Tracing galaxy formation with deep spectroscopic survey

WU, Po-Feng National Astronomical Observatory of Japan East Asian Core Observatory Association Fellow

The SDSS — (mainly) low-z survey

Surveys at high-z

Surveys at high-z

LEGA-C: deep spectroscopic survey @ z~1

Large Early Galaxy Astrophysics Census (van der Wel et al. 2016)

Stellar Mass

LEGA-C: deep spectroscopic survey @ z~1

Large Early Galaxy Astrophysics Census (van der Wel et al. 2016)

Answers through high-quality spectroscopy of many distant galaxies: — Stellar populations — Stellar kinematics

LEGA-C: deep spectroscopic survey @ z~1

Outline

- Stellar kinematics
- Stellar ages
- The end of star-formation
- Star-formation histories

Stellar kinematics

The (stellar mass) Fundamental Plane at z~0.8

Stellar rotation in massive, quiescent galaxies

Stellar rotation in massive, quiescent galaxies

The decrease in rotational support implies significant merging activity

The effect of merger starts to show up at $z\sim0.8$

Stellar ages

Stellar ages of massive galaxies at z~0.8

Stellar ages of massive galaxies at z~0.8

 $M > 2 \ge 10^{10} Msun$

Stellar ages of massive galaxies at z~0.8

 $M > 10^{11} Msun$

The end of star-formation

The cessation of star formation

V.S.

Mass-size relation

⁽van der Wel et al. 2014)

Mass-size relation

Stellar Mass (M_{\odot})

(van der Wel et al. 2014)

(Baryonic) Mass- (stellar) size relation

(Wu 2018a)

(Baryonic) Mass- (stellar) size relation

(Wu 2018a)

Mass-size relation

Stellar Mass (M_{\odot})

(van der Wel et al. 2014)

Stellar ages of quiescent galaxies

Mass-size relation

Stellar Mass (M_{\odot})

A different view from "Young" galaxies

- Quiescent galaxies + Balmer absorption: A-type stars
- Star-formation declines rapidly in ~ a few x 100 Myrs
- "post-starburst galaxies"

Size of "A-type" galaxies

No! "A-type" galaxies are not large & much smaller than average SF galaxies

Mass-size relation

Stellar Mass (M_{\odot})

Multiple ways to quiescence

"A-type" Galaxies @ z=1, HST V + I

"A-type" Galaxies @ z=1, HST V + I

"A-type" Galaxies @ z=1, HST V + I

"A-type" Galaxies @ z=1, HST V + I

"A-type" Galaxies @ z=1, HST V + I

Correlation between colors and sizes

(Wu et al. 2020)

Age gradient

Age gradient

"A-type" galaxies have younger center —> Not "inside-out"

(D'Eugenio et al., in prep)

Star formation histories

Star-formation histories

Non-parametric star-formation histories

(Chauke et al. 2018)

Average star-formation histories

(Chauke et al. 2018)

Go higher z

Conclusion

What we have now

• The LEGA-C

- ~3000 galaxies @ 0.6 < z < 1.0
- DR2, ~1500 galaxies
- Census of stellar kinematics and stellar population
- Future with PFS?
 - Fast, 2400 v.s. 130 (VLT/VIMOS)
 - Wider spectra coverage
 - LEGA-C: 6500 ~ 9000 AA
 - J-band coverage
 - Restframe 4000 AA @ z>1.5

