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Introduction



The overarching question

Still space to exist !

adapted from Carr et al, 2020.

The (non-)presence of primordial black holes may radically affect our under-
standing of cosmology, e.g.

• as dark matter, LIGO-Virgo candidates,
• as sources via Hawking radiation, etc.

In this talk, we contribute a little to the following question:

What mechanism can produce PBH?
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Ways to produce PBH

There are already several (review Sasaki et al. 2018): …

Here we focus on single-field inflation models.
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PBH from inflation : formation threshold

For a large enough density contrast

∆ ≡ ρ− ρ̄

ρ̄
& ∆c , ∆c ∼ 0.4 (from various studies), (1)

collapse may lead to PBH. This can be related to curvature per-
turbations (∆ ∝ ∇2Rc).

Sub-horizon Super-horizon Sub-horizon

Inflation

Rc grows Frozen (or evo.) Reentry

PBH production
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PBH from inflation : amplification

Amplification can occur either during sub-horizon or during super-
horizon.
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Power spectrum amplification, two dangers

One should be careful with growing curvature perturbation:

1. Power spectrum is constrained, e.g. at CMB scales.
2. Danger of overproduction of PBH.
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Power spectrum amplification, with subtlety

Goal:
Have a steep increase in the primordial curvature power spec-
trum, on scales smaller than CMB ones, and decrease after that.

The threshold is at ∆2
ζ ∼ 10−2 (COBE-normalized).
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Hubble hierarchy

In order to characterize inflation, we use here the Hubble hier-
archy

ε1 ≡ − Ḣ
H2

, εi+1 ≡
ε̇i
Hεi

, (2)

These are important because H, ε1, ε2, and ε3 fully characterize
the background contribution to the inflationary perturbations.

• To have inflation, one needs at least |ε1| � 1.
• The slow-roll (SR) regime has |εi| � 1.
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Going beyond slow-roll

Even though in the slow-roll approximation we have

∆2
ζ ≈

H2

8π2ε21
(3)

one still needs to make the spectrum grow fast enough to have
massive enough PBH. Motohashi and Hu 2017 suggest∣∣∣∆ ln ε1

∆N

∣∣∣ ∼ ¯|ε2| > 0.38 (4)

by taking into account PBH large enough so that they do not
evaporate fully and contribute to dark matter.

This indicates that the SR approximations has to be violated !
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Ultra-slow-roll

A typical example (Germani and Prokopec 2017; Motohashi and Hu 2017) is an ultra-
slow-roll (USR) (flat potential) stage of inflation.
The second SR condition is violated as

ε2 ≡
ε̇1
Hε1

→ −6 , (5)

instead of |ε2| � 1 in SR (ε ≡ − Ḣ
H2 ).

• To be precise, from φ̈ = −3Hφ̇ in ultra slow-roll one has φ̇ ∝ √
ε1 ∝ a−3.

• ε1 ∝ a−6 also means that there is a growing mode in the super-horizon
regime, so that the evaluation of the curvature power spectrum is more
subtle (but tractable).
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Example: single-field inflection models

E.g. V(φ) = λ

12φ
2v2

6− 4aφ
v + 3φ2

v2(
1+ bφ2

v2

)2 , (Garcia-Bellido and Morales 2017). (6)

Inflection point on the potential causes a peak in the power spectrum.

a = 3/2

b = 1
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This model well described by a transient USR stage, but has problems fitting
both CMB data and produce enough PBH. 11 / 30



Constant-roll



Constant-roll

Our idea:
Use a blue-tilted constant-roll (CR) model (Martin et al. 2012).

CR condition: φ̈

Hφ ≡ β =
1
2 ε2 − ε1

!
= cst. (7)

This is interesting because

• As USR, it allows for |ε2| = O(1).

• The model also includes an USR potential and a SR potential as limits
(β → −3 and β → 0 respectively).

One can build an analytic potential using the Hamilton-Jacobi approach. We
review this approach by following Motohashi et al. 2014.
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Hamilton-Jacobi construction of CR

By assuming that one can write (here we use ϕ ≡ φ/MP)

Ḣ =
dH
dϕϕ̇ , (8)

one may then use the second Einstein equation Ḣ = − 1
2 ϕ̇

2 to write

dH
dϕ = − 1

2 ϕ̇ . (9)

Finally, using the CR condition (7), leads to

d2H
dϕ2 = − 1

2βH , (10)

solved by

H(ϕ) = C1 exp
(√

− 1
2βϕ

)
+ C2 exp

(
−
√

− 1
2βϕ

)
. (11)

Here we focus on the range −3 < β < 0 which is between SR and USR.
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CR potentials

Using the Friedmann equation as well as (9), one can deduce several poten-
tials. Choosing C1 and C2 leads to (some examples)

VCR1 = M2M2
P(β + 3) exp

(√
−2βϕ

)
, (12)

VCR2 = −3M2M2
P

{
1− 3+ β

6

[
1+ cosh

(√
−2βϕ

)]}
, (13)

VCR3 = 3M2M2
P

{
1− 3+ β

6

[
1− cosh

(√
−2βϕ

)]}
, (14)

. . .

