

### Probing Novel Dark Matter Substructure at Galactic and Solar Scales

Joshua Eby Weizmann Institute of Science

> *IPMU APEC Seminar 30/04/2020*





### • Light Scalar Dark Matter

### Substructure

- ... in Galaxies
- ...in Solar Systems



### Outline



Large scale structure

### Big Question

Galaxy cluster collisions



# What is the particle nature of Dark Matter?

Temperature fluctuations



Cosmic microwave background



### Dark Matter Models



| DM Candidate            | $\mathbf{Example}(\mathbf{s})$             |  |
|-------------------------|--------------------------------------------|--|
|                         |                                            |  |
| MaCHOs                  | Black Holes<br>Boson Stars                 |  |
| Heavy Bound<br>States   | Dark Blobs                                 |  |
| WIMPs                   | Supersymmetry<br>"Extra" Higgs             |  |
| Warm Dark<br>Matter     | Sterile Neutrinos<br>Dark Photons<br>SIMPs |  |
| Axions                  | QCD Axions                                 |  |
| Axion-Like<br>Particles | String/GUT<br>Axions                       |  |

### Dark Matter Models



| DM Candidate            | $\mathbf{Example}(\mathbf{s})$             |                   |
|-------------------------|--------------------------------------------|-------------------|
| Macrosc                 | copic objects                              | Not particle-like |
| WIMPs                   | Supersymmetry<br>"Extra" Higgs             |                   |
| Warm Dark<br>Matter     | Sterile Neutrinos<br>Dark Photons<br>SIMPs |                   |
| Axions                  | QCD Axions                                 |                   |
| Axion-Like<br>Particles | String/GUT<br>Axions                       |                   |



