

,
th

e
so

-c
al

le
d

F
in

ge
rs

-o
f-
G

od
(F

O
G

)
eff

ec
t

is
at

tr
ib

u
te

d
to

ra
n
d
om

real-space distance

peculiar velocity of galaxy redshift-space distance

A distance to a galaxy is measured by “redshift” which cannot be distinguished 
from its peculiar velocity along the l.o.s.

Makes l.o.s. special so that the clustering pattern is distorted anisotropically.

- Velocity field information only along l.o.s

�s = �r +
�v · ẑ

aH(z)
ẑredshift space

real space
line of sight direction

∂u(x, τ)

∂τ
+ H(τ) u(x, τ) = −∇Φ(x, τ), (19)

where θ(x, τ) ≡ ∇ · u(x, τ) is the divergence of the velocity field. These
equations are now straightforward to solve. The velocity field, as any vector
field, can be completely described by its divergence θ(x, τ) and its vorticity
w(x, τ) ≡ ∇× u(x, τ) , whose equations of motion follow from Eq. (19)

∂θ(x, τ)

∂τ
+ H(τ) θ(x, τ) +

3

2
Ωm(τ)H2(τ)δ(x, τ) = 0, (20)

∂w(x, τ)

∂τ
+ H(τ) w(x, τ) = 0. (21)

The vorticity evolution readily follows from Eq. (21), w(τ) ∝ a−1, i.e. in the
linear regime any initial vorticity decays away due to the expansion of the
Universe. The density contrast evolution follows by taking the time derivative
of Eq. (20) and replacing in Eq. (18),

d2D1(τ)

dτ 2
+ H(τ)

dD1(τ)

dτ
=

3

2
Ωm(τ)H2(τ)D1(τ), (22)

where we wrote δ(x, τ) = D1(τ)δ(x, 0), with D1(τ) the linear growth factor.
This equation, together with the Friedmann equations, Eqs. (4-5), determines
the growth of density perturbations in the linear regime as a function of cos-
mology. Since it is a second-order differential equation, it has two independent
solutions, let’s denote the fastest growing mode D(+)

1 (τ) and the slowest one

D(−)
1 (τ). The evolution of the density is then

δ(x, τ) = D(+)
1 (τ)A(x) + D(−)

1 (τ)B(x), (23)

where A(x) and B(x) are two arbitrary functions of position describing the ini-
tial density field configuration, whereas the velocity divergence [using Eq. (18)]
is given by

θ(x, τ) = −H(τ) [f(Ωm, ΩΛ)A(x) + g(Ωm, ΩΛ)B(x)] , (24)

f(Ωm, ΩΛ) ≡ d lnD(+)
1

d ln a
=

1

H
d ln D(+)

1

dτ
g(Ωm, ΩΛ) =

1

H
d ln D(−)

1

dτ
. (25)

The most important cases are

(1) When Ωm = 1, ΩΛ = 0, we have the simple solution

D(+)
1 = a, D(−)

1 = a−3/2, f(1, 0) = 1, (26)

thus density fluctuations grow as the scale factor.
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linear Euler equation

gravity test

degeneracy w/ AP test

RSD in a qualitative picture & linear theory48 3. COSMOLOGY AND MASSIVE NEUTRINOS: UP TO LINEAR THEORY

Figure 3.5: A schematic picture of redshift distortions. Arrows denote direction and magnitude
of velocity fields of galaxies. At large scales where the peculiar velocity of galaxies can be
treated at linear level, the galaxy density fields squash along the line-of-sight. In the case of
nonlinear collapse at small scales, galaxies have large velocity with random direction. As a
result, the structure become elongated, which is so called the Finger-of-God effect. The FOG
effect suppress the clustering for direction of line-of-sight.

where ẑ is an unit vector in the line-of-sight direction. We have adopted the distant-observer
approximation, which ignores the radial dependence of redshift-space distortion. The number
of galaxies in a particular region is preserved, i.e., ns(xs)d3xs = n(x)d3x, and the Jacobian of
this transformation is given by

J =

∣∣∣∣∣
dx

ds

∣∣∣∣∣ =

(

1 +
∂

∂z

[
v⃗ · ẑ

aH(a)

])−1 (

1 +
v⃗ · ẑ

aH(a)x

)−2

. (3.107)

The second bracket can be safely approximated to be unity, since the derivative term in the
first bracket is larger than the second by a factor of kx and we are interested only in the modes
of kx ≫ 1 [110]. Then, the Jacobian becomes

J ≃
(

1 +
∂

∂z

[
v⃗ · ẑ

aH(a)

])−1

. (3.108)

Thus the transformation to redshift space is nonlinear mapping, which make it difficult to model
the nonlinear power spectrum in redshift space.

Intuitively, the redshift distortion effect is understood in two ways. Fig. 3.5 illustrates the
two redshift distortion effects, separately. At sufficiently large scales, a slightly overdense region
appears squashed toward the center of overdense region. On the other hand, in more collapsed
object seen at small scales, the so-called Fingers-of-God (FOG) effect is attributed to random

Large scale: Squashing effect
   - amplitude become larger 

Small scale: Finger-of-God 
   - amplitude becomes smaller

Kaiser, 1987

BAO scale at low redshift is mildly nonlinear regime → both effects are needed!

In linear theory PS(k, µ) = b2

�
1 +

f

b
µ2

�2

Pm(k)P (k) = ��g(k)2� �

ẑ
µ = cos �

�k

: l.o.s.
RSD measurement

＊ all information is encoded up to hexadecapole (l=4)

f � d lnD(a)
d ln a

� �m(z)� γ = 0.55 [GR], 0.68 [DGP]
depends on scale [f(R)] Linder, 2008

◆ Anisotropic clustering: the Redshift-Space Distortion

Large-Scale (Kaiser squashing) 
 clustering becomes larger along l.o.s Kaiser (1987)

small-scale (Finger-of-God) 
 clustering becomes smaller along l.o.s Jackson (1972)

◆ (Any kind of) peculiar velocity of galaxies contaminate to their redshifts

For a review, see my lecture note  
at MPA. 
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No detection of LyA IM yet!

Introduction

1) QSO-LyAIM detection at z~2 in Croft+ (2016)
Lyman α emission intensity 3555

Figure 16. Probability distribution functions (PDFs) of Ly α luminos-
ity density (solid curves) and halo-bias-weighted Ly α luminosity density
(dashed curves) for our fiducial model. The PDFs are computed as propor-
tional to the average Ly α luminosity or halo-bias-weighted Ly α luminos-
ity in haloes of mass M multiplied by the differential halo mass function
dn/dlog M. The blue curves use only the Ly α luminosity of central galaxies,
and the red curves include contributions from satellite galaxies. All curves
have been normalized to unity at their respective maxima. See the text for
further details concerning the model.

luminosity density distribution. The dashed curves in Fig. 16 show
these probability distributions. With the satellite contribution in-
cluded, the curve peaks around log (M/M⊙) = 12.6. Taking the
full width at half-maximum (FWHM) of the curve, the fiducial
model implies that the signal in the cross-correlation should mainly
come from Ly α emission in haloes of mass (1–20) × 1012 M⊙.

Finally, as mentioned in Section 3.2, bL is not the same as bα once
the radiative transfer effect is taken into account. A simple model
shows that bα = bL + α1 with α1 a positive number (see Section
6.4). The value of α1 is not readily known without detailed radiative
transfer modelling. Overall, we expect bα to be larger than ∼3. We
choose to parametrize derived quantities in terms of (3/bα).

An additional uncertain factor to consider is the modification to
clustering caused by redshift-space distortions. This is embodied in
the fβ parameter. We have seen in Section 3.4 that measurements
of anisotropies in clustering give a measurement of βα = #0.6

m (z =
2.55)/bα = −0.76 ± 0.36. This negative value of βα is of the form
expected to be caused by radiative transfer effects on clustering
(Zheng et al. 2011a) and is opposite in sign to the usual Kaiser
(1987) peculiar velocity redshift-space distortions. Nevertheless,
this redshift-space distortion model was shown in Section 3.4 to
give a reasonable fit to the data and one can use this to compute the
factor fβ as fβ = 1 + 1

3 (βq + βα) + 1
5 (βqβα) (from equation 10).

If we do this we find that the value of fβ = 0.80 ± 0.15, which
we take as a reasonable estimate of the reduction of the monopole
term due to spreading the correlation along the line of sight. Even
though gravitational evolution is not the physically correct model for
interpreting our observations owing to the negative value we obtain
for βα , a model with redshift-space distortion plus radiative transfer
effect does seem to work reasonably well here (see Section 6.4).

Figure 17. The star formation rate density (ρSFR) inferred from our mea-
surement of the mean Ly α surface brightness in the Universe between z =
2 and 3.5 (see Section 5) is shown as the red point with solid line error bars,
assuming that the linear bias factor for Ly α emission is bα = 3, a reasonable
value for the luminosity-weighted clustering of star-forming galaxies (see
Section 5). The true value of bα is unknown, so this data point should be
scaled by 3/bα . We note this point has been calculated under the assumption
that the Ly α surface brightness seen is in fact largely due to star-forming
galaxies, and that cooling radiation and quasar heating may also contribute
as discussed in Section 6.3. Other data values plotted with open (black)
symbols are from published ρSFR values which used UV estimators. The
solid (blue) points show estimates of ρSFR computed from the luminosity
functions of surveys for Ly α emitters. The references are given in Section
5. The shaded area represents the range of dust corrected UV estimates
compiled by Bouwens et al. (2010).

We use this value and propagate the errors from the bias mea-
surements and our measurement of bqbαfβ⟨µ⟩ (for fixed shape
parametrized by #m = 0.30), to compute the mean Ly α surface
brightness at z = 2.55, finding

⟨µα⟩ = (3.9 ± 0.9) × 10−21(3/bα) erg s−1 cm−2 Å−1 arcsec−2.

(20)

We convert this into a comoving Ly α luminosity density ϵα using

ϵα = 4π⟨µα⟩
H (z)

c
λα(1 + z)2, (21)

where c is the speed of light and λα = 1216 Å. We find the value
ϵα = 3.1 × 1041(3/bα) erg s−1 Mpc−3. We then use equation (17) to
convert this into a measurement of the star formation rate density

ρSFR(z = 2.55) = (0.28 ± 0.07)
3
bα

M⊙ yr−1 Mpc−3. (22)

As mentioned before, the conversion depends on the assumption
about the underlying stellar population. A younger population and
lower metallicity would lead to a lower inferred SFR, which could
be an important effect for interpreting our results. Keeping this
possibility in mind, we proceed with the discussion by using the
above result from the commonly adopted conversion factor.

We plot this result in Fig. 17 as the red point, for the chosen value
of bα = 3. We note that the true value for the parameter bα is not
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Figure 3. Fit parameters for the amplitude bqbα fβ ⟨µ⟩ and shape #m (for
fixed h and other parameters) of a linearly biased CDM model fit to the Ly α

cross-correlation function plotted in Fig. 2. The dot indicates the best-fitting
parameters and the contours show the 1σ , 2σ and 3σ confidence contours.

(Kaiser 1987). The redshift-space distortions should be less promi-
nent compared to the Ly α forest because of the expected higher
bias for the Ly α emission. In reality there appears to be stretching
along the line of sight (we quantify this below), which might be
due to a combination of quasar redshift errors, the intrinsic velocity

dispersion of quasars in their host haloes, or the intrinsic velocity
dispersion of the sources of Ly α emission.

Another source of apparent clustering anisotropy could be the
radiative transfer effects predicted by Zheng et al. (2011a). It was
shown by these authors, using cosmological radiation hydrody-
namic simulations, that Ly α radiative transfer has a strong environ-
mental dependence which can cause the apparent spatial distribution
of Ly α emission to become anisotropic with respect to the line-of-
sight direction. Density fluctuations along the line-of-sight direction
are found to preferentially emit the Ly α radiation in that direction in
overdense regions, mainly because of the effect of peculiar velocity
gradients on the Ly α radiative transfer. This causes a suppression
of the line-of-sight fluctuation, which can be modelled similarly to
the Kaiser effect (also caused by the peculiar velocity gradient),
even though the sign of the effect is opposite.

3.4 Fitting redshift-space distortions

In order to approximately quantify the level of distortion in Fig. 4
and its statistical significance, we have investigated fitting a redshift-
space distortion model to the ξ qα (r⊥ , r∥) data. To compute the
model for ξ qα (r⊥ , r∥), we first assume the linear &CDM correlation
function shape used in equation (3) and then use a model for peculiar
velocities to distort it in redshift space. Our peculiar velocity model
includes standard linear infall for large-scale flows (Kaiser 1987)
and a small-scale random velocity dispersion (e.g. Davis & Peebles
1983).

