

Existence and stability of rotating black-hole solutions in the hybrid metric-Palatini gravity

João Luís de Figueiredo Rosa

In collaboration with: J. P. S. Lemos; F. S. N. Lobo; Physical Review **D101** 044055 (2020)

University of Tokyo, Kavli IPMU, 14th May 2020

Fundação para a Ciência e a Tecnologia

TABLE OF CONTENTS

PART I: Introduction

- **1.1.** Motivation: why should we study modified gravity?
- > 1.2. Metric and Palatini formalism to the variational method
- > 1.3. Action and equations in Hybrid metric-Palatini gravity

PART II: Perturbations

- > 2.1. Perturbations of the Kerr black-hole in the hybrid gravity
- **2.2.** Superradiant effect on Kerr black-holes in the Lorentz gauge
- > 2.3. Stability regimes and viable forms of the hybrid gravity

PART II: Conclusions

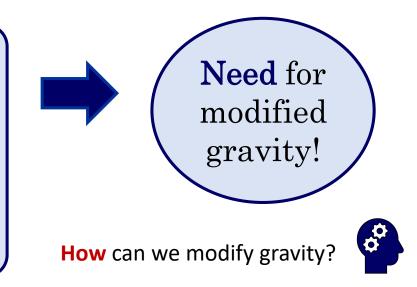
3.1. Conclusions and further work: full perturbations and other BHs

MOTIVATION

If General Relativity (GR) is so successful, why do we need modified gravity?

GR PROBLEMS:

- No quantum description
- Dark matter and dark energy
- Exotic matter in wormholes
- Existence of singularities



TWO
WAYSBy adding extra fields to the action $(\phi, A^{\mu}, h^{\mu\nu}, ...)$ By adding higher-order terms $f(R, R_{\mu\nu}, R_{\alpha\beta\mu\nu}, ...)$

Sometimes, the two representations are **connected**, e.g., f(R) with scalar-tensor.

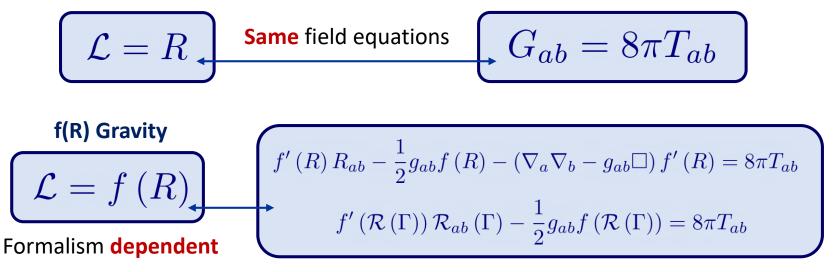
METRIC AND PALATINI

Two different variational approaches: metric and Palatini formalisms

Metric formalism: Γ_{ab}^c is Levi-Civita of g_{ab} Palatini formalism: Γ_{ab}^c is independent of g_{ab}

Consequences?

General Relativity



QUESTION: what happens if we combine both formalisms in the same framework?

THE GHMPG THEORY

Action for the Generalized hybrid metric-Palatini gravity (GHMPG) theory:

$$S = \frac{1}{2\kappa^2} \int \sqrt{-g} f[R(\Gamma), \mathcal{R}(\hat{\Gamma})] d^4x + S_m.$$

Variables:

$$\left(g_{ab},\hat{\Gamma}^c_{ab}\right)$$

Application of the variational method yields the following equations of motion:

Metric

Connection

$$\frac{\partial f}{\partial R}R_{ab} + \frac{\partial f}{\partial \mathcal{R}}\mathcal{R}_{ab} - \frac{1}{2}g_{ab}f\left(R,\mathcal{R}\right) - \left(\nabla_a\nabla_b - g_{ab}\Box\right)\frac{\partial f}{\partial R} = \kappa^2 T_{ab},$$
$$\mathcal{R}_{ab} = R_{ab} + \frac{3}{2f_{\mathcal{R}}^2}\partial_a f_{\mathcal{R}}\partial_b f_{\mathcal{R}} - \frac{1}{f_{\mathcal{R}}}\left(\nabla_a\nabla_b + \frac{1}{2}g_{ab}\Box\right)f_{\mathcal{R}},$$

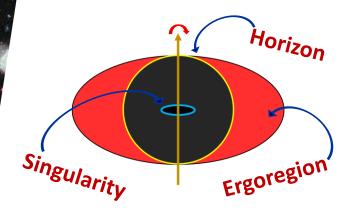
The second equation actually comes from the **conformal relation** between two metrics:

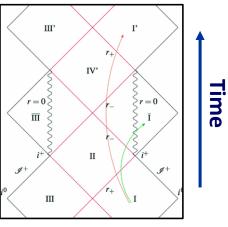
$$\hat{\nabla}_c \left(\sqrt{-g} \frac{\partial f}{\partial \mathcal{R}} g^{ab} \right) = 0$$

BLACK-HOLE PERTURBATIONS

A rotating black-hole in vacuum is described by the Kerr metric:

$$ds^{2} = -\left(1 - \frac{2Mr}{\rho^{2}}\right)dt^{2} + \frac{\rho^{2}}{\Delta}dr^{2} + \rho^{2}d\theta^{2} - \frac{4Mra\sin^{2}\theta}{\rho^{2}}dtd\phi + \left(r^{2} + a^{2} + \frac{2Mra^{2}\sin^{2}\theta}{\rho^{2}}\right)d\phi^{2}$$
$$\Delta = r^{2} + a^{2} - 2Mr, \qquad \rho^{2} = r^{2} + a^{2}\cos^{2}\theta, \qquad a = \frac{J}{M}$$





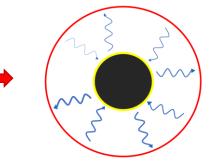
Metric perturbations

$$g_{ab} = \bar{g}_{ab} + \epsilon \delta g_{ab}$$

Lorentz gauge $\nabla_b \delta g^{ab} = \frac{1}{2} \nabla^a \delta g$

Field equations become **biharmonic** equations for a massive scalar field:

$$\left(\Box - \mu_{\pm}^2\right) \left(\Box - \mu_{\mp}^2\right) \delta R = 0$$

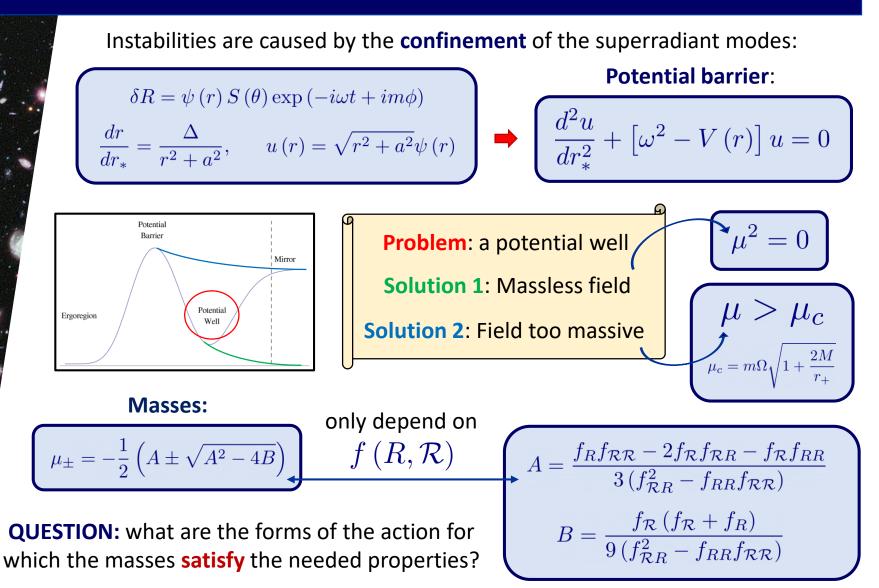


Might lead to superradiant instabilities!

(Black-hole bombs)

Rotating black-holes in the hybrid metric-Palatini gravity

SUPERRADIANCE



Rotating black-holes in the hybrid metric-Palatini gravity

STABILITY REGIMES

$$\mu_{\pm} = -\frac{1}{2} \left(A \pm \sqrt{A^2 - 4B} \right)$$

Regions to exclude:

Complex masses lead to **tachyonic instability** Negative masses **never exceed** critical mass

Acceptable solutions:

(1)
$$\mu_{\pm} = 0 \Rightarrow A = B = 0$$

(2) $\mu_{+} = 0, \ \mu_{-} > \mu_{c} \Rightarrow B = 0, \ A < 0$
(3) $\mu_{\pm} > \mu_{c} \Rightarrow B \propto A^{2}$

Particular case:

$$\mu_{\pm} = -\frac{A}{2} \left(1 \mp \sqrt{1 - 4C} \right)$$

Forms of the action for which the solutions are **stable**:

CONCLUSIONS

Conclusions

Kerr and Schwarzschild are very general solutions of the hybrid gravity

Lorentz gauge reduces the perturbative analysis to a scalar degree

Particular forms of the action for which the Kerr solution is stable exist

Further work

Drop the Lorentz gauge and study the full set of tensorial perturbations

Generalize method to include Kottler and Reissner-Nordstrom solutions

THANK YOU FOR YOUR ATTENTION!