### Dark Matter Models







## Light Scalar Parameter Space



| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1.111          |                   | 1 1 1 1 1 1 1 1       | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 |    |    | 1 1 1 1 1 1 1 1 | <br>1.1.111 |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|-----------------------|---------------|---------------|---------------|-----------------|-----------------|----|----|-----------------|-------------|---|
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $\frac{10^{-11}}{10^{-8}} \frac{10^{-5}}{10^{-2}} \frac{10^{-1}}{10^{-11}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | _ |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | _ |
| $m_{\phi} [{\rm eV}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | _ |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             |   |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | 1 |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             |   |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | = |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             |   |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             |   |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             |   |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $\frac{10^{-11}}{10^{-8}} \frac{10^{-5}}{10^{-2}} \frac{10^{-1}}{10^{-11}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | 1 |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             |   |
| $\frac{1}{10^{-11}} \frac{1}{10^{-8}} \frac{1}{10^{-5}} \frac{1}{10^{-2}} \frac{1}{10^{11}} \frac{1}{10^{11}} \frac{1}{10^{-8}} \frac{1}{10^{-5}} \frac{1}{10^{-2}} \frac{1}{10^{11}} \frac{1}{10^{11}}$ |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $m_{\phi} [eV]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $\frac{1}{10^{-11}} \frac{1}{10^{-8}} \frac{1}{10^{-5}} \frac{1}{10^{-2}} \frac{1}{10^{11}} \frac{1}{10^{11}}$ |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $\frac{10^{-11}}{10^{-8}} \frac{10^{-5}}{10^{-2}} \frac{10^{-1}}{10^{-10}} \frac{10^{-10}}{10^{-10}} $                                                                                                                                                                                                                       |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             |   |
| $\frac{10^{-11}}{10^{-8}} \frac{10^{-5}}{10^{-2}} \frac{10^{-1}}{10^{-10}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | = |
| $\frac{1}{10^{-11}} \frac{1}{10^{-8}} \frac{1}{10^{-5}} \frac{1}{10^{-2}} \frac{1}{10^{11}}$ $m_{\phi} [eV]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $\frac{10^{-11}}{10^{-8}} \frac{10^{-5}}{10^{-2}} \frac{10^{-1}}{10^{-10}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             |   |
| $\frac{1}{10^{-11}} \frac{10^{-8}}{10^{-5}} \frac{10^{-2}}{10^{-2}} \frac{10^{1}}{10^{10}}$ $m_{\phi} [eV]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             |   |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             |   |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | = |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             |   |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | = |
| $10^{-11}$ $10^{-8}$ $10^{-5}$ $10^{-2}$ $10^{1}$<br>$m_{\phi}$ [eV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $\frac{10^{-11}}{10^{-8}} \frac{10^{-5}}{10^{-2}} \frac{10^{-10}}{10^{-10}} \frac$                                                                                                                                                                                                                 |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | _ |
| $\frac{10^{-11}}{10^{-8}} \frac{10^{-5}}{10^{-2}} \frac{10^{-10}}{10^{-10}} \frac$                                                                                                                                                                                                                 |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             |   |
| $\frac{10^{-11}}{m_{\phi}}  [\text{eV}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             |   |
| $\frac{10^{-11}}{10^{-8}} \frac{10^{-5}}{10^{-2}} \frac{10^{-10}}{10^{-10}} \frac$                                                                                                                                                                                                                 |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | = |
| $\frac{10^{-11}}{10^{-8}} \frac{10^{-5}}{10^{-2}} \frac{10^{-10}}{10^{-10}} \frac$                                                                                                                                                                                                                 |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $\frac{10^{-11}}{10^{-8}} \frac{10^{-5}}{10^{-2}} \frac{10^{-10}}{10^{-10}} \frac$                                                                                                                                                                                                                 |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $\frac{10^{-11}}{10^{-8}} \frac{10^{-5}}{10^{-2}} \frac{10^{-2}}{10^{1}}$ $m_{\phi} [\text{eV}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | Ę |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | 1 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               |                 |                 |    |    |                 |             | - |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                       |               |               |               | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 |    |    |                 | <br>        |   |
| $m_{\phi} [\mathrm{eV}]$ 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 10-               | -11                   |               | 10            | -8            |                 | 10              | -5 | 10 | -2              | 11          | 1 |
| $m_{\phi} [\mathrm{eV}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | τU                |                       |               | τU            | 1             |                 | τU              | 1  | τU | 1               | Τſ          | ) |
| $m_{\phi} [\mathrm{eV}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                   | г                     | <b>-</b> -    | 1             |               |                 |                 |    |    |                 |             |   |
| $\phi [ \nabla \mathbf{v} ]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\boldsymbol{n}$ | <b>1</b>          | $  \boldsymbol{\rho}$ | $\Lambda$     |               |               |                 |                 |    |    |                 |             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11               | $^{\upsilon}\phi$ | Ľ                     | ′ <b>▼</b> -  | J             |               |                 |                 |    |    |                 |             |   |

## Light Scalar Parameter Space



| 1111 |                 |     |   |    |    |  |    |    | <br>   |    | <br>   |         |
|------|-----------------|-----|---|----|----|--|----|----|--------|----|--------|---------|
|      |                 |     |   |    |    |  |    |    |        |    |        |         |
|      | SR              |     |   |    |    |  |    |    |        |    |        | -       |
|      | BH              |     |   |    |    |  |    |    |        |    |        |         |
|      |                 |     |   |    |    |  |    |    |        |    |        |         |
|      |                 |     |   |    |    |  |    |    |        |    |        |         |
|      |                 |     |   |    |    |  |    |    |        |    |        | ld      |
|      |                 |     |   |    |    |  |    |    |        |    |        | ent Fie |
|      |                 |     |   |    |    |  |    |    |        |    |        | Cohere  |
|      |                 |     |   |    |    |  |    |    |        |    |        | Not (   |
|      |                 |     |   |    |    |  |    |    |        |    |        |         |
|      | 10 <sup>-</sup> | -11 |   | 10 | -8 |  | 10 | -5 | <br>10 | -2 | <br>1( | )1      |
| γ    | $n_{\phi}$      | [e  | V | ]  |    |  |    |    |        |    |        |         |

## Light Scalar Parameter Space



In the standard picture,

- Roughly spherical halo
- Virial velocity  $\sigma \simeq 10^{-3} \simeq 200 \, \text{km/sec}$
- Local DM density  $\rho_{\rm local} \simeq 0.4 \, {\rm GeV/cm}^3$