The parametrization of the model for linear infall allows for
stretching (outflow) as well as squashing (infall) along the line

Figure 4. Left-hand panel: the quasar–Ly α cross-correlation ξqα as a function of r∥ and r⊥ . The units (of Ly α surface brightness) are the same as in Fig. 2.
The contours are spaced at values of 10− 21 erg s− 1 cm− 2 Å− 1 arcsec− 2. To reduce noise in the image, the data set was smoothed with a Gaussian filter with σ =
4 h− 1 Mpc (2 cells) before plotting. Right-hand panel: the model fit to the quasar–Ly α cross-correlation including redshift-space distortions (see Section 3.4).
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Lyman-↵ intensity mapping 7

Ly↵ forest and Ly↵ emission, ⇠f↵ will therefore also be much
better sampled, with many more Ly↵ forest- Ly↵ emission pixel
pairs at any separation than was the case with ⇠q↵ .

We compute ⇠f↵ from our data samples in a similar fashion
to the quasar-Ly↵ emission cross correlation (Equation 1). Our
estimator is

⇠fe(r) =
1ÕN (r)

i=1 wri

N (r)’
i=1

wri�µ�F, (8)

where �F is the Ly↵ forest flux overdensity.
We use the same 160 subvolumes of the survey to construct

jackknife samples, and use these to compute errors bars as was done
with ⇠q↵ . As with ⇠q↵ , we have found that there is some cross-fibre
light which could a�ect the measurement. We again do not use pairs
of Ly↵ forest and Ly↵ emission pixels which are separated by 5
fibres or less in computing Equation 8. After doing this, again as
with ⇠q↵ , a small amount of residual light contamination remains
due to quasar clustering. This can be removed either by subtracting
a model for the contamination or by completely removing all fibres
with �fibre  5 from the sample. In Appendix A we carry out tests
on both of these methods, and show that there is no significant
di�erence in our conclusions when either is used, or even if the
contamination is not corrected for (it is very small in the case of ⇠f↵
).

In Figure 5 we show our results (in this case the modelled
contamination has been subtracted). We can see that there does
not appear to be any strong evidence for a non-zero ⇠f↵ signal.
We will see later that a model fit shows that this is indeed a null
result. Comparing Figure 5 to Figure 1, the y-axis scale has been
magnified by a factor of 10, so that the overall signal in the quasar-
emission correlation would be completely o� the top of the panel in
the current plot. Because the bias factor of the forest is much lower,
however, one would expect the ⇠f↵ signal to be much smaller than
⇠q↵ . We now examine this expectation in the context of the model
where the Ly↵ emission surface brightness traces the large-scale
structure of the Universe.

We have seen in Section 3.1 that if the ⇠q↵ signal seen is
due to star forming galaxies which trace structure, then a very
high mean Ly↵ surface brightness of hµ↵i = (1.9 ± 0.5) ⇥
10�21(3/b↵) erg s�1 cm�2 �1 arcsec�2 . is inferred, and this Ly↵
emission is associated with a star formation rate ⇢SFR(z = 2.55) =
(0.14±0.04)(3/b↵) M� yr�1 Mpc�3 . In C16, a qualitatively similar
conclusion was reached (although the results were approximately
a factor of two higher due to the presence of contamination from
quasar clustering). We are now in a position to test this model, as it
predicts that for ⇠f↵ we should see the same shape as ⇠q↵ from Fig-
ure 1, but with the amplitude scaled down by a factor of (-0.3/3.6),
which is the ratio of the Ly↵ forest bias factor to the quasar bias
factor. This value of -0.3 for the forest bias factor is approximate
(see Slosar et al 2011), and includes the e�ect of redshift space dis-
tortions (b f� = �0.3, see Section 4.1). Quasar redshift distortions
have a negligible e�ect on the clustering amplitude in this context.
We have plotted this prediction as a dot-dashed line in Figure 5. We
can immediately see that it is not consistent with the DR12 results,
which indicates that the Ly↵ emission seen in ⇠q↵ cannot be spread
throughout space with a high surface brightness.

The other solid line in Figure 5 shows the predicted ⇠f↵ curve
that corresponds to the same model, but with a much lower mean
surface brightness of Ly↵ emission, that due to the summed emis-
sion of known Ly↵ emitters. The results of Gronwall et al. (2007)

Figure 5. The cross-correlation function of Ly↵ emission and the Ly↵
forest, ⇠f ↵ for spectra from BOSS DR12 (points with error bars) as a
function of Ly↵ emission - Ly↵ forest pixel pair separation. The solid line
shows the predicted cross-correlation function if the Ly↵ emission were
tracing the large-scale structure of the Universe (for example being caused
by star forming galaxies), and the mean surface brightness of Ly↵ emission
in the Universe is given by the contribution of all individually detected
Ly↵ emitters. It should be noted that the predicted amplitude of ⇠f ↵ is
negative (because the Ly↵ forest has negative bias). The dashed line shows
the predicted cross-correlation function if the Ly↵ emission were tracing
the large-scale structure of the Universe but the mean surface brightness of
Ly↵ emission was at the very high level needed to account for the results in
G. This is clearly ruled out, indicating that the mean surface brightness of
Ly↵ emission must be at a lower level.

have shown that these correspond to a star formation rate at z ⇠ 2.5
observed through Ly↵ of ⇢SFR = 0.01 M�yr�1. This is a factor
of ⇠ 15 smaller than the high surface brightness model. By eye,
it is apparent that this very low amplitude curve is not very dif-
ferent from zero given the error bars of the DR12 result. As such,
the observed Ly↵ forest-Ly↵ emission cross-correlation appears to
be consistent with known Ly↵ emitters. It is however possible to
use ⇠f↵ to place limits on the presence of other Ly↵ emission
that traces cosmic structure, including very low surface brightness
emission that would not have been detected in Ly↵ emitter surveys.

4.1 Linear CDM fit to forest-emission cross-correlation:
model G

We do this by carrying out model fitting, using the same biased
linear CDM correlation function used in Section 3.1 (model G).
The amplitude parameter in the present case is bf b↵ f� hµi , and the
shape parameter is again ⌦m. In figure 6 we show the contours of
��2 in this parameter space. We can see that the best fit model has
a positive amplitude (the opposite sign to that expected for ⇠f↵ ),
but that it is consistent with zero at the ⇠ 1� level, as we expected
given our visual impression of Figure 5. The best fit parameters are

bf b↵ f� hµi = (2.5 ± 1.8) ⇥ 10�22 erg s�1 cm�2 �1 arcsec�2, (9)

and ⌦m = 0.691+2.06
�0.47. In Figure 6 we have plotted symbols repre-

senting the high surface brightness Ly↵ model, and the Ly↵ model
representing known Ly↵ emitters. The former lies at a ��2 = 56.5
from the best fit, indicating that it is ruled out at the 7.5� level.
The latter is within ��2 = 3.7 of the best fit, indicating that it

MNRAS 000, 000–000 (0000)

2) No LyAF-LyAIM detection in Croft+ (2018)

Large-scale elongation

◆ Croft+(2016) claimed that the FoG is consistent with the RT effect in Zheng+(2011).
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Why Radiative Transfer matters?

Introduction

  

Introduction – What makes Lyman-α special?
● Large amounts of hydrogen everywhere*
● Huge cross-section
● Falls into ground-state (quickly)
➔ Scatterings (even if largely ionized)
➔ Region of emission ≠ observed %ux origin

OpenStax Astronomy

(Hayes+13)

➔ Scatterings

 � Need RT

 � Probe CGM
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Why Radiative Transfer matters?

Introduction

F. Leclercq et al.: The MUSE Hubble Ultra Deep Field Survey. VIII.

Fig. 2. Representative sample of 7 LAEs from the MUSE UDF mosaic field. Each row shows a di↵erent object. First column: HST image (see
Sect. 3.1.2) of the LAE indicated by the contour of its HST segmentation mask or by a white cross if it is not detected in the HST images (axis
in arcsec). The MUSE ID, z and the HST band are indicated. Second column: MUSE white-light image summed over the full MUSE spectral
range (axis in arcsec). The white contours correspond to the HST segmentation mask convolved with the MUSE PSF. The HST coordinates
(Rafelski et al. 2015) are indicated by the cross. Third column: Ly↵ line extracted in the HST segmentation mask convolved with the MUSE
PSF. The purple area shows the NB image spectral width (indicated in purple). The two vertical black dotted lines indicate the bandwidth (in
Å) used to integrate the total Ly↵ flux (see Sect. 5.3.2). The rest-frame FWHM of the single-peaked lines is also indicated. Fourth column:
Ly↵ narrowband image with SB contours at 10�17 erg s�1 cm�2 arcsec�2 (central dotted white), 10�18 erg s�1 cm�2 arcsec�2 (dashed white), and
10�19 erg s�1 cm�2 arcsec�2 (outer dotted white). The radius of the solid white circle corresponds to the measured CoG radius rCoG (see Sect. 5.3.2).
Last column: radial SB profiles of Ly↵ emission (blue), UV continuum (green), and the PSF (red).

A8, page 5 of 25

MUSE, Leclercq+(2017)

  

Introduction – What makes Lyman-α special?
messy

● Region of emission ≠ observed %ux origin
● Sourcing emission for observed %ux (particularly outside of galaxy) ?
● Small-scale interaction with dust vastly changing due to scatterings
● Multi-scale phenomenon (ISM,CGM,IGM). 

Warning: Depiction dangerously oversimpli6ed!

0

ISM

0

ISM

CGM

0

ISM

CGM

IGM

40

corresponds to an HI column density of NHI = 1.6 ⇥ 1020 cm�2 (see Eq 55). We further assume that the central
source emits all Ly↵ photons at line center (i.e. x = 0). As the photons resonantly scatter outwards, they di↵use
outward in frequency space. Figure 24 illustrates that as the photons di↵use outwards in real space, the spectral
energy distribution of Ly↵ flux, J(x), broadens. If we were to measure the spectrum of Ly↵ photons crossing some
arbitrary radial shell, then we would find that J(x) is constant up to ⇠ ±xmax beyond which it drops o↵ fast. For
Ly↵ photons in the core of the line profile, the mean free path is negligible compared to the size of the sphere:
the mean free path at frequency x is [⌧0�(x)]�1

in units of the radius of the sphere. Because each scattering event
changes the frequency of the Ly↵ photon, the mean free path of each photon changes with each scattering event.
From the shape of the redistribution function (see Fig 21) we expect that on rare occasions Ly↵ photons will be
scattered further from resonance into the wing of the line (i.e. |x| >

⇠
3). In the wing, the mean free path of the photon

increases by orders of magnitude.

From the redistribution function we know that - once in the wing - there is a slight tendency to be scattered back
into the core of the line profile. Specifically, we showed that h�x|xini = �

1

xin

). We therefore expect photons that find

themselves in the wing of the line profile, at frequency x, to scatter Nscat ⇠ x
2 times before returning to the core.

During this ‘excursion’ back to the core, the photon will di↵use a distance D ⇠
p
Nscat ⇥ �mfp(x) ⇡

p
Nscat/[⌧0�(x)]

away from the center of the sphere (recall that this is in units of the radius of the sphere). If we now set this
displacement equal to the size of the sphere, i.e. D =

p
Nscat/[⌧0�(x)] = x/[⌧0�(x)] = 1, and solve for x using that

�(x) = av/[
p
⇡x

2], we find (Adams, 1972; Harrington, 1973; Neufeld, 1990)

xp = ±[av⌧0/
p
⇡]1/3 , (86)

where xp denotes the frequency at which the emerging spectrum peaks. Photons that are scattered to frequencies33

|x| < |xp| will return to line center before they escape from the sphere (where they have negligible chance to escape).
Photons that are scattered to frequencies |x| > |xp| can escape more easily, but there are fewer of these photons
because: (i) it is increasingly unlikely that a single scattering event displaces the photon to a larger |x|, and (ii)
photons that wish to reach |x| � |xp| through frequency di↵usion via a series of scattering events are likely to escape
from the sphere before they reach this frequency. We can also express the location of the two spectral peaks at ±xp

in terms of a velocity o↵-set and an HI column density as

�vp = |xp|vth ⇡ 160
⇣

NHI

1020 cm�2

⌘1/3⇣ T

104 K

⌘1/6

km s�1
. (87)

That is, the full-width at half maximum of the Ly↵ line can exceed 2�vp ⇠ 300 km s�1 for a static medium in which
the thermal velocity dispersion of the atoms is only ⇠ 10 km s�1. Ly↵ scattering thus broadens spectral lines, which
implies that we must exercise caution when interpreting observed Ly↵ spectra.

