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Why you should care about gravity waves

Gravity waves are everywhere in astrophysics
◦Stars, planets, disks, galaxy clusters

Gravity waves carry information
◦Asteroseismology

Gravity waves carry energy and angular momentum
◦Effect on evolution of stars, planets, moons



Gravity Waves are Ubiquitous
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Magnetoasteroseismology

Very little known 
about magnetic 
fields inside of stars
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Chaplin & Miglio 2013

Asteroseismology Basics

Fourier Transform
l=1 dipole
modes



~ 𝐺𝐺𝐺𝐺

3/9/2020 JIM FULLER

Asteroseismology basics, continued

υmax

Δυ

Oscillations excited by convection, 
with frequency near dynamical 
frequency of stellar atmosphere:

Oscillations separated by dynamical 
frequency of star:

Chaplin & Miglio 2013



Stellar Structure
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Wave Propagation in the Red Giants
• Dispersion relation:

• Acoustic waves propagate 
where ω>N, ω>Ll

• Gravity waves propagate 
where ω<N, ω<Ll

H-burning shell

Observed Modes
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Red Giant
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Mosser et al. 2012

The Mixed Mode Spectrum

Slowly rotating
envelope

Less slowly 
rotating core
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A mystery arises…

A class of red giants with 
extremely low amplitude, 
“suppressed” dipole modes

Mosser et al. 2011

Stello, Cantiello, Fuller +  
2016
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The plot thickens…

• The dipole suppressed 
stars are common, 
occurring in ~20% of red 
giants

• The visibility of dipole 
modes depends on the 
evolutionary state of the 
star

Evolution up RGB

Stello, Cantiello, Fuller +  
2016



In equilibrium:

Wave energy leaks into core at rate:

Transmission coefficient is:

Core
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An idea develops…

r1

r2
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A (partial) solution emerges…

Stello, Cantiello, Fuller +  
2016

Evolution up RGB

•Mode amplitudes can be 
explained by wave energy 
leakage into the core
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A (partial) solution emerges…

Evolution up RGB

•Mode amplitudes can be 
explained by wave energy 
leakage into the core

Evolution up RGB

Stello, Cantiello, Fuller +  
2016Small correction required, 

see Mosser et al. 2016



What causes wave dissipation in core?
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Core



The Magnetic Greenhouse Effect
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Fuller & Cantiello + 
2015



•In the presence of strong B-fields, magnetic tension 
forces can become comparable to buoyancy

•Modified dispersion relation for magneto-gravity waves

•Equate tension force with buoyancy Force

•Occurs when Alfven speed ~ gravity wave group velocity
3/9/2020 JIM FULLER

Magnetic Forces
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Lecoanet, Vasil,
Fuller+ 2016

Magnetic Mirror Effect
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Mosser et al. 2016 Loi 2020

Survival of Mixed Modes?
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Incidence of core fields is mass-dependent

Stello, Cantiello, Fuller +  
2016



Evidence for convective core dynamos
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Credit: Kyle Augustson

•Strong fields in red giants are “skeleton” fields 
which are remnants of main sequence dynamos
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Implications

Stello, Cantiello, Fuller + 
Nature 2016

Evolution up RGB

Magnetic Cores

Non-magnetic Cores

• Magnetic stars identified by low 
dipole mode visibility

• Sun-like stars have weak 
internal fields

• Radial field strengths less 
than ~103 G

• Core-dynamo fields may be 
common

• Magnetic white dwarfs
• Magnetars

• Magnetic fields may not always 
be explanation for depressed 
modes (Mosser et al. 2016)



The Spin of Stellar Cores
◦Cores contract and spin up, 
generating shear

◦MHD Instabilities transport angular 
momentum, slowing rotation of the 
core

◦Determines spins of compact 
objects

3/9/2020
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Mosser et al. 
2012

Asteroseismology to the Rescue

Slowly rotating
envelope

Less slowly 
rotating core



Asteroseismic Spin Rates
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Mosser et al.
2012

Red Giant Branch

Clump
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Cantiello et al. 2014

◦ Hydrodynamic instabilities 
hopeless

◦ MRI suppressed by stable 
stratification

◦ Tayler-Spruit dynamo 
provides most AM transport, 
but is suppressed by 
composition gradients