**LSDM Substructure** 

### Our Dark Matter Halo



Earth

\*not to scale

In the standard picture,

- Roughly spherical halo
- Virial velocity  $\sigma \simeq 10^{-3} \simeq 200 \, \text{km/sec}$
- Local DM density  $\rho_{\rm local} \simeq 0.4 \, {\rm GeV/cm}^3$
- For light scalar DM, however,
  - Halo is "lumpy"!
  - Lumps can form, travel, merge, coalesce, ...

### Our Dark Matter Halo







7



7



7



7

## **Types of LSDM Substructure**

- 2. Axion Stars / Solitons

I. Quasiparticles / Granules

3. Axion Halos around the Earth and Sun



## **LSDM Equations of Motion**

LSDM is non-relativistic, with high occupation numbers  $\Rightarrow$  NR classical field 

Expand field in terms of non-relativistic wav

• E.o.M is Gross-Pitaevskii+Poisson (GPP) equation:

**Coherent state**  $\rightarrow$  **Oscillates** Leading time dependence  $\dot{\psi} \sim (m_{\phi} - \omega)\psi \ll m_{\phi}\psi$ 



**Kinetic energy** (Repulsive)

vefunction: 
$$\phi(t, r) = \frac{1}{\sqrt{2m_{\phi}}} \left[ e^{-im_{\phi}t} \psi(t, r) + c \cdot c \cdot \right]$$

**Poisson Gravity**  $\nabla^2 V_g = 4 \pi G m_\phi \left[ \psi \right]^2$ (Attractive)

$$V_g\left(|\psi|^2\right) + V_{int}\left(|\psi|^2\right) \psi$$

Normalization  $m_{\phi} \int d^3r \, |\psi|^2 = M_{\star}$ 

 $V(\phi) = m_{\phi}^2 f^2 \left[ 1 - \cos\left(\frac{\phi}{f}\right) \right] = \frac{m_{\phi}^2}{2} \phi^2 - \frac{1}{4!} \left(\frac{m_{\phi}}{f}\right)^2 \phi^4 + \frac{1}{6!f^2} \left(\frac{m_{\phi}}{f}\right)^2 \phi^6 - \dots$ 



### Quasiparticles / Granules

Within a deBroglie wavelength, 

$$\lambda_{\rm dB} = \frac{1}{m_{\phi} \,\sigma} \sim 2000 \,\rm km \left(\frac{10^{-9} \,\rm eV}{m_{\phi}}\right) \sim 12 \,\rm AU \left(\frac{10^{-15} \,\rm eV}{m_{\phi}}\right) \sim 600 \,\rm pc \left(\frac{10^{-22} \,\rm eV}{m_{\phi}}\right)$$

have very large occupat

These patches have random velocities, appear as <u>traveling waves</u> ("quasiparticles") 

• Generic expectation:  $\mathcal{O}(1)$  fluctuations around background density on distance scales  $\lambda_{dB}$ , from constructive / destructive interference of LSDM waves  $\Rightarrow \delta \equiv \frac{\rho}{\delta} \sim O(1)$  $\rho_{\rm local}$ 



(assuming  $\sigma \sim 10^{-3}$  )

(Earth scale)

(Solar system scale)

(Galaxy scale)

$$\operatorname{cion} \mathcal{N} \sim 10^{26} \times \left(\frac{\rho_{\text{local}}}{0.4 \text{ GeV/cm}^3}\right) \left(\frac{10^{-5} \text{ eV}}{m_{\phi}}\right)^4$$

Hui, Ostriker, Tremaine, Witten (1610.08297) Bar-Or, Fouvry, Tremaine (1809.07673)