We showed above that the spectrum of Ly↵ photons emerging from the center of an extremely opaque object to
have two peaks at xp ⇠ ±[av⌧0/

p
⇡]1/3. More generally, xp = ±k[av⌧0/

p
⇡]1/3, where k is a constant of order unity

which depends on geometry (i.e. k = 1.1 for a slab [Harrington 1973, Neufeld 1990], and k = 0.92 for a sphere
[Dijkstra et al. 2006]). This derivation required that photons escaped in a single excursion

34: that is, photons
must have been scattered deep enough into the wing (which starts for |x| > 3, see Fig 17) to be able to undergo a
non-negligible number of wing scattering events before returning to core. So formally our analysis is valid only when
x � 3 when the Ly↵ photons first start their excursion. Another way of phrasing this requirement is that xp � 3, or
- when expressed in terms of an optical depth ⌧0 - when av⌧0 =

p
⇡(xp/k)3 >

⇠
1600(xp/10)3. Indeed, analytic solutions

of the full spectrum emerging from static optically thick clouds appear in good agreement with full Monte-Carlo
calculations (see § 9) when av⌧0 >

⇠
1000 (e.g. Neufeld 1990, Dijkstra et al. 2006).

There are other interesting aspects of Ly↵ transfer that we can discuss: the first is the mean number of scattering
events that each Ly↵ photon undergoes, Nscat. This number of scattering events was calculated by Adams (1972),

33 Apart from a small recoil e↵ect that can be safely ignored (Adams 1971), photons are equally likely to scatter to the red and blue sides
of the resonance.

34 Escape in a ‘single excursion’ can be contrasted with escape in a ‘single flight’: gases with lower NHI can become optically thin to Ly↵
photons when they first scattered into the wing of the line profile. For example, gas with NHI = 1017 cm�2 has a line center optical
depth ⌧0 = 5.9⇥ 103(T/104 K)�1/2 (Eq 55). However, Figure 17 shows that the cross-section is >⇠4 orders of magnitude smaller when
|x| >⇠3. A photon that first scattered into the wing would be free to escape from this gas without further scattering.

Multi Scale Physics!
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Impact of LyA RT on the large-scale clustering

Outline

Q1) Is the IGM coupling introduced by Zheng+(2011) important at z~2?  
 
 
 
Q2) Can we really ignore the impact of the LyA RT at ISM/CGM scales?  
 
 
 
Q3) Can we mitigate such impact?

Behrens, Byrohl, SS, Niemeyer (2018)

Byrohl, SS, Behrens (2019)

Gurung-Lopez, SS+, in prep.
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IGM coupling in Zheng+(2011)

Q1) IGM Coupling 

◆ The RT effect in IGM sensitive to velocity gradient
The Astrophysical Journal, 726:38 (27pp), 2011 January 1 Zheng et al.

Figure 8. Illustration of effects of redshift-space distortion and Lyα RT selection
on the observed density fluctuation alone the line of sight. (a) Effect of redshift-
space distortion. The solid black/thin curve is the real-space density distribution
with the dotted line denoting the mean. Arrows represent the linear peculiar
velocity with the length proportional to the amplitude. The red/thick curve
represents the density distribution in redshift space. (b) Effect of Lyα RT
selection. The solid black/thin curve is the real-space density distribution of a
population of galaxies. The observed LAEs are a fraction of these galaxies, with
a selection function imposed by the Lyα RT process. The density distribution of
the observed LAEs in real-space is represented by the solid red/thick curve. The
selection favors sources in regions with low density and positive line-of-sight
velocity gradient and to a smaller degree, in regions with receding line-of-sight
velocity that are on the near-side (far-side) of overdense (underdense) regions.
The observer is assumed to lie on the left side of the panel. See the text for
details.
(A color version of this figure is available in the online journal.)

direction. As a consequence, Lyα photons preferentially escape
from the directions parallel and anti-parallel to the line of sight,
leading to higher surface brightness in these directions. While
in the overdense region, the situation changes to the opposite.
For an LAE survey set by a Lyα flux limit, sources in the
underdense region have a higher probability to be observed
as LAEs. Again we reach the same conclusion as above—the
line-of-sight density fluctuation is suppressed for LAEs. Note
that except for sources residing at the peak and trough of the
(plane-wave) density fluctuations, the angular distribution of
Lyα emission generally does not have a parity symmetry along
the line of sight. For example, Lyα photons in sources near
the boundary between the overdense and underdense regions in
Figure 9 have their Lyα photons preferentially escape toward
the direction of underdense region, as a result of the density
gradient and receding velocity effect.

For the selection effect in the case of a transverse fluctuation,
we only need to rotate Figure 9(a) by 90◦, which leads to
Figure 9(b). In the underdense region, Lyα photons appear to
preferentially escape in the direction perpendicular to the line of
sight. Thus, sources in the underdense region now have a lower
probability to be detected as LAEs. This leads to the interesting
result that the density fluctuation in the transverse direction is
enhanced for LAEs.

Note that large-scale density filaments are a common feature
of gravitational dynamics. Filaments may be described by
Figure 9. The net result is that filaments oriented along the line of
sight are preferentially observed, whereas those perpendicular
to the line of sight are suppressed. This feature is clearly seen
in the left panel of Figure 5.

Based on the above discussion, the main selection effects
in galaxy clustering caused by environment-dependent Lyα RT
can be summarized as the suppression of the fluctuation in the
line-of-sight direction and the enhancement of the fluctuation in
the transverse direction. In what follows, we present a simple
physical model to describe these effects.

3.2.2. A Simple Physical Model

For the simple physical model, we limit our discussion to
the linear regime. Given that the effects of Lyα selection share
some similarities with the Kaiser effect, we first review the
formalism of redshift-space distortion in galaxy clustering (see,
e.g., Hamilton 1998). We denote quantities in redshift space
with a superscript “s.”

The linear density fluctuation δg(r) of galaxies in real space
may be related to that of matter δm(r) by δg(r) = bδm(r),
where b is the large-scale galaxy bias factor that in general
may be scale dependent. From conservation of galaxy pairs, the
redshift-space density fluctuation δs

g(s) satisfies
[
1 + δs

g(s)
]
d3s = [1 + δg(r)]d3r, (1)

with s = r + vzẑ/(Ha), where vz is the line-of-sight peculiar
velocity and H is the Hubble constant at the time when the scale
factor is a. Equation (1) reduces to

δs
g = δg − 1

Ha

∂vz

∂z
. (2)

Figure 9. Illustration of the Lyα RT selection effect in the cases with fluctuation modes parallel and perpendicular to the line of sight. Panel (a) shows the case
of density fluctuation along the line of sight. The gray scale delineates the overdensity across one wavelength of a plane wave, darker for higher overdensity. Each
point represents a Lyα emitting source, and the ring around it illustrates the angular distribution of escaped Lyα emission. In the underdense region, Lyα emission
preferentially comes out along the line-of-sight direction (and its opposite direction), mainly because of the effect of velocity gradient on the RT (see the text). Sources
in the underdense (overdense) region have a higher (lower) probability to be observed than those in the overdense region. Therefore, the Lyα RT selection causes a
suppression of the fluctuation along the line of sight. Panel (b) is a 90◦ rotation of panel (a), corresponding to the case of density fluctuation perpendicular to the line
of sight. In this case, the Lyα RT selection causes an enhancement in the fluctuation. See the text for details.
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Figure 1. Dependence of Lyα flux suppression of LAEs on density and peculiar velocity, as a function of halo mass. The suppression is characterized by the ratio
of the apparent (observed) and intrinsic Lyα luminosity Lapparent/Lintrinsic. (a) Dependence on the smoothed overdensity field at the source position. The overdensity
field is smoothed with a 3D top-hat filter of radius 2 h−1 Mpc (comoving). (b) Dependence on the density gradient along the Z-direction. The derivative is with respect
to comoving coordinate. (c) Dependence on the host halo velocity. (d) Dependence on the linear peculiar velocity gradient along the Z-direction. The linear peculiar
velocity is obtained from the smoothed overdensity field based on the continuity equation (see the text for details). The velocity gradient is put in units of the Hubble
parameter. Different colors are for LAE host halos of different masses, as labeled in panel (d). The median of the ratio is plotted as a solid curve. The two dotted
curves delineate the upper and the lower quartiles, and for clarity we only plot those for the lowest mass range. Note that the line-of-sight direction (from the observer
to sources) is along the −Z-direction, which matters when interpreting the results in panels (b) and (c). See Section 2 for further discussion.

logical parameters are consistent with the Wilkinson Microwave
Anisotropy Probe 5 year data (Dunkley et al. 2009): Ωm = 0.28,
ΩΛ = 0.72, Ωb = 0.046, h = 0.70, ns = 0.96, and σ8 = 0.82.
Our Lyα RT calculation is based on the z = 5.7 output of the
simulation, which has a box size of 100 h−1 Mpc on a side.
In our calculation, a 7683 grid is used to represent the neutral
hydrogen density, temperature, and peculiar velocity fields in
the simulation box. The Hubble flow is added to the velocity
field. LAEs are assumed to reside in dark matter halos with
positions and velocities from the halo catalog. To reduce source
blending in the Lyα image and spectra, Lyα photons are col-
lected with a finer spatial resolution, a 61442 grid for the image
of the whole box, corresponding to 16.3 h−1 kpc (comoving)
or 0.′′58 per pixel. The spectral resolution and range are 0.1Å
(25 km s−1) and 24 Å in rest frame, respectively. We divide the
whole simulation box into three layers so that the depth of each
layer approximates that from the width of the narrowband filter
used in searching for z ∼ 5.7 LAEs (Ouchi et al. 2008). The
calculation result for each layer is saved in an IFU-like datacube
of dimension 6144 × 6144 × 240. We refer the readers to Paper
I for more details about the characteristics of the simulation and
calculation.

2. ENVIRONMENT DEPENDENCE OF Lyα
RADIATIVE TRANSFER

As shown in Paper I, a point Lyα-emitting source becomes
extended in the end as a result of spatial diffusion caused by Lyα

RT. Only the central, high surface brightness part of the extended
source can be observed as an LAE. Therefore, the observed or
apparent Lyα luminosity (Lapparent) is reduced with respect to
the intrinsic Lyα luminosity (Lintrinsic). The suppression of Lyα
emission, characterized by the ratio of observed to intrinsic Lyα
luminosity, depends on the environments in the vicinities of
LAEs. The environments here are interpreted broadly as the
matter density and peculiar velocity. In Paper I, we identify a
few environment variables. In general, the suppression is weaker
in regions of lower density; the suppression depends on the sign
of the density gradient along the line of sight, in the sense that
sources located in the near side (with respect to the observer)
of an overdense region have a lower suppression; relative to
the Hubble flow, sources moving away from the observer have
a lower suppression because of the additional redshift in Lyα
frequency; sources with larger line-of-sight gradient of the line-
of-sight peculiar velocity are more easily observed because of
an effectively larger Hubble expansion rate.

In Figure 1, we show the environmental dependence of Lyα
RT outcome in terms of the observed-to-intrinsic Lyα luminosity
as a function of four physical variables—overdensity δ, its
gradient along the line of sight, line-of-sight halo velocity, and
peculiar velocity gradient along the line of sight, separately
for four subsets of halos divided according to their halo mass.
The overdensity field is smoothed with a three-dimensional
(hereafter 3D) top-hat filter of radius 2 h−1 Mpc (comoving).
It is seen that the overall dependence becomes weaker for
sources in halos of higher mass, probably indicating that Lyα
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Figure 10. Real-space 3D two-point correlation functions ξ (rp, π ) for threshold samples. The top column shows the case for LAE samples. For each LAE sample,
the middle and bottom columns show the cases for two types of control samples—halos and shuffled LAE samples (S-LAEs), both having the same number density
as the corresponding LAE sample. The shuffled LAE sample is expected to eliminate the effect of environmental dependence of Lyα RT (see the text for details). For
LAE and S-LAE samples, thresholds in observed Lyα luminosity are used to select sources, while for halos, the thresholds are in halo mass. The number density (in
units of h3 Mpc−3) of each set of samples is labeled at the top of each column.

Figure 11. Same as in Figure 10, but for redshift-space 3D two-point correlation functions.
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Figure 10. Real-space 3D two-point correlation functions ξ (rp, π ) for threshold samples. The top column shows the case for LAE samples. For each LAE sample,
the middle and bottom columns show the cases for two types of control samples—halos and shuffled LAE samples (S-LAEs), both having the same number density
as the corresponding LAE sample. The shuffled LAE sample is expected to eliminate the effect of environmental dependence of Lyα RT (see the text for details). For
LAE and S-LAE samples, thresholds in observed Lyα luminosity are used to select sources, while for halos, the thresholds are in halo mass. The number density (in
units of h3 Mpc−3) of each set of samples is labeled at the top of each column.