All these potentials are interesting per se (but do not always lead to the usual
inflation, see Motohashi et al. 2014). We however choose VCR3.
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Analytic solution

VCR = 3M2M2P
{
1− 3+ β

6

[
1− cosh

(√
−2βϕ

)]}
. (15)

Analytic background solution

a = a0 sinh−1/β(−βMt)

ϕ =

√
− 2
β
ln

[
coth

(
−β

2
Mt

)]

'

√
− 2
β
ln

[
1+

(
a
a0

)β
]

@a� a0 ,
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Phase space

The analytic solution (dashed black) is an attractor for β > − 3
2 .

For β < − 3
2 they are a transient before a slow-roll phase (full

black).

E.g. for β = − 7
5 ,
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See also Lin et al. 2019 for more details on this.
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MS equation in constant roll

To study the curvature perturbations (we use the comoving gauge with ζ = Rc)

ds2 = a2(−dτ 2(1+ 2α) + δij(1+ 2ζ)dxidxj) (16)

the Mukhanov-Sasaki equation

d2vk
dτ 2 +

(
k2 − 1

z
d2z
dτ 2

)
vk = 0 , vk ≡

√
2MPzζk , z ≡ a

√
ε1 (17)

tells us that ε1,2,3 from the Hubble hierarchy are relevant, as

1
z
d2z
dτ 2 = a2H2

(
2− ε1 +

3
2 ε2 +

1
4 ε

2
2 −

1
2 ε1ε2 +

1
2 ε2ε3

)
. (18)

With the potential (15),

ε1 =
1
2 ε2n+1 ' −βa2β , ε2 = ε2n ' 2β (19)

after some time, and hence 1
a2H2

1
z
d2z
dτ2 ' (1+ β)(2+ β).

17 / 30



How fast does one reach the attractor?

1
z
d2z
dτ 2 gives a good criterion to estimate how fast one reaches the
attractor starting from arbitrary initial conditions.
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; O(1) e-folds, which will be useful for a SR-to-CR transition.
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Power spectrum tilt

One may first show that, perturbations are frozen on super-horizon scales for
β > − 3

2 .

After solving the MS equation as usual with Hankel functions, one finds

ns−1 = 3−|2β+3| , where ∆2
ζ(k) =

k3

2π2 |ζk|
2
@super-horizon ∝

(
k
k?

)ns−1

, (20)

hence a maximum of ns − 1 ≈ 3 for β → − 3
2 .

Summary

β −3 (USR) −3/2 0 (SR)
ns red | blue | red

k� aH growth | frozen
attractor? no | yes
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A note: USR from CR

By taking β = −3, one obtains a constant potential ! Hence one
may assume that CR contains USR.

According to the analysis of Pattison et al. 2018, CR analyses of
USR instead miss the cases in which β = −3 is reached only
asymptotically, and their analysis indicates that USR may be an
attractor in some cases.

20 / 30



PBH formation setup



Setup

The 3-phase potential:

V(ϕ) ≡ 1
4VCR(ϕ)

[
1− tanh

(
ϕ− ϕ1
d1

)][
1− tanh

(
ϕ2 − ϕ

d2

)]
+
1
2VStarobinsky(ϕ)

[
1− tanh

(
ϕ1 − ϕ

d1

)]
+
1
2 (WSR2φ+ ΛSR2)

[
1− tanh

(
ϕ− ϕ2
d2

)]
, (21)
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total
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The 3 phases are built to last at least
5−10 e-folds. For the transitions tanh-
type step functions are chosen, here
with width

d1 ∼ 10−2 , d2 ∼ 10−7 (22)
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Background evolution

We plot ε1, ε2, as well as the
rate of roll. The green dashed
line corresponds to the pure
constant roll values.

As desired, the SR and CR
stages last for relatively long.
Transitions here last a little
less O(1) e-folds.

The transient periods will

have an impact on the power

spectrum.
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Power spectrum

Using the freedom to chose the scale of inflation, M, and a time to end
inflation, we get the curvature power spectrum

n
s
=n
sC
R
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Parameters:

β = −1.4 ,
m2

M2
= 3.13,

WSR2

V′CR(ϕ2)
= 5 , ϕs = −5 ,

ϕ1 = 0.175 ϕ2 = 4.5× 10−6
,

d1 = 10−2
, d2 = 10−7

, (23)

Remember:
nsCR − 1 = −2β , −3

2
< β < 0 . (24)
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Constraints on the power spectrum

In addition to CMB constraints, CMB spectral distortions are also very
relevant.