### Quasiparticles / Granules

Within a deBroglie wavelength, 

$$\lambda_{\rm dB} = \frac{1}{m_{\phi} \,\sigma} \sim 2000 \,\rm km \left(\frac{10^{-9} \,\rm eV}{m_{\phi}}\right) \sim 12 \,\rm AU \left(\frac{10^{-15} \,\rm eV}{m_{\phi}}\right) \sim 600 \,\rm pc \left(\frac{10^{-22} \,\rm eV}{m_{\phi}}\right)$$

have very large occupat

These patches have random velocities, appear as <u>traveling waves</u> ("quasiparticles") 

• Generic expectation:  $\mathcal{O}(1)$  fluctuations around background density on distance scales  $\lambda_{dB}$ , from constructive / destructive interference of LSDM waves  $\Rightarrow \delta \equiv \frac{\rho}{\delta} \sim O(1)$  $\rho_{\rm local}$ 



(assuming  $\sigma \sim 10^{-3}$  )

(Earth scale)

(Solar system scale)

(Galaxy scale)

$$\operatorname{cion} \mathcal{N} \sim 10^{26} \times \left(\frac{\rho_{\text{local}}}{0.4 \text{ GeV/cm}^3}\right) \left(\frac{10^{-5} \text{ eV}}{m_{\phi}}\right)^4$$

Hui, Ostriker, Tremaine, Witten (1610.08297) Bar-Or, Fouvry, Tremaine (1809.07673)



## The (Very) Local DM Density

11





Earth  $\lambda_{dB}$ 

## The (Very) Local DM Density

11

 $\lambda_{\rm dB}$ 





## The (Very) Local DM Density

 $\lambda_{\rm dB}$ 





**Centers et al. (1905.13650)** 

## The (Very) Local DM Density (2)

12

### Local density roughly constant b/c $t_{exp} \ll \tau_c$



Local density roughly constant if signal averaged over many coherence times

 $\Gamma_c \equiv \frac{1}{\tau_c} \simeq m_\phi \, \sigma^2 \simeq (m_\phi \, R_\star^2)^{-1}$ 



### Axion Stars / Solitons

 $\bigcirc$ 

• At fixed mass  $M_{\star}$ , GPP equations have a unique<sup>\*</sup> ground state configuration



Mass-Radius relation is inverse:  $M_{\star} \simeq 10^{-1}$ and over density is typically  $\delta \equiv \frac{\rho}{2} \gg \mathcal{O}(1)$  $ho_{\rm local}$ 

$$\frac{\nabla^2}{2m_{\phi}} + V_g\left(|\psi|^2\right) + V_{int}\left(|\psi|^2\right) \psi$$

lance these force  

$$R_{\star} \simeq \frac{M_P^2}{m_{\phi}^2 M_{\star}}$$
  
"Axion Star"



$$^{11}M_{\odot}\left(\frac{10^{-5}\,\mathrm{eV}}{m_{\phi}^2}\right)^2\left(\frac{200\,\mathrm{km}}{R_{\star}}\right),$$

\*small caveat: stable ground state is local (not global) minimum of the action



### Axion Stars / Solitons

 $\bigcirc$ 

• At fixed mass  $M_{\star}$ , GPP equations have a unique<sup>\*</sup> ground state configuration



Mass-Radius relation is inverse:  $M_{\star} \simeq 10^{-1}$ and over density is typically  $\delta \equiv \frac{\rho}{2} \gg \mathcal{O}(1)$  $ho_{\rm local}$ 

$$\frac{\nabla^2}{2m_{\phi}} + V_g\left(|\psi|^2\right) + V_{int}\left(|\psi|^2\right) \psi$$

lance these force  

$$R_{\star} \simeq \frac{M_P^2}{m_{\phi}^2 M_{\star}}$$
  
"Axion Star"



$$^{11}M_{\odot}\left(\frac{10^{-5}\,\mathrm{eV}}{m_{\phi}^2}\right)^2\left(\frac{200\,\mathrm{km}}{R_{\star}}\right),$$

\*small caveat: stable ground state is local (not global) minimum of the action



## Solving for (Spherical) Solitons

Solitons exist along a continuous family of solutions

$$\dot{\psi} = \left[ -\frac{\nabla^2}{2m_{\phi}} + V_g \right] \psi$$
$$\nabla^2 V_g = 4\pi G m_{\phi} |\psi|^2$$