Figure 11. Same as in Figure 10, but for redshift-space 3D two-point correlation functions.
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Table 1. Redshift z, spatial resolution �, and number of LAEs consid-
ered, NLAE , for the post-processed snapshots. We consider halo with
SFR > 0.1 M�/yr and Mh,200 > 1010 M� as LAEs. The intermediate res-
olution runs have a resolution similar to ZZ11 at redshift 5.85. For each
redshift, we also state the average neutral fraction, fIGM, at a character-
istic hydrogen number density of 10�4 cm�3.

z resolution � [pkpc] NLAE

2.00 ( fIGM = 2 ⇥ 10�5)
high resolution 1.2 45594
3.01 ( fIGM = 3.7 ⇥ 10�5)
high resolution 0.8 45434
intermediate resolution 51.9 45434
4.01 ( fIGM = 6.8 ⇥ 10�5)
high resolution 0.7 39782
5.85 ( fIGM = 35 ⇥ 10�5)
high resolution 0.5 23114
intermediate resolution 30.4 23114
low resolution 121.5 23114

(pkpc). We carry out these steps for a number of snapshots at dif-
ferent redshifts between z = 2.00 and z = 5.85 (details are given
in table 1). For comparison with ZZ11, we also run some snap-
shots with an artificially reduced spatial resolution comparable
to that of ZZ11.

2.2. Modelling LAEs

Similarly to previous works, we assume that Lyman-↵ emission
is dominated by recombination after ionization by far UV ra-
diation from young stars. Given our resolution of ⇠ 1 kpc, we
assume that these stars reside in the cores of galaxies, embedded
in the innermost part of a dark matter halo. The Lyman-↵ emis-
sion is therefore placed at the center of a dark matter halo. We
assume each halo of mass Mh,200 > 1010 M� to emit Lyman-↵
photons, with Mh,200 being the mass enclosed in a sphere with
density ⇢ = 200⇢c, and ⇢c the critical density. Additionally, we
restrict ourselves to consider only halos with star formation rate
(SFR) > 0.1 M�/yr and assume an intrinsic Lyman-↵ luminosity
(e.g. Furlanetto et al. 2005)

Lint =
SFR

M�/yr
⇥ 1042erg/s (1)

As stated above, we ignore halos below the mass and SFR
threshold. The initial line profile of the emission is set to be
Gaussian around the line center, with the width given by the
virial temperature of the halo. We emphasize that while we use
the SFR obtained from the hydro simulations, ZZ11 and BN13
instead approximated the SFR using the halo mass (see Trac &
Cen 2007) and used this to calculate the intrinsic Lyman-↵ lumi-
nosity

L
ZZ

int
= 0.68

Mh

1010M�
⇥ 1042erg/s (2)

Additionally, they used a lower mass cuto↵, and measured the
halo mass as the mass inside a sphere of 200 times the mean
density of the Universe. We have checked that this di↵erent def-
inition of the halo mass does not a↵ect our results. Our choices
for the fiduclal model is motivated by the fact that we have ro-
bust SFRs from the Illustris simulation. Furthermore, given our
spatial resolution of ⇠ kpc, we want to make sure that the gas
distribution and kinematics in and around galaxies we consider

as LAEs are spatially resolved, thus we use a rather high cut-o↵
in mass. When comparing the SFR-halo mass relation with the
one from Trac & Cen (2007), we find that while their result im-
plies a power law slope of 1 for SFR(Mh), we find a slope of
1.7-1.9 for the halos in the Illustris simulations.

The escape of Lyman-↵ photons from a highly inhomoge-
neous interstellar ISM remains a hard problem to solve in simu-
lations (e.g. Hansen & Oh 2006; Laursen et al. 2013; Gronke &
Dijkstra 2016; Gronke et al. 2016). These inhomogeneities are
not captured su�ciently well even by high-resolution simula-
tions, as parsec or even sub-parsec resolution would be required
to resolve the ISM structure. As has been discussed by Gronke
et al. (2016) in great detail, the observed spectra of LAEs devi-
ate from synthetic ones as a consequence. As in this paper we
are primarily concerned with the question of the anisotropic se-
lection bias due to RT, which is an e↵ect related to the coupling
between photons and the IGM, we decide to artificially remove
the e↵ect of the ISM on the escaping photons. We render the
ISM transparent to Lyman-↵ photons by removing the gas in
cells with number densities above ⇢cut = 0.13cm

�3, the thresh-
old for star-forming gas in the Illustris simulations. This method
tends to overpredict the non-gravitational bias since processing
in the ISM moves photons out of the line center, gradually decou-
pling photons from the large-scale environment by suppressing
scatterings in the IGM. In the appendix, we compare our results
with cases in which we included the ISM.

Additionally, and similar to previous work, we do not include
dust in our simulations. Since we are interested in learning about
the maximum impact of the radiative transfer on the observed
large-scale distribution of LAEs, this approach is appropriate, in
particular given the severe physical uncertainties in modelling
the e↵ect of dust (see Asano et al. 2013; Aoyama et al. 2017,
and references therein).

2.3. Lyman-↵ RT

We use our Lyman-↵ code to solve the RT problem, based on the
BoxLib library and the Nyx code (Almgren et al. 2013). It was
used previously in Behrens et al. (2014) and Behrens & Braun
(2014). For this work, we additionally include the redshifting
of photons due to the Hubble flow, periodic boundaries, and
the peeling-o↵ method to e�ciently generate surface brightness
maps. For details, we refer the reader to BN13 and references
therein. Here, we briefly summarize the simulation technique.

We use the Monte-Carlo approach typically used for Lyman-
↵ RT, probing the gas, velocity, and temperature distribution by
a large number of tracer photons. These photons are launched at
the center of halos and propagate in initially random directions.
They penetrate an optical ⌧D drawn from an exponential distri-
bution before they interact with the gas. The optical depth along
their path is integrated taking into account the local gas density,
velocity, and temperature. Additionally, the redshifting of pho-
tons due to the Hubble flow is taken into account by calculating
the Hubble parameter at the redshift of the snapshot H(z), and in-
creasing the wavelength of the photon by a factor / H(z)d, with
d being the distance to the last point of scattering (or, initially,
the distance to the point of emission). Since we do not consider
dust, scattering on hydrogen atoms is the only process consid-
ered. If a point of interaction is reached, the photon is scattered
coherently in the frame of the scattering atom, changing both
the frequency and the direction of propagation of the photon in
the frame of the observer. A new ⌧d is drawn and the process is
repeated until the photon is considered to have left the volume;
since we apply periodic boundary condition, we need to spec-
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Fig. 4. Same as Fig. 3, but for z = 5.85 at three di↵erent spatial resolutions of the underlying RT simulation.

Fig. 5. Correlation of observed fraction to large-scale velocity gradient
for two di↵erent emitter models and resolutions.

et al. 2016)6 to compute the multipole 2PCF. Note that we
adopt the slightly di↵erent definition on the multipole moment
from BN13. In Fig. 6, we show the 2PCF for the simulation at
z = 5.85, varying both ingredients (columns) - the emitter model
and the spatial resolution.

The three rows show the 2PCF of halos, LAEs, and a shu✏ed
LAE sample. Similar to previous work, halo and LAE samples
are acquired by enforcing a certain total number density, which
we set to 10�2h3 Mpc�3 here. The result is robust for varying
number densities and thus a high density has been chosen to re-

6 http://halotools.readthedocs.io/en/latest/

duce noise. The shu✏ed LAE sample is generated by shu✏ing
the inferred luminosity among galaxies of similar mass (by sort-
ing the halos into mass bins of width 0.03 dex) in order to erase
any e↵ect introduced by the radiative transport, and serves as
another control sample.

As expected from the discussion above, we find a significant
deformation of the shape of the 2PCF only at low resolution.
The strength of the deformation further increases in the case of
the ZZ11 emitter model. However, we stress that at our fiducial,
high resolution, we do not find a deformation of the 2PCF even
for this emitter model. We therefore conclude that the critical in-
gredient here indeed is the spatial resolution of the underlying
simulation. As a more quantitative probe of the resulting defor-
mation, we show the monopole (left panel) quadrupole (middle
panel) moment, and the di↵erence between the quadrupole in our
high-resolution simulation with the fiducial emitter model and
the other simulation runs (right panel) in Fig. 7. Di↵erent col-
ors represent di↵erent spatial resolutions. Solid lines show the
results for the fiducial emitter model, while dashed lines are ob-
tained using the ZZ11 emitter model. The shaded regions in the
left and middle panel illustrate the statistical errors (including
sampling variance, taken from the covariance matrix estimated
by 64 subsamples. Note that the jackknife errors could tend to
overestimate the true ones (Norberg et al. 2009; Shirasaki et al.
2016). Nevertheless this does not a↵ect our main conclusion be-
cause we are mainly interested in the relative di↵erence in Fig. 7
(right panel), for which we show the relative error, greatly reduc-
ing the sample variance. At s < 10 Mpc/h, the lower resolution
runs (orange, blue) show a significant increase in the quadrupole,
as expected from the 2PCF. For the ZZ emitter model, we find

Article number, page 7 of 11

large-scale velocity gradient

Ly
α 

es
ca

pe
 fr

ac
tio

n,
 𝞮

=L
ap

p/
L i

nt
 

@z=5.85

Low-Res (30 pkpc)

Low-Res (30 pkpc)

High-Res  
(0.5 pkpc)

High-Res  
(0.5 pkpc)

Dense Less dense

Behrens, Byrohl, SS, Niemeyer (2018)A&A proofs: manuscript no. LyA_Illustris_I_arxiv

Fig. 6. 2D 2PCF in real space for a number density limited sample of LAEs (first row) and two control samples (second/third row, see text for
details). Columns show the results (from left to right) for a run with high resolution and the ZZ11 emitter model, high resolution and our fiducial
emitter model, and the corresponding low resolution runs with the ZZ11/fiducial emitter model. The dashed contour corresponds to ⇠ = 1 with
subsequent contours varying by a factor of 1.4. Note the strong deformation in the third column.

an even stronger increase, again being consistent with the expec-
tations.

4. Conclusions

Using data from the public release of the Illustris suite of cos-
mological simulation, we have run Lyman-↵ radiative transfer
simulations as a post-processing step at redshift of 2 < z < 6
to understand if and to which extent the complex radiative trans-
fer introduces an additional, anisotropic selection bias into mea-
surements of the large-scale clustering of galaxies relying on the
Lyman-↵ emission line.

At su�ciently high spatial resolution down to O(1) physical
kpc, we find only marginal correlations between the large-scale
density and velocity fields with the observed fraction of Lyman-
↵ emission, and consequently smaller impact on the resulting
two-point correlation function than what is previously claimed
by ZZ11. In fact we were able to reproduce the ZZ11 result
by reducing the spatial resolution of our simulation to a value
close to the simulations used by ZZ11. We therefore conclude
that the discrepancy is due to incomplete scale separation, e↵ec-

tively decreasing the density of the ISM, coupling the photons
more strongly to the large-scale environment. This fact simply
implies that the impact of RT is mainly driven by the fully non-
linear scale. We also find that this resolution e↵ect can be ampli-
fied by the choice of an intrinsic Ly↵ emitter model with many
low-luminosity, low-mass emitters.

A caveat of this analysis is related to our finding that the de-
tailed spectra emerging from the ISM have a strong influence
on the coupling between photons and the large-scale structure;
if the spectra are close to the line center, this could reintroduce
the correlation between observed fraction and large-scale veloc-
ity gradient. Future work will be able to quantitatively assess this
relation. Ultimately, there is a need for very high resolution hy-
dro/RT simulations (that is, sub-pc resolution) to get a realistic
picture of RT through the small-scale structure of the ISM (see
Gronke et al. 2016). Additionally, the influence of dust might
be important here since dust tends to preferentially dampen the
spectrum far away from the line center (Laursen et al. 2009).

Although our primary focus in this paper was the impact of
RT on the anisotropic selection bias in the LAE clustering, our
RT code can be in principle applied to other galaxy formation
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◆ Zheng+(2011) overestimated the IGM coupling due to the poor resolution. 

◆ The impact becomes less significant at lower z as expected.
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Figure 3. Stacked spectra in the halos’ frame for di↵erent number densities and redshifts for an aperture radius of 3 arcseconds. The
overall flux is normalized with respect to the sample of chosen number density nLAE.