AM transport: 
failure of theory
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Tayler-Spruit Dynamo
◦ Weak radial magnetic field wound 

up by differential rotation

◦ Toroidal field slips sideways, 
regenerates radial field

◦ According to Spruit 2002, 
instability creates net torque

◦ Updated prediction:
Spruit 1999
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Rotational Evolution

Fuller+
2019



Di Mauro et al. 2017

Rotation Profile

Fuller+ 2019
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White Dwarfs

◦ WD rotation rates  
previously unexplained

◦ Massive WDs appear to 
rotate faster

Fuller+ 2019
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Massive 
Stars

10 Msun
40 Msun

◦ AM of inner core 
lost upon He core 
contraction after 
main sequence
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Neutron Stars Slowly Rotating

Ma & Fuller
2019
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Compact 
Objects

◦ Black holes detected 
by LIGO appear to 
rotate slowly

◦ Binary scenarios with 
tidal spin-up can 
produce rapidly 
rotating BHs

Fuller & Ma 2019



Postdictions

◦White dwarfs rotate extremely slowly (~10-4 breakup)

◦Black holes and neutron stars rotate very slowly (~10-2 breakup)

◦Rapidly rotating magnetars and black holes mostly originate from 
tidally spun up binaries 

3/9/2020 JIM FULLER



Wave-driven Pre-Supernova Outbursts
◦Pre-SN outbursts 
common in many 
types of SNe
◦ Occur in last ~years of 

star’s life
◦ Mass loss rates 

enhanced by factors of 
~103 

◦Waves may be cause

3/9/2020 JIM FULLER

Quataert & Shiode (2012)
Shiode & Quataert (2014)

Ho, Goldstein +, 2019



Convection excites gravity waves
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Movie made by 
Andrea Cristini



Convection puts energy into waves at a rate

Where the convective Mach number is

The convective velocity can be estimated from mixing length theory

Wave Power

JIM FULLER3/9/2020

Goldreich & Kumar 1990
Lecoanet et al. 2013
Rogers et al. 2013



Late Stage Massive Stellar Evolution
During late burning stages, neutrinos cool core, causing burning 
timescales to be short

Consequently, there are situations where

Waves can transport energy to surface on timescale of ~

JIM FULLER3/9/2020



Wave Power in Massive Stars
Huge energy fluxes during late burning phases

JIM FULLER3/9/2020

Quataert
& Shiode (2012)
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Fuller & Ro 2018
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Gravity excited in core must 
tunnel into stellar envelope 
as acoustic waves

Acoustic waves damp in 
envelope, converting wave 
energy to thermal energy

Wave 
Propagation

Fuller 2017



Methods
◦ Run MESA models including the effects of 

wave energy transport

◦ At each time step, compute:

◦ Wave generation by nuclear burning 
convective zones in core

◦ Wave propagation and fraction of energy 
tunneling into the envelope

JIM FULLER3/9/2020
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Fuller & Ro 
2018
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Fuller & Ro 
2018
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Hydrogen-rich stars

•Waves damp at base of H-
envelope

•Wave heat launches acoustic 
pulse that nearly unbinds 
surface layers

•Envelope density profile, SN 
light curve are altered

Fuller & Ro 2018
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Kochanek et al. 2017

•Outbursts may be uncommon

Variability of 
Progenitors



Problem: waves are non-linear
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Caveats

◦ Wave excitation very uncertain
◦ Amplitude, frequency, and wavenumber spectrum needs to be included

◦ Non-linear effects may damp wave energy in core

◦ Convective response to wave heating is uncertain
◦ How fast can envelope convection accelerate in response to wave heating?

JIM FULLER3/9/2020



Conclusions and Discussion 

◦ Wave heating in may cause pre-SN outbursts
◦ Wave heating unlikely to lead to most luminous Type IIn Sne

◦ Wave heating is good candidate to create:
◦ Flash-ionized SNe
◦ Type II-L SNe
◦ Type Ibn and transitional Ib/IIn SNe

◦ Unlikely to substantially alter core structure (binding energy ~1051 erg)

JIM FULLER3/9/2020
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Thanks!
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