In spherical symmetry, easy! Solve using shooting method



## Solving for (Spherical) Solitons

Solitons exist along a continuous family of solutions

$$\dot{\psi} = \left[ -\frac{\nabla^2}{2m_{\phi}} + V_g \right] \psi$$
$$\nabla^2 V_g = 4\pi G m_{\phi} |\psi|^2$$

In spherical symmetry, easy! Solve using shooting method

In fact, all numerical solutions are related, by a scaling symmetry:

Let { $\chi_1(x), \Phi_1(x), \mu_1$ } be the solution set such that  $\chi_1(0) = 1$ .

This solution has the property



Then any other solution  $\{\chi_{\lambda}(r), \Phi_{\lambda}(r), \mu_{\lambda}\}$  can be written as  $\chi_{\lambda}(x) = \lambda^2 \chi_1(\lambda x), \qquad \Phi_{\lambda}(x) = \lambda^2 \Phi_1(\lambda x), \qquad \mu_{\lambda} = \lambda^2 \mu_1$ 

And they will have the properties

 $M_{\lambda} = \lambda M_1, \qquad R_{\lambda} = \lambda^{-1} R_1$ 



## Do Solitons actually Form?

### • Evidence I: Simulations



Schive et al. (1407.7762)



(b) 
$$\tilde{t} = 0$$



Levkov, Panin, Tkachev (1804.05857)

### Mocz et al. (1705.05845)

(c) 
$$\tilde{t} = 2000$$
  $|\tilde{\psi}|$   
 $\tilde{\psi}|$   
1.1  
 $02$   
 $\tilde{x}$ 

Projected Density  $[M_{\odot}/{
m pc}^2]$ Density  $[M_{\odot}/{
m pc}^3]$ 0.35 =12770.30 10-5 0.25  $[\mathrm{pc}/h]$ 10<sup>-6</sup> <sup>あ</sup> 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35  $x \, \left[ {
m pc} / h 
ight]$ 

### **Eggemeier and Niemeyer (1906.01348)**

15





## Do Solitons actually Form?

### • Evidence I: Simulations



Schive et al. (1407.7762)



(b) 
$$\tilde{t} = 0$$



Levkov, Panin, Tkachev (1804.05857)

### Mocz et al. (1705.05845)

(c) 
$$\tilde{t} = 2000$$
  $|\tilde{\psi}|$   
 $\tilde{\psi}|$   
1  
1  
.02  
 $\tilde{x}$ 



### **Eggemeier and Niemeyer (1906.01348)**





## Do Solitons actually Form? (2)

### • Evidence 2: Analytic argument

• Gravitational relaxation of quasiparticles sufficient for formation

**Velocity change per crossing** 



### **Quasiparticle dispersion**

Hui, Ostriker, Tremaine, Witten (1610.08297) Bar-Or, Fouvry, Tremaine (1809.07673)

See e.g. Binney and Tremaine, "Galactic Dynamics, 2nd Edition"

$$N\left(\frac{GM}{R_{\rm gal}v}\right)\ln N$$

**Fractional velocity change** 

$$\frac{N^2}{2} \simeq \frac{8 \ln N}{N}$$

**Relaxation to ground state** 





Analytic timescale matches simulation results!

See also Levkov, Panin, Tkachev (1804.05857)





### Axion Earth/Solar Halos

- A third substructure possibility: Can LSDM be captured by external bodies?
- At the level of the E.o.M., configuration is very stable under perturbations (if it forms)





### Dark Matter in the Solar System

18

Halo supported by Sun "Solar Halo"

DM Background

Axion Halo

Sun

 $m_{\phi} = 10^{-17} \div 10^{-13} \, eV$  $\sim mHz \div 10 \, Hz$ 

 $R_{\star} > AU$ 

 $R_{\star} \approx \frac{M_P^2}{m_{\phi}^2 M_{ext}}$ 

Earth

Halo supported by Earth "Earth Halo"