Figure 4. Contour plot of emitters’ peculiar and radiative veloc-
ities. Detection of the global peak (blue) and the peak in the red
wing of the emitters’ rest frame (orange).

quality of using a Gaussian approximation for the damping
in the next sections.

4.4 Configuration Space: TPCF and the paiwise
velocity PDF

In Figure 6 we show the correlation functions ⇠(⇡, rk) mea-
sured from the mock observations with a LAE number den-
sity of nLAE = 0.01 h3/Mpc3. Di↵erent columns show the
clustering at di↵erent redshifts in an increasing order, while
di↵erent rows show di↵erent velocity contributions (as de-
fined in Section 3.2.1) added onto the real space configura-
tion to obtain the redshift space clustering. In the first row
we set the velocity contribution vapp to zero, so that we plot
the real space clustering. The second row shows the redshift
space result using the peculiar velocity vpec from the halo
catalogs and thus explicitly omitting the contribution from
radiative transfer. We stress that the second row is often
presented as the redshift-space clustering of LAEs in the
literature (Zheng et al. 2011; Gurung-Lopez et al. 2019a)
but does not yet directly correspond to an observable radial
position from the redshift measurement. Instead, the appar-
ent vapp is the observable containing both contributions from
the complex radiative transfer and the peculiar velocity. The
third/fourth (vapp/vapp,red) row shows inferred overall posi-
tion from the peaks in the spectra, which includes both pe-
culiar velocity and radiative transfer e↵ects. The fifth/sixth

MNRAS 000, 1–21 (2019)

◆ Zheng+(2011) underestimated the RT effect at ISM/CGM scales. 

◆ LAE’s radial position is identified as a peak of its spectrum.

Byrohl, SS, Behrens (2019)
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Figure 4. Radiative di�usion velocity distributions for di�erent number densities and redshifts extracted based on the individual LAE’s global spectral
maximum.

for the explicit calculation of the TPCF from the mock catalogs. Ær
denotes the separation between a pair of emitters. DD, DR and RR
represent LAE-LAE, LAE-random and random-random pair counts
found at the given separation for a given spatial binning width �r .
The pair separation can either be evaluated in real space or redshift
space. In real space, we expect an isotropic clustering, so that we can
characterize ⇠(Ær) as ⇠(r) with r ⌘ |Ær |. As the line-of-sight positions
change in redshift space, we express the signal as a function of
parallel (⇡) and perpendicular (rk) separation to the line-of-sight
component.

In Figure 5 we show the computed correlation functions
⇠(⇡, rk) from the mock observations with a LAE number density of
n = 0.01 h3/Mpc3. Di�erent columns show the clustering at di�er-
ent redshifts in increasing order. The first row shows the real space
clustering (vapp = 0), where the positions have been taken from the
halo catalog. The second row shows the redshift space result using
the peculiar velocity vpec from the halo catalogs and thus explicitly
omitting the contribution from radiative transfer. The third/fourth
(vapp/vapp,red) row shows inferred overall position from the peaks
in the spectra, which includes both peculiar velocity and radiative
transfer e�ects. The fifth/sixth (vrt/vrt,red) show the radiative trans-
fer component of the velocity only as the residual of the apparent
and peculiar velocity.

Given the same simulation setup as in Behrens et al. (2017),
we expect a very similar result to those shown for the real space
clustering in the first row. Only minor di�erences arise from another
Monte Carlo sampling of photons and the di�erence in the detection

algorithm. Note that there is a slight anisotropy in the clustering
signal in real space. This elongation arises from statistical variation
in the given volume rather than a selection e�ect as shown in the
control samples in Behrens et al. (2017).

Phenomenologically and physically redshift space distortions
are often discussed by two limiting cases: The so-called Kaiser e�ect
(Kaiser 1987) squashing the TPCF clustering isocontours along
the line-of-sight due to a coherent infall motion on large-scales
and the Fingers-of-God e�ect (Jackson 1972) characterized by an
elongation of the TPCF clustering isocontours along the line-of-
sight due to a small-scale peculiar velocity field. A detailed analysis
shows that a mixture of both e�ects occurs on trans-linear scales,
see Taruya et al. (2010) for a discussion.

Sticking with this simple characterization of stretching or
squashing the TPCF, we see that on the shown scales (1�10h�1Mpc)
the Kaiser e�ect dominates the redshift space distortions from the
peculiar velocity field vpec over the Fingers-of-God e�ect. At the
same time however, the small-scale damping from vrt is significant
on these scales and thus the overall redshift space clustering with the
apparent velocities vapp is elongated along the line-of-sight despite
the squashing from the Kaiser e�ect. The e�ect seems to dimin-
ish with higher redshift and is discussed in detail in the upcoming
section in terms of the line-of-sight damping factor D(k k).

MNRAS 000, 1–15 (2018)
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Figure 4. Radiative di�usion velocity distributions for di�erent number densities and redshifts extracted based on the individual LAE’s global spectral
maximum.
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component.
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ent redshifts in increasing order. The first row shows the real space
clustering (vapp = 0), where the positions have been taken from the
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the peculiar velocity vpec from the halo catalogs and thus explicitly
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(vapp/vapp,red) row shows inferred overall position from the peaks
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transfer e�ects. The fifth/sixth (vrt/vrt,red) show the radiative trans-
fer component of the velocity only as the residual of the apparent
and peculiar velocity.

Given the same simulation setup as in Behrens et al. (2017),
we expect a very similar result to those shown for the real space
clustering in the first row. Only minor di�erences arise from another
Monte Carlo sampling of photons and the di�erence in the detection

algorithm. Note that there is a slight anisotropy in the clustering
signal in real space. This elongation arises from statistical variation
in the given volume rather than a selection e�ect as shown in the
control samples in Behrens et al. (2017).

Phenomenologically and physically redshift space distortions
are often discussed by two limiting cases: The so-called Kaiser e�ect
(Kaiser 1987) squashing the TPCF clustering isocontours along
the line-of-sight due to a coherent infall motion on large-scales
and the Fingers-of-God e�ect (Jackson 1972) characterized by an
elongation of the TPCF clustering isocontours along the line-of-
sight due to a small-scale peculiar velocity field. A detailed analysis
shows that a mixture of both e�ects occurs on trans-linear scales,
see Taruya et al. (2010) for a discussion.

Sticking with this simple characterization of stretching or
squashing the TPCF, we see that on the shown scales (1�10h�1Mpc)
the Kaiser e�ect dominates the redshift space distortions from the
peculiar velocity field vpec over the Fingers-of-God e�ect. At the
same time however, the small-scale damping from vrt is significant
on these scales and thus the overall redshift space clustering with the
apparent velocities vapp is elongated along the line-of-sight despite
the squashing from the Kaiser e�ect. The e�ect seems to dimin-
ish with higher redshift and is discussed in detail in the upcoming
section in terms of the line-of-sight damping factor D(k k).

MNRAS 000, 1–15 (2018)

Halo center Byrohl, SS, Behrens (2019)

Redshift-space distortion (RSD) in general
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peculiar velocity of galaxy redshift-space distance

A distance to a galaxy is measured by “redshift” which cannot be distinguished 
from its peculiar velocity along the l.o.s.

Makes l.o.s. special so that the clustering pattern is distorted anisotropically.

- Velocity field information only along l.o.s

�s = �r +
�v · ẑ

aH(z)
ẑredshift space

real space
line of sight direction

∂u(x, τ)

∂τ
+ H(τ) u(x, τ) = −∇Φ(x, τ), (19)

where θ(x, τ) ≡ ∇ · u(x, τ) is the divergence of the velocity field. These
equations are now straightforward to solve. The velocity field, as any vector
field, can be completely described by its divergence θ(x, τ) and its vorticity
w(x, τ) ≡ ∇× u(x, τ) , whose equations of motion follow from Eq. (19)

∂θ(x, τ)

∂τ
+ H(τ) θ(x, τ) +

3

2
Ωm(τ)H2(τ)δ(x, τ) = 0, (20)

∂w(x, τ)

∂τ
+ H(τ) w(x, τ) = 0. (21)

The vorticity evolution readily follows from Eq. (21), w(τ) ∝ a−1, i.e. in the
linear regime any initial vorticity decays away due to the expansion of the
Universe. The density contrast evolution follows by taking the time derivative
of Eq. (20) and replacing in Eq. (18),

d2D1(τ)

dτ 2
+ H(τ)

dD1(τ)

dτ
=

3

2
Ωm(τ)H2(τ)D1(τ), (22)

where we wrote δ(x, τ) = D1(τ)δ(x, 0), with D1(τ) the linear growth factor.
This equation, together with the Friedmann equations, Eqs. (4-5), determines
the growth of density perturbations in the linear regime as a function of cos-
mology. Since it is a second-order differential equation, it has two independent
solutions, let’s denote the fastest growing mode D(+)

1 (τ) and the slowest one

D(−)
1 (τ). The evolution of the density is then

δ(x, τ) = D(+)
1 (τ)A(x) + D(−)

1 (τ)B(x), (23)

where A(x) and B(x) are two arbitrary functions of position describing the ini-
tial density field configuration, whereas the velocity divergence [using Eq. (18)]
is given by

θ(x, τ) = −H(τ) [f(Ωm, ΩΛ)A(x) + g(Ωm, ΩΛ)B(x)] , (24)

f(Ωm, ΩΛ) ≡ d lnD(+)
1

d ln a
=

1

H
d ln D(+)

1

dτ
g(Ωm, ΩΛ) =

1

H
d ln D(−)

1

dτ
. (25)

The most important cases are

(1) When Ωm = 1, ΩΛ = 0, we have the simple solution

D(+)
1 = a, D(−)

1 = a−3/2, f(1, 0) = 1, (26)

thus density fluctuations grow as the scale factor.
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linear Euler equation

gravity test

degeneracy w/ AP test

◆ The peak position deviates from the halo center 

   → can induce an additional velocity in RSD.
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LOS is fixed with one global direction as r̂ ⇡ ẑ, see Beutler
et al. 2014):

�sg(Æk) =
π

d
3

x
�
�g(Æx) � f @zuz (Æx)

 
e
i Æk ·Æx+i f kzuz (Æx), (7)

where we introduce a scaled velocity, Æu ⌘ Æv/( f aH), and f ⌘
d ln D/d ln a is the linear growth function. We specifically
denote a quantity in redshift space with a superscript ‘s’
throughout this paper. We then find an expression for the
redshift-space power spectrum as

P
s
g(Æk) =

π
d

3
r e

i Æk ·Ær
D
e
�i f kz�uz

⇥
�
�g(Æx) + f @zuz (Æx)

 �
�g(Æx0) + f @zuz (Æx0)

 ↵
,(8)

where Ær ⌘ Æx � Æx0 and �Æu ⌘ Æu(Æx) � Æu( Æx0). Eq. 8 apparently in-
volves higher-order correlations between the density �g and
the velocity field uz . Linearizing Eq. (8) in terms of �g and
uz yields

P
s,L
g (Æk) = (1 + f µ2)2Pg(k), (9)

where µ is the cosine of an angle between Æk and the LOS,
defined as µ ⌘ kz/k. This equation, well known as the Kaiser
formula (Kaiser 1987), shows that the clustering in redshift
space is more enhanced closer to the LOS direction, which is
a valid picture on large scales and nothing but the main tar-
get of RSD measurements (see e.g., White et al. 2009). On
the other hand, Eqs. (7) and (8) imply that even random ve-
locity suppresses the redshift-space clustering on small scales
along the LOS, often quoted as the Finger-of-God (FoG) ef-
fect (Jackson 1972). To see this more explicitly, let us rewrite
Eq. (8) in terms of the cumulants as (Scoccimarro 2004;
Taruya et al. 2010)

P
s
g(Æk) =

π
d

3
r e

i Æk ·Ær
exp

nD
e
�i f kz�uz

E
c

o

⇥
nD

e
�i f kz�uzA(Æx)A(Æx0)

E
c

+
D
e
�i f kz�uzA(Æx)

E
c

D
e
�i f kz�uzA(Æx0)

E
c

o
,(10)

where A(Æx) ⌘ �g(Æx) + f @zuz (Æx) is used just to simplify the
notation. As Zheng & Song (2016) pointed out, the overall
exponential factor, exp

�⌦
e
�i f kz�uz ↵

c

 
, contains terms which

depend only on the one-point cumulants. These terms sur-
vive even when two-point correlations such as h�uzAi are
zero, and can be integrated out because it no longer depends
on the scale. That is to say,

exp

nD
e
�i f kz�uz

E
c

o
= exp

( 1’
n=1

(�i f kz )n
⌦
�u

n
z

↵
c

n!