β = -1.4 (ns > nμ+CMB )

β = -0.25 (ns < nμ+CMB )

β = -0.83 (ns = nμ+CMB )
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Ameasurement of PBHmasses can constrain the tilt ns during CR (thus
β). Note that other constraints exist at smaller scales (e.g. second
order GW). 24 / 30



PBH abundance equations

We follow the standard treatment (see e.g. Inomata et al. 2017 and references
therein) which relies on the variance of the matter contrast distribution,

σ2(k) = 16
81

∫
d ln qW2(q/k) (q/k)4∆2

ζ(q) , (25)

with the window function W(x) = e−
x2
2 . This then allows for an estimation of

the PBH formation rate (Gaussian statistics assumed)

βPBH(MPBH) '
1√
2π

1
δc/σ(MPBH)

e
− δ2c

2σ2(MPBH) (26)

where the PBH mass MPBH can be related to the wavenumber via

MPBH(k) ' 1020g
( γ

0.2

)( g∗
106.75

)− 1
6
(

k
7 · 1012Mpc−1

)−2

(27)

25 / 30



PBH mass function

β = -0.80
β = -1.40
β = -0.48
β = -1.40
β = -0.30
β = -1.40

0 5 10 15
-12

-10

-8

-6

-4

-2

0

Log10 ( k / 1 Mpc
-1 )

Lo
g
10

(Δ
2
ζ
)

CMB

constraint

μ-distortion

EPTA BBN
aLIGO

OGLE

EGγ

Femto
WD

HSC

Kepler EROS/MACHO

CMB

UFD

β =-0.30
β =-1.40

β =-0.48
β =-1.40

β =-0.80
β =-1.40

1015 1020 1025 1030 1035
10-8

10-6

10-4

10-2

1

Primordial black hole mass MPBH [g]

R
at
io
of
da
rk
m
at
te
r
f P
B
H

• Lower PBH masses are achieved by transitioning later to CR or
via lower slopes.

• Lower slopes can be interesting if one detects a small scale
power spectrum amplification in the future, e.g. at the same
scales as µ-distortion ones.
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What makes CR different?

� Conceptually:

• Several single-field models that aim at producing PBH rely on a
non-attractor transient phase to amplify the power spectrum.

• In contrast, the constant-roll stage is not a transient; it lasts enough
e-folds to reach an attractor behaviour.

� Implementation:

• This scenario provides a potential, going a small step further than
previous more phenomenological approaches with an ε2 ≥ −3 stage.

? Maybe:

• This scenario may have a different behaviour with respect to either
non-Gaussianities and quantum diffusion. Work in progress !
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Outlook

We are currently working on: non-Gaussianities
Non-Gaussianities can affect the the prediction for fPBH . However is known (Passaglia
et al. 2018) that in SR-USR-SR models they don’t.

? How much NG during constant-roll phase?
? How much NG during transitions?

Work in progress...

The mode k2 ≈ 2× 107M corresponds to the first transition.
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Outlook

We are currently working on: quantum diffusion
Quantum diffusion may also affect the the prediction for fPBH .

AverageΠ(N) = φ

and its standard deviation,

over 200 realizations of CR with β = -7/5

Work in progress...
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Outlook

• Non gaussianities
• Quantum diffusion
• Relation with other works (e.g. Mishra and Sahni 2019; Byrnes et al.
2018)? Can we quantify the fine-tuning?

• Can we improve on the model?

� Thank you !
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Transition SR→ CR

The transition SR→ CR will display oscillations in the power spectrum.
This may be understood from (Hu and Joyce 2016)

d
dNζ = − 1

a3εH

[∫
da
a a

3
(
k
aH

)2
(εH) ζ + cst.

]
, (28)

from a sharp increase of ε. This is followed by the convergence of the integral
@CR.
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Transition CR→ SR

d
dNζ = − 1

a3εH

[∫
da
a a

3
(
k
aH

)2
(εH) ζ + cst.

]
' − 1

a
k2

H2a2

[∫
da ζ + cst.

]
,

(29)

The integral keeps growing in SR (since ε ∼ cst.). There are still some oscilla-
tions.
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Other interesting works: Plot from (Byrnes et al. 2018)

Power spectrumbased on amore phenomenologicalmodel (step
function on ε2), including USR stages (curves with a large dip)
and simili-constant-roll stages (milder tilts).
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Other interesting works: Plot from (Carrilho et al. 2019)

Simple SR-USR-SR setup.
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