DM Background

Axion Halo

Earth

 $R_{\star} > R_{\oplus}$ 

 $m_{\phi} = 10^{-13} \div 10^{-8} eV$  $\sim 10 Hz \div MHz$ 

### Can Axion Earth/Solar Halos Form?

- No dedicated simulations
- Rough argument: If QP relaxation occurs (as with solitons), resulting ground state is plausibly an axion halo



**Quasiparticle dispersion** (in the presence of e.g. star)

 $\bullet$  At present, can't compute  $\delta$ , but can still ask what's still allowed / interesting



### Substructure Summary



### **Quasiparticles / Granules**

• Fundamental, irreducible waviness of LSDM halos

• Typical size  $\lambda_{\rm dB} = \frac{1}{m_{\phi}\sigma}$ 

• Typical density  $\delta \simeq 1$ 

### Substructure Summary



### **Quasiparticles / Granules**

- Fundamental, irreducible waviness of LSDM halos
- Typical size  $\lambda_{dB} = \frac{1}{m_{\phi}\sigma}$
- Typical density  $\delta \simeq 1$

### **Axion Stars / Solitons**

- Typical density  $\delta \gg 1$



• Self-gravitating bound states, formed by grav. relaxation л*л*2 • Typical size  $R_{\star} \simeq \frac{M_P^2}{m_{\phi}^2 M_{\star}}$
### Substructure Summary



#### **Quasiparticles / Granules**

- Fundamental, irreducible waviness of LSDM halos
- Typical size  $\lambda_{\rm dB} = \frac{1}{m_{\phi}\sigma}$
- Typical density  $\delta \simeq 1$

#### **Axion Stars / Solitons**

- Typical density  $\delta \gg 1$





 Self-gravitating bound states, formed by grav. relaxation א גע • Typical size  $R_{\star} \simeq \frac{M_P^2}{m_{\phi}^2 M_{\star}}$ 

#### Earth Halo or Solar Halo

- Bound to external objects, ullet
- Formation? Work in progress lacksquareא ג

• Typical size  $R_{\star} \simeq \frac{M_P^2}{m_{\phi}^2 M_{\rm ext}}$ 

• Typical density  $\delta = ???$ 



### Substructure in Galaxies



Bar, Blas, Blum, Sibiryakov (1805.00122)

Bar, Blum, JE, Sato (1903.03402)

Blum, JE, Kim (To Appear)



## Look at Simulations again

#### Schive et al. (1407.7762)

Mocz et al. (1705.05845)



#### Veltmaat and Niemeyer (1608.00802)

22



#### Veltmaat and Niemeyer (1608.00802)

Ourious connection between central soliton and its host halo:

$$M_{\rm sol} \simeq 10^9 M_{\odot} \left( \frac{10^{-1}}{10^{-1}} \right)$$

- Verified by multiple independent simulations





Ourious connection between central soliton and its host halo:

$$M_{\rm sol} \simeq 10^9 M_{\odot} \left( \frac{10^{-1}}{10^{-1}} \right)$$

- Verified by multiple independent simulations
- If true, it implies

$$\left(\frac{K}{M}\right)_{\text{soliton}}$$



$$\simeq \left(\frac{K}{M}\right)_{\text{halo}}$$



Ourious connection between central soliton and its host halo:

$$M_{\rm sol} \simeq 10^9 M_{\odot} \left( \frac{10^{-1}}{10^{-1}} \right)$$

- Overified by multiple independent simulations
- If true, it implies

$$\left(\frac{K}{M}\right)_{s}$$







Ourious connection between central soliton and its host halo:

$$M_{\rm sol} \simeq 10^9 M_{\odot} \left( \frac{10^{-5}}{10^{-5}} \right)$$

- Overified by multiple independent simulations
- If true, it implies

Look for corresponding velocity peak in central core of galaxies!