)

= exp

( 1’
m=1

(�i f kz )2m
2
⌦
uz (Æx)2m

↵
c

(2m)!

)

⇥ exp

( 1’
m=1

(�i f kz )2m
⌦
�u

2m
z

↵
c �

⌦
uz (Æx)2m

↵
c �

⌦
uz (Æx0)2m

↵
c

(2m)!

)
.(11)

We have used the fact that the terms with odd power in
the second and third lines vanish because of symmetry in
a galaxy pair. The exponential factor in the second line of
Eq. (11) does not depend on the scale. For example, if uz fol-
lows a Gaussian distribution with zero mean and variance of

�2
u , only m = 1 term survives in the exponential factor, cor-

responding to the FoG damping factor commonly assumed:

D
Gaussian

FoG
(k, µ) = e

� f 2k2µ2�2
u . (12)

Notice that, since the FoG damping factor depends only on
the one-point cumulants, it can be derived at the level of the
density field, Eq. (7). Namely, if the velocity field follows a
probability distribution function (PDF), P(uz ), we have

DFoG(k, µ) =
���De

i f kµuz
E���2 =

����
π

duz P(uz )ei f kµuz
����
2

(13)

that is the FT of the one-point PDF, P(uz ) (e.g., Hikage
& Yamamoto 2016). Another common velocity PDF is an
exponential distribution (e.g., Scoccimarro 2004). The FT

of such distribution of the exp(�
p

2 |uz | /�u)/(
p

2�u), is a
Lorentzian damping function2

D
Lorentzian

FoG
(k, µ) =

⇢
1

1 + f 2k2µ2�2
u

�2

. (14)

We note again that the PDFs P(uz ) are assumed for the
one-point (rather than pairwise) velocity distributions. This
results in a di↵erent interpretation of the � for the Gaus-
sian and the exponential distribution in the literature (e.g.
Scoccimarro 2004).

Here we stress that the FoG damping inevitably arises
as long as the velocity field has a non-zero dispersion and
higher-order moments. For instance, Agrawal et al. (2017)
confirmed the damping due to the nonlinear mapping even
assuming a linear velocity field. In addition, the two-point
correlations between the density and velocity fields (i.e., the
second and third lines in Eq. (10)) are essential to accu-
rately model the nonlinear redshift-space power spectrum
as several authors have shown (see e.g., Taruya et al. 2010;
Okumura et al. 2012; Matsubara 2014; Zheng et al. 2018;
Vlah & White 2019).

So far we have shown that, in Fourier space, the FoG
damping factor depending only on one-point PDF can be
expressed as an overall multiplicative factor. In the follow-
ing, let us instead discuss the configuration space as a com-
plementary approach. The two-point correlation function
(TPCF) in redshift space is generally written as (e.g., Scoc-
cimarro 2004)

1 + ⇠sg(Æs) =
π

d⇡
�
1 + ⇠g(r)

 
P(uz ; Ær), (15)

where ⇡ ⌘ sz � uz is the vector along the LOS direction, ẑ

in configuration space. P(uz ; Ær) is the pairwise velocity PDF
given by the FT of the pairwise velocity generating function
M(i f �, Ær):

P(uz ; Ær) =

π
d�

2⇡
e
�i�uzM

�
i f �; Ær

�
, (16)

M(i f �; Ær) =
hexp (i f ��uz )

⇥
1 + �g(Æx)

⇤ ⇥
1 + �g(Æx0)

⇤
i

1 + ⇠(r) .(17)

2 We note that the exponential PDF is often adopted for the
pairwise velocity PDF (see Eq. (15)) rather than for the veloc-
ity PDF (Davis & Peebles 1983; Ballinger et al. 1996). In this
case, there is no square factor in the damping factor in Eq. (14).
We avoid this choice, because the pairwise velocity PDF is gen-
erally scale-dependent and hence its mean and dispersion are not
necessarily constants.
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➤Redshift-space density field (exact under plain-parallel approx.)
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LOS is fixed with one global direction as r̂ ⇡ ẑ, see Beutler
et al. 2014):

�sg(Æk) =
π

d
3

x
�
�g(Æx) � f @zuz (Æx)

 
e
i Æk ·Æx+i f kzuz (Æx), (7)

where we introduce a scaled velocity, Æu ⌘ Æv/( f aH), and f ⌘
d ln D/d ln a is the linear growth function. We specifically
denote a quantity in redshift space with a superscript ‘s’
throughout this paper. We then find an expression for the
redshift-space power spectrum as

P
s
g(Æk) =

π
d

3
r e

i Æk ·Ær
D
e
�i f kz�uz

⇥
�
�g(Æx) + f @zuz (Æx)

 �
�g(Æx0) + f @zuz (Æx0)

 ↵
,(8)

where Ær ⌘ Æx � Æx0 and �Æu ⌘ Æu(Æx) � Æu( Æx0). Eq. 8 apparently in-
volves higher-order correlations between the density �g and
the velocity field uz . Linearizing Eq. (8) in terms of �g and
uz yields

P
s,L
g (Æk) = (1 + f µ2)2Pg(k), (9)

where µ is the cosine of an angle between Æk and the LOS,
defined as µ ⌘ kz/k. This equation, well known as the Kaiser
formula (Kaiser 1987), shows that the clustering in redshift
space is more enhanced closer to the LOS direction, which is
a valid picture on large scales and nothing but the main tar-
get of RSD measurements (see e.g., White et al. 2009). On
the other hand, Eqs. (7) and (8) imply that even random ve-
locity suppresses the redshift-space clustering on small scales
along the LOS, often quoted as the Finger-of-God (FoG) ef-
fect (Jackson 1972). To see this more explicitly, let us rewrite
Eq. (8) in terms of the cumulants as (Scoccimarro 2004;
Taruya et al. 2010)

P
s
g(Æk) =

π
d

3
r e

i Æk ·Ær
exp

nD
e
�i f kz�uz

E
c

o

⇥
nD

e
�i f kz�uzA(Æx)A(Æx0)

E
c

+
D
e
�i f kz�uzA(Æx)

E
c

D
e
�i f kz�uzA(Æx0)

E
c

o
,(10)

where A(Æx) ⌘ �g(Æx) + f @zuz (Æx) is used just to simplify the
notation. As Zheng & Song (2016) pointed out, the overall
exponential factor, exp

�⌦
e
�i f kz�uz ↵

c

 
, contains terms which

depend only on the one-point cumulants. These terms sur-
vive even when two-point correlations such as h�uzAi are
zero, and can be integrated out because it no longer depends
on the scale. That is to say,

exp

nD
e
�i f kz�uz

E
c

o
= exp

( 1’
n=1

(�i f kz )n
⌦
�u

n
z

↵
c

n!

)

= exp

( 1’
m=1

(�i f kz )2m
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(2m)!

)
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.(11)

We have used the fact that the terms with odd power in
the second and third lines vanish because of symmetry in
a galaxy pair. The exponential factor in the second line of
Eq. (11) does not depend on the scale. For example, if uz fol-
lows a Gaussian distribution with zero mean and variance of

�2
u , only m = 1 term survives in the exponential factor, cor-

responding to the FoG damping factor commonly assumed:

D
Gaussian

FoG
(k, µ) = e

� f 2k2µ2�2
u . (12)

Notice that, since the FoG damping factor depends only on
the one-point cumulants, it can be derived at the level of the
density field, Eq. (7). Namely, if the velocity field follows a
probability distribution function (PDF), P(uz ), we have

DFoG(k, µ) =
���De

i f kµuz
E���2 =

����
π

duz P(uz )ei f kµuz
����
2

(13)

that is the FT of the one-point PDF, P(uz ) (e.g., Hikage
& Yamamoto 2016). Another common velocity PDF is an
exponential distribution (e.g., Scoccimarro 2004). The FT

of such distribution of the exp(�
p

2 |uz | /�u)/(
p

2�u), is a
Lorentzian damping function2

D
Lorentzian

FoG
(k, µ) =

⇢
1

1 + f 2k2µ2�2
u

�2

. (14)

We note again that the PDFs P(uz ) are assumed for the
one-point (rather than pairwise) velocity distributions. This
results in a di↵erent interpretation of the � for the Gaus-
sian and the exponential distribution in the literature (e.g.
Scoccimarro 2004).

Here we stress that the FoG damping inevitably arises
as long as the velocity field has a non-zero dispersion and
higher-order moments. For instance, Agrawal et al. (2017)
confirmed the damping due to the nonlinear mapping even
assuming a linear velocity field. In addition, the two-point
correlations between the density and velocity fields (i.e., the
second and third lines in Eq. (10)) are essential to accu-
rately model the nonlinear redshift-space power spectrum
as several authors have shown (see e.g., Taruya et al. 2010;
Okumura et al. 2012; Matsubara 2014; Zheng et al. 2018;
Vlah & White 2019).

So far we have shown that, in Fourier space, the FoG
damping factor depending only on one-point PDF can be
expressed as an overall multiplicative factor. In the follow-
ing, let us instead discuss the configuration space as a com-
plementary approach. The two-point correlation function
(TPCF) in redshift space is generally written as (e.g., Scoc-
cimarro 2004)

1 + ⇠sg(Æs) =
π

d⇡
�
1 + ⇠g(r)

 
P(uz ; Ær), (15)

where ⇡ ⌘ sz � uz is the vector along the LOS direction, ẑ

in configuration space. P(uz ; Ær) is the pairwise velocity PDF
given by the FT of the pairwise velocity generating function
M(i f �, Ær):

P(uz ; Ær) =

π
d�

2⇡
e
�i�uzM

�
i f �; Ær

�
, (16)

M(i f �; Ær) =
hexp (i f ��uz )

⇥
1 + �g(Æx)

⇤ ⇥
1 + �g(Æx0)

⇤
i

1 + ⇠(r) .(17)

2 We note that the exponential PDF is often adopted for the
pairwise velocity PDF (see Eq. (15)) rather than for the veloc-
ity PDF (Davis & Peebles 1983; Ballinger et al. 1996). In this
case, there is no square factor in the damping factor in Eq. (14).
We avoid this choice, because the pairwise velocity PDF is gen-
erally scale-dependent and hence its mean and dispersion are not
necessarily constants.
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LOS is fixed with one global direction as r̂ ⇡ ẑ, see Beutler
et al. 2014):

�sg(Æk) =
π

d
3

x
�
�g(Æx) � f @zuz (Æx)

 
e
i Æk ·Æx+i f kzuz (Æx), (7)

where we introduce a scaled velocity, Æu ⌘ Æv/( f aH), and f ⌘
d ln D/d ln a is the linear growth function. We specifically
denote a quantity in redshift space with a superscript ‘s’
throughout this paper. We then find an expression for the
redshift-space power spectrum as

P
s
g(Æk) =

π
d

3
r e

i Æk ·Ær
D
e
�i f kz�uz

⇥
�
�g(Æx) + f @zuz (Æx)
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�g(Æx0) + f @zuz (Æx0)

 ↵
,(8)

where Ær ⌘ Æx � Æx0 and �Æu ⌘ Æu(Æx) � Æu( Æx0). Eq. 8 apparently in-
volves higher-order correlations between the density �g and
the velocity field uz . Linearizing Eq. (8) in terms of �g and
uz yields

P
s,L
g (Æk) = (1 + f µ2)2Pg(k), (9)

where µ is the cosine of an angle between Æk and the LOS,
defined as µ ⌘ kz/k. This equation, well known as the Kaiser
formula (Kaiser 1987), shows that the clustering in redshift
space is more enhanced closer to the LOS direction, which is
a valid picture on large scales and nothing but the main tar-
get of RSD measurements (see e.g., White et al. 2009). On
the other hand, Eqs. (7) and (8) imply that even random ve-
locity suppresses the redshift-space clustering on small scales
along the LOS, often quoted as the Finger-of-God (FoG) ef-
fect (Jackson 1972). To see this more explicitly, let us rewrite
Eq. (8) in terms of the cumulants as (Scoccimarro 2004;
Taruya et al. 2010)

P
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o
,(10)

where A(Æx) ⌘ �g(Æx) + f @zuz (Æx) is used just to simplify the
notation. As Zheng & Song (2016) pointed out, the overall
exponential factor, exp

�⌦
e
�i f kz�uz ↵

c

 
, contains terms which

depend only on the one-point cumulants. These terms sur-
vive even when two-point correlations such as h�uzAi are
zero, and can be integrated out because it no longer depends
on the scale. That is to say,
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We have used the fact that the terms with odd power in
the second and third lines vanish because of symmetry in
a galaxy pair. The exponential factor in the second line of
Eq. (11) does not depend on the scale. For example, if uz fol-
lows a Gaussian distribution with zero mean and variance of

�2
u , only m = 1 term survives in the exponential factor, cor-

responding to the FoG damping factor commonly assumed:

D
Gaussian

FoG
(k, µ) = e

� f 2k2µ2�2
u . (12)

Notice that, since the FoG damping factor depends only on
the one-point cumulants, it can be derived at the level of the
density field, Eq. (7). Namely, if the velocity field follows a
probability distribution function (PDF), P(uz ), we have

DFoG(k, µ) =
���De

i f kµuz
E���2 =

����
π

duz P(uz )ei f kµuz
����
2

(13)

that is the FT of the one-point PDF, P(uz ) (e.g., Hikage
& Yamamoto 2016). Another common velocity PDF is an
exponential distribution (e.g., Scoccimarro 2004). The FT

of such distribution of the exp(�
p

2 |uz | /�u)/(
p

2�u), is a
Lorentzian damping function2

D
Lorentzian

FoG
(k, µ) =

⇢
1

1 + f 2k2µ2�2
u

�2

. (14)

We note again that the PDFs P(uz ) are assumed for the
one-point (rather than pairwise) velocity distributions. This
results in a di↵erent interpretation of the � for the Gaus-
sian and the exponential distribution in the literature (e.g.
Scoccimarro 2004).

Here we stress that the FoG damping inevitably arises
as long as the velocity field has a non-zero dispersion and
higher-order moments. For instance, Agrawal et al. (2017)
confirmed the damping due to the nonlinear mapping even
assuming a linear velocity field. In addition, the two-point
correlations between the density and velocity fields (i.e., the
second and third lines in Eq. (10)) are essential to accu-
rately model the nonlinear redshift-space power spectrum
as several authors have shown (see e.g., Taruya et al. 2010;
Okumura et al. 2012; Matsubara 2014; Zheng et al. 2018;
Vlah & White 2019).

So far we have shown that, in Fourier space, the FoG
damping factor depending only on one-point PDF can be
expressed as an overall multiplicative factor. In the follow-
ing, let us instead discuss the configuration space as a com-
plementary approach. The two-point correlation function
(TPCF) in redshift space is generally written as (e.g., Scoc-
cimarro 2004)

1 + ⇠sg(Æs) =
π

d⇡
�
1 + ⇠g(r)

 
P(uz ; Ær), (15)

where ⇡ ⌘ sz � uz is the vector along the LOS direction, ẑ

in configuration space. P(uz ; Ær) is the pairwise velocity PDF
given by the FT of the pairwise velocity generating function
M(i f �, Ær):

P(uz ; Ær) =

π
d�

2⇡
e
�i�uzM

�
i f �; Ær

�
, (16)

M(i f �; Ær) =
hexp (i f ��uz )

⇥
1 + �g(Æx)

⇤ ⇥
1 + �g(Æx0)

⇤
i

1 + ⇠(r) .(17)

2 We note that the exponential PDF is often adopted for the
pairwise velocity PDF (see Eq. (15)) rather than for the veloc-
ity PDF (Davis & Peebles 1983; Ballinger et al. 1996). In this
case, there is no square factor in the damping factor in Eq. (14).
We avoid this choice, because the pairwise velocity PDF is gen-
erally scale-dependent and hence its mean and dispersion are not
necessarily constants.
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LOS is fixed with one global direction as r̂ ⇡ ẑ, see Beutler
et al. 2014):

�sg(Æk) =
π

d
3

x
�
�g(Æx) � f @zuz (Æx)

 
e
i Æk ·Æx+i f kzuz (Æx), (7)

where we introduce a scaled velocity, Æu ⌘ Æv/( f aH), and f ⌘
d ln D/d ln a is the linear growth function. We specifically
denote a quantity in redshift space with a superscript ‘s’
throughout this paper. We then find an expression for the
redshift-space power spectrum as

P
s
g(Æk) =

π
d

3
r e

i Æk ·Ær
D
e
�i f kz�uz

⇥
�
�g(Æx) + f @zuz (Æx)
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,(8)

where Ær ⌘ Æx � Æx0 and �Æu ⌘ Æu(Æx) � Æu( Æx0). Eq. 8 apparently in-
volves higher-order correlations between the density �g and
the velocity field uz . Linearizing Eq. (8) in terms of �g and
uz yields

P
s,L
g (Æk) = (1 + f µ2)2Pg(k), (9)

where µ is the cosine of an angle between Æk and the LOS,
defined as µ ⌘ kz/k. This equation, well known as the Kaiser
formula (Kaiser 1987), shows that the clustering in redshift
space is more enhanced closer to the LOS direction, which is
a valid picture on large scales and nothing but the main tar-
get of RSD measurements (see e.g., White et al. 2009). On
the other hand, Eqs. (7) and (8) imply that even random ve-
locity suppresses the redshift-space clustering on small scales
along the LOS, often quoted as the Finger-of-God (FoG) ef-
fect (Jackson 1972). To see this more explicitly, let us rewrite
Eq. (8) in terms of the cumulants as (Scoccimarro 2004;
Taruya et al. 2010)

P
s
g(Æk) =

π
d

3
r e

i Æk ·Ær
exp

nD
e
�i f kz�uz

E
c

o

⇥
nD

e
�i f kz�uzA(Æx)A(Æx0)

E
c

+
D
e
�i f kz�uzA(Æx)

E
c

D
e
�i f kz�uzA(Æx0)

E
c

o
,(10)

where A(Æx) ⌘ �g(Æx) + f @zuz (Æx) is used just to simplify the
notation. As Zheng & Song (2016) pointed out, the overall
exponential factor, exp

�⌦
e
�i f kz�uz ↵

c

 
, contains terms which

depend only on the one-point cumulants. These terms sur-
vive even when two-point correlations such as h�uzAi are
zero, and can be integrated out because it no longer depends
on the scale. That is to say,

exp
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e
�i f kz�uz

E
c

o
= exp

( 1’
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(�i f kz )n
⌦
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n
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)
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⌦
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)
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⌦
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↵
c �

⌦
uz (Æx)2m

↵
c �

⌦
uz (Æx0)2m

↵
c
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)
.(11)

We have used the fact that the terms with odd power in
the second and third lines vanish because of symmetry in
a galaxy pair. The exponential factor in the second line of
Eq. (11) does not depend on the scale. For example, if uz fol-
lows a Gaussian distribution with zero mean and variance of

�2
u , only m = 1 term survives in the exponential factor, cor-

responding to the FoG damping factor commonly assumed:

D
Gaussian

FoG
(k, µ) = e

� f 2k2µ2�2
u . (12)

Notice that, since the FoG damping factor depends only on
the one-point cumulants, it can be derived at the level of the
density field, Eq. (7). Namely, if the velocity field follows a
probability distribution function (PDF), P(uz ), we have

DFoG(k, µ) =
���De

i f kµuz
E���2 =

����
π

duz P(uz )ei f kµuz
����
2

(13)

that is the FT of the one-point PDF, P(uz ) (e.g., Hikage
& Yamamoto 2016). Another common velocity PDF is an
exponential distribution (e.g., Scoccimarro 2004). The FT

of such distribution of the exp(�
p

2 |uz | /�u)/(
p

2�u), is a
Lorentzian damping function2

D
Lorentzian

FoG
(k, µ) =

⇢
1

1 + f 2k2µ2�2
u

�2

. (14)

We note again that the PDFs P(uz ) are assumed for the
one-point (rather than pairwise) velocity distributions. This
results in a di↵erent interpretation of the � for the Gaus-
sian and the exponential distribution in the literature (e.g.
Scoccimarro 2004).

Here we stress that the FoG damping inevitably arises
as long as the velocity field has a non-zero dispersion and
higher-order moments. For instance, Agrawal et al. (2017)
confirmed the damping due to the nonlinear mapping even
assuming a linear velocity field. In addition, the two-point
correlations between the density and velocity fields (i.e., the
second and third lines in Eq. (10)) are essential to accu-
rately model the nonlinear redshift-space power spectrum
as several authors have shown (see e.g., Taruya et al. 2010;
Okumura et al. 2012; Matsubara 2014; Zheng et al. 2018;
Vlah & White 2019).

So far we have shown that, in Fourier space, the FoG
damping factor depending only on one-point PDF can be
expressed as an overall multiplicative factor. In the follow-
ing, let us instead discuss the configuration space as a com-
plementary approach. The two-point correlation function
(TPCF) in redshift space is generally written as (e.g., Scoc-
cimarro 2004)

1 + ⇠sg(Æs) =
π

d⇡
�
1 + ⇠g(r)

 
P(uz ; Ær), (15)

where ⇡ ⌘ sz � uz is the vector along the LOS direction, ẑ

in configuration space. P(uz ; Ær) is the pairwise velocity PDF
given by the FT of the pairwise velocity generating function
M(i f �, Ær):

P(uz ; Ær) =

π
d�

2⇡
e
�i�uzM

�
i f �; Ær

�
, (16)

M(i f �; Ær) =
hexp (i f ��uz )

⇥
1 + �g(Æx)

⇤ ⇥
1 + �g(Æx0)

⇤
i

1 + ⇠(r) .(17)

2 We note that the exponential PDF is often adopted for the
pairwise velocity PDF (see Eq. (15)) rather than for the veloc-
ity PDF (Davis & Peebles 1983; Ballinger et al. 1996). In this
case, there is no square factor in the damping factor in Eq. (14).
We avoid this choice, because the pairwise velocity PDF is gen-
erally scale-dependent and hence its mean and dispersion are not
necessarily constants.

MNRAS 000, 1–21 (2019)
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Diffusion induces an additional FoG

Q2) ISM/CGM

Radiative Transfer Distortions of Lyman-↵ Emitters: Clustering in Redshift Space 9

Figure 7. Damping factor as a function of the line-of-sight frequency kk = kµ due to Lyman-alpha radiative transfer. Emitter positions are assumed to
coincide with the global peak. Di�erent colored lines represent measurements of D(kk ) from the mock catalogs at di�erent total frequencies k. Left-to-right,
top-to-bottom: z=2.00, z=3.01, z=4.01, z=5.85

D
double
damp = |FT [pRT]|2 = |FT [ f1(v) + f2(v + �v)]|2 (18)

= |FT [ f1]|2 + |FT [ f2]|2 (19)
+ FT⇤ [ f1]FT [ f2] exp [�ik�v] (20)
+ FT [ f1]FT⇤ [ f2] exp [+ik�v] (21)

= |FT [ f1]|2 + |FT [ f2]|2|                      {z                      }
⌘Dsingle

damp

(22)

+ 2FT [ f1]FT [ f2] cos [k�v]|                            {z                            }
⌘Dosci

damp

(23)

The last step assumes even functions for pi , which might not
apply to our mock data, but consistent with the exponential and
Gaussian toy models, providing an intuition for the damping from
a double peaked PDF.

Most importantly, equation (18) shows that there is an addi-
tional term D

osci
damp implying a characteristic oscillation frequency

set by the peak separation �v. If both individual peaks were Gaus-

sian with standard deviation � each and, the peak separation can
dominate the damping scale if �v ⇠ 3� (Dsingle

damp
!
= 1

4
!
= D

osci
damp).

We show the damping factor computed from the ratio of the
power spectrum with radiative transfer over the power spectrum
without as a function of the mode k k = kµ along the line-of-sight
in Figure 7 and 8. Di�erent colors represent di�erent total modes k.
Additionally, we plot the expected damping from the velocity PDF
as implied by equation (15) and the two generic fitting functions
shown in equations (16) with the second central moment � of the
according velocity PDF.

We find a strong damping setting in between k k ⇠ 10�1 h/Mpc
and 100 h/Mpc depending on the peak detection algorithm and red-
shift. The absolute square of the velocity PDF indeed represents a
good fit for the damping. In general, we find that both the Gaussian
and exponential damping functions using the second central mo-
ment �PDF of the velocity PDFs show a reasonable agreement with
the actual damping. Thus, �PDF is a good proxy for the resulting
damping.

There is a typical redshift evolution with stronger damping at
lower redshift, having two contributions. First, as seen in Figure 4,
the velocity distribution widens at lower redshifts translating to a

MNRAS 000, 1–15 (2018)

➤ Find a new Finger-of-God damping due to RT (diffusion). 
- double peak leads to the oscillation in the damping. 
- Caveats:  
   1) Neutral hydrogen in Illustris galaxies seems overestimated. Outflow is likely smeared out. 
   2) Our simulation is NOT realistic w.r.t. observations.

Byrohl, SS, Behrens (2019)
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Can we mitigate the impact of the diffusion FoG?

Q2) ISM/CGM -> Q3) Mitigation

16 C. Byrohl et al.

Figure 11. Sketch of the proposed correction methods (see text)
applied to a example double peak spectrum.

Figure 12. Scatter plot of vRT,red and vm2a
proxy for emitters detected

at number density threshold nLAE = 10
�2 h3Mpc�3 and redshift z =

3.01. We also show a linear fit (see Eq. (35)), the slope expected
from an optically thick spherical HI distribution (Neufeld 1990).

damping in the clustering signal based solely on additional
information of the features in the Lyman-↵ spectrum.

5.3 Correction to mitigate the impact of RT

We can try to correct for the presented Lyman-↵ radiative
transfer distortion e↵ect by utilizing the full spectral infor-
mation available for the emission line. To do so, we investi-
gate correlations of the peak o↵set to other characteristics
of the spectra. These include: Half the separation between
red and blue peak (m1), the full width at the half maximum
(FWHM) of the red peak (m2), twice the half width at the
half maximum (HWHM) of the red peak towards the line

center (m2a) and twice the HWHM of the red peak away
from the line center (m2b). Hence, m2 is the average of
m2a and m2b. A visualization of these methods is shown
in Figure 11.

We choose to divide the second method (m2) into m2a
and m2b as we expect di↵erent physical causes for their re-
spective wing shape. The wing towards the line center should
be strongly influenced by the IGM attenuation. This has
been shown to hold true even at low redshifts very close to
the line center (Laursen et al. 2011). However, the IGM is
transparent for the wing away from the line center and the
red peak, and therefore should only be impacted by small-
scale frequency di↵usion. Indeed we will find large di↵erences
in the results from m2a and m2b.

We calculate slope f and o↵set vo�set for a linear regres-
sion of form

vpredict = f · vproxy + vo�set (35)

and also the corresponding Pearson correlation coe�cient p.
vproxy denotes the respective velocities by m1, m2, m2a and
m2b. vpredict is the predicted correction for the correspond-
ing peak position vRT. With such prediction, we can correct
the former vRT distribution as

vRT,corr = vRT � vpredict. (36)

When a blue peak is additionally available for m1, we
use the detection algorithm introduced in Section A3: Peaks
are identified as connected areas in F�(��) above such a
threshold value that a given number density nLAE is reached.
Additionally, we require that the maximal brightness of a
peak needs to exceed 10% of the maximal brightness of the
brightest peak. If only one peak is available the emitter is
excluded when computing m1.

The linear regression in Eq. (36) is motivated by
Neufeld’s solution for which both peaks’ FWHM (i.e. m2)
and peak o↵set scale with ⌧1/3 for an optically thick spherical
HI distribution. From Neufeld’s derivation, a slope of 1.26 is
derived for the relation between o↵set and FWHM (Neufeld
1990). We expect that anisotropies, dust, the velocity field
and IGM interaction introduce a significant scatter as well
as noticeable change to the slope parameter. Such a corre-
lation has been found in observations (see e.g., Verhamme
et al. 2018).

In general, we find m1 to perform the best with a cor-
relation coe�cient of p & 0.95 across the studied redshift
range. However, most of observed LAEs are not doublely
peaked, thus only methods m2, m2a, m2b are available.
For these, we find m2a with 0.82 . p . 0.85 to perform the
best. m2 performs slightly worse with 0.77 . p . 0.78 and
m2b significantly worse with 0.40 . p . 0.65. Note that
we restrict the emitter sample for the regression to those
with vRT < 800 km/s in order to allow comparisons to ob-
servational studies and hinder the most massive emitters to
dominate the fit due to their increased scatter.

An example of the correlation between vRT and vproxy

is shown in Figure 12 for m2a at z = 3.01 and a number
density threshold of 0.01 Mpc�3h3. The best fit in this case
yields vpredict = 1.47 · vm2a

proxy + 37 km/s with a Pearson coef-
ficient of 0.83. For other redshifts, we find a slope of 1.39,
1.43, 1.70 (z = 2.0, z = 4.01, z = 5.85) with similar or lower
o↵sets. Note that the constant o↵set itself is irrelevant for
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Figure 13. Radiative velocity distribution after di↵erent cor-
rection schemes at a number density threshold of nLAE = 10

�2

h3Mpc�3 and redshift z = 3.01. The mean velocity is subtracted
from each distribution. The dashed line shows the uncorrected dis-
tribution. The dispersion for the three correction schemes reduce
to 48 km/s, 92 kms/s, 65 km/s (m1, m2b, m1+m2a) compared to
189 km/s when not corrected.

the damping scale as it does not change the pairwise velocity
distribution. We find that there is a strong dependence of
the slope parameter on the chosen number density thresh-
old. The slope parameter increases as the number density
is decreased. This finding is related to the dependence of
host halo mass: As shown in Figure 12, points with larger
halo mass tend to have a slightly steeper slope with larger
scatter.

For m1, we find that the slope is close to unity
and in very good agreement with observations (Verhamme
et al. 2018), while for methods using the peaks’ width
(m2,m2a,m2b) we find a slope above unity that makes it
slighly higher than the Neufeld solution and considerably
higher compared to observations and shell models (Zheng
& Wallace (2014), Verhamme et al. (2018)). In addition, we
find a significant dependence on selection criteria and red-
shift, possibly explaining some of the discrepancies between
our results and the literature apart from the mentioned mod-
eling shortcomings in our simulations.

Similarly to Verhamme et al. (2018), we can correct for
the systemic redshift o↵set by subtracting the FWHM. Do-
ing so consistently reduces the velocity dispersion by a factor
of 2-3 across the simulated redshift range and accordingly
shortens the damping scale. Figure 13 shows the corrected
distribution according to Eq. (36) at the same redshift and
number density threshold. Also the third and fourth central
moment are reduced significantly: the normalized moments
(skewness, kurtosis) shrink such that a Gaussian fit becomes
feasible.

6 CONCLUSIONS

In this paper, we have studied the clustering of LAEs in
redshift space using a full RT simulation on Illustris. We find
a new kind of the RSD e↵ect due to RT, and our executive
summary is the following:

• The additional redshift space distortion stems from
small-scale frequency di↵usion of the Lyman-↵ line leading
to a shift of the spectral peaks. The peak shifts can be larger
than those of the peculiar velocity field and thus impact the
redshift space clustering signal on larger spatial scales.

• We show that the peak shifts from Lyman-↵ RT damp
the power spectrum along the line of sight at scales of
k k & 0.1h/Mpc. We also show that the shifts are mostly
independent of the local density and velocity field such that
an independent modeling of this shift’s impact can be done.
This is similar to that of the Fingers-of-God e↵ect due to
random motion of galaxies, i.e., in terms of the one-point
velocity PDF. However, the functional form of the damping
can be more complex and even involve oscillations due to
the double peak nature.

• The strength of the damping depends strongly on the
chosen localization method of the Lyman-↵ emitters in its
spectrum. We attempt two extreme scenarios where we find
a peak from the entire spectrum (global peak) and only from
the spectrum at red end (red peak).

• We show that we can mitigate the impact of the dis-
tortion by applying a correction scheme of which we present
two classes: In the case of double peaked spectra, the mid-
point between the two peaks is an excellent proxy for the
emitter position. If only a single peak is present, the half-
width-half-maximum on the wing towards the Lyman-↵ line
center can be used as a mediocre proxy.

We do not attempt to quantify the exact amplitude of
the RT e↵ect on actual BAO and RSD galaxy surveys such
as HETDEX for the following reasons. First, as we often
mention, our simulated LAEs do not well reproduce a vari-
ety of observables such as the luminosity function likely due
to unresolved ISM physics in Illustris. Second, the actual
impact should depend on resolving power of a spectrum.
For example, HETDEX has a spectral resolution roughly
corresponding to �v ⇠ 500km/s where the resultant PDF
is largely smeared out. Nevertheless, we stress that the fre-
quency shift can be larger than �v ⇠ 500km/s as seen in
Figure 4 and hence we expect that the FoG damping due to
RT exists to some extent. We leave detailed assessment for
future work.

Although we focus on the clustering of LAEs, it would
be straightforward to extend our analysis to the intensity
mapping. In fact, we visually confirm strongly elongated fea-
ture in the Lyman-↵ intensity map in Figure 1: For inten-
sity mapping we expect a similar damping to that of the
LAEs from their positional o↵set, but additionally from the
width of the spectrum itself which further strengthens the
damping. Observationally, Croft et al. (2016) reported the
large-scale elongation along the line of sight in the cross cor-
relation between the quasars and the Lyman-↵ intensity map
at z ⇠ 2 in the Sloan Digital Sky Survey. Even though their
more recent study argues that it is due to special environ-
ment around quasars given the lack of the cross-correlation
signal between the intensity map and the Lyman-↵ forest
(Croft et al. 2018), the elongation might partly be due to
the RT FoG e↵ect.

As a concluding remark, we give the following general
suggestions for cosmological LAE surveys:

• We find an empirical relationship between the second
central moment for the red and blue peaks in stacked spectra
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➤Spectral information can potentially help us identify the original position.

Byrohl, SS, Behrens (2019)
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Switch to a more empirical simulation

Q3) Mitigation

GALFORM

P-Millenium

Dark
matter

Galaxy
Properties

Lyman α
emission

Mass resolution = 108M�/h

Plank cosmology

Box size = (542cMpc/h)3
Baugh et al.2019

Lacey et al. 2016

ISM
RT

UCM : 9th of July, 2019 Page /753

Our LAE model
➤Better statistics from a SAM simulation. Gurung-Lopez+(2018)�We calibrate our model against observed Las

UCM : 9th of July, 2019 Page /759

Lyα identification algorithms

� Our clustering predictions match observations

UCM : 9th of July, 2019 Page /7511

Our model reproduces …

◆ Caveat: RT only on the ISM scales.
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Correcting a radial position from its spectrum

Q3) Mitigation UCM : 9th of July, 2019 Page /7522

Lyα identification algorithms

1)   Global maximum

2)   Verhamme et al. 2018

4)   Neural network : Bright

3)   Neural network : Uniform

Intrinsic 1) Global Max

2) FWHM



22Shun Saito (Missouri S&T)

Mitigating the FoG effect

Q3) Mitigation
UCM : 9th of July, 2019 Page /7531

Lyα identification algorithms Impact in the quadrupole

UCM : 9th of July, 2019 Page /7532
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Mitigating the FoG effect in a more realistic situation

Q3) Mitigation

Impact monopole (NN:Bright)

UCM : 9th of July, 2019 Page /7541
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Towards simulating a more realistic LAE

Future direction

➤Chris Byrohl (MPA) has developed a new  

RT code.

  

RT Code: First Impressions (TNG50 Galaxy)
No RT RT 

Figure 5: A schematic explanation of the rescaling procedure in T1-A. Rescaling examples are
given by photon packets (color-shaded rectangles) whose areas represent fluxes.

Figure 6: The Ly– intensity map at z = 3 from our current RT simulation on Illustris (left44)
and from an ongoing improved simulation on IllustrisTNG100 (right).

its consistency with our prediction.

T1-C: LAE-halo connection (Year 2).

Method: In the literature, the typical mass of DM halos hosting LAEs is estimated as
log10(Mhalo/M§) = 11-11.5 with the angular clustering of narrow-band selected samples57–59.
However, it relies on the simple Halo Occupation Distribution (HOD) approach with arguable
assumptions such as the star-formation duty cycle. Since the HOD is a measurable quantity
in our simulation in T1-A which is designed to be consistent with the clustering, we will
be able to revisit the LAE-halo connection with fewer assumptions. We will measure the
relation between the observed luminosity and the host halo mass for LAEs.

Given the limited box size in the RT simulations (75 Mpc/h and 205 Mpc/h for Illustris
and IllustrisTNG, respectively), we will seek a way to paint LAEs into DM-only N -body
or other cheap simulations in a larger box size for HETDEX. The PI is an expert on the
galaxy-halo connection particularly with the Subhalo Abundance Matching (SHAM) in his
previous work14. Also, the postdoc has made a similar attempt in his previous work42.

Milestone: We will provide the LAE-halo connection by taking the impact of RT into

10

➤Simple empirical rescaling works?

Stay tuned!
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Summary

Summary

➤ LyA Radiative Transfer involves multi-scale physics, and its impact on the large-

scale clustering cannot be ignored.  

➤ Q1) The IGM coupling introduced by Zheng+(2011) was overestimated due to 

their poor RT spacial resolution. Not so important at z~2.  

➤ Q2) Diffusion could induce an additional FoG effect.  

➤ Q3) Could mitigate the diffusion effect from spectral information. 