#### • SPARC database: 175+ galaxies, with disc, bulge, and (sometimes) gas modeling

Lelli, McGaugh, Schombert (1606.09251)



#### How do we test it?

# Solving for (Non-Spherical) Solitons

Baryonic effects introduce (disc-like) background potential

$$\nabla_x^2 \chi = 2 \left( \Phi - \mu \right) \chi$$
$$\nabla_x^2 \Phi = \chi^2$$
Simple equations of motion

• Our work: develop simple algorithm to solve for soliton in azimuthally-symmetric Bar, Blum, JE, Sato (1903.03402) potential Input:  $\Phi_0, \chi_0$  Iteratively  $\Phi_b$  solve  $\nabla^2 \Phi(R,z) = \chi(R,z)^2$ 

solve  
update 
$$\chi$$
  $\frac{\partial \chi}{\partial \tau}$ 

$$\nabla_x^2 \chi = 2 \left( \Phi + \Phi_b - \mu \right) \chi$$
$$\nabla_x^2 \Phi = \chi^2$$

Less simple equations of motion!

update  $\Phi$  $=\nabla^2\chi - 2\left(\Phi + \Phi\right)$  $Converges \Phi_{sol}, \chi_{sol}$  $\lim \chi_{sol}(\tau) \propto e^{-2\mu\tau} \chi_{sol}(0)$ 

#### Joshua Eby (Weizmann)

#### **SPARC example: Soliton with** $m_{\phi} = 10^{-22} \,\mathrm{eV}$



Joshua Eby (Weizmann)

#### **SPARC example: Soliton with** $m_{\phi} = 10^{-21} \,\mathrm{eV}$



Final constraint\*:  $m_{\phi} \gtrsim 10^{-21} \,\mathrm{eV}$ , gravity only!

\*if simulations didn't miss something important



#### Another Observable: QP Fluctuations Outside of the Core

• Stars, moving the the LSDM background, get stochastically 'kicked' by QPs

• QPs can be extremely massive, even with  $\delta \simeq 1$ :



$$m_{\rm eff} \approx \frac{\rho}{(m_{\phi} \sigma)^3} \approx 10^2 M_{\odot} \left(\frac{10^{-21} \,\mathrm{eV}}{m_{\phi}}\right)^3 \left(\frac{10^{-3}}{\sigma}\right)^3 \left(\frac{\rho}{0.01 \frac{M_{\odot}}{\mathrm{pc}^3}}\right)$$
$$\lambda_{\rm dB} \approx \frac{1}{m_{\phi} \sigma} \approx 100 \,\mathrm{pc} \,\left(\frac{10^{-21} \,\mathrm{eV}}{m_{\phi}}\right) \left(\frac{10^{-3}}{\sigma}\right)$$

$$eff \approx \frac{\rho}{(m_{\phi} \sigma)^3} \approx 10^2 M_{\odot} \left(\frac{10^{-21} \text{ eV}}{m_{\phi}}\right)^3 \left(\frac{10^{-3}}{\sigma}\right)^3 \left(\frac{\rho}{0.01 \frac{M_{\odot}}{pc^3}}\right)$$
$$\lambda_{\text{dB}} \approx \frac{1}{m_{\phi} \sigma} \approx 100 \text{ pc} \left(\frac{10^{-21} \text{ eV}}{m_{\phi}}\right) \left(\frac{10^{-3}}{\sigma}\right)$$

#### Another Observable: QP Fluctuations Outside of the Core

#### • Stars, moving the the LSDM background, get stochastically 'kicked' by QPs

• QPs can be extremely massive, even with  $\delta \simeq 1$ :



$$m_{\rm eff} \approx \frac{\rho}{(m_{\phi} \sigma)^3} \approx 10^2 M_{\odot} \left(\frac{10^{-21} \,\mathrm{eV}}{m_{\phi}}\right)^3 \left(\frac{10^{-3}}{\sigma}\right)^3 \left(\frac{\rho}{0.01 \frac{M_{\odot}}{\mathrm{pc}^3}}\right)$$
$$\lambda_{\rm dB} \approx \frac{1}{m_{\phi} \sigma} \approx 100 \,\mathrm{pc} \,\left(\frac{10^{-21} \,\mathrm{eV}}{m_{\phi}}\right) \left(\frac{10^{-3}}{\sigma}\right)$$

$$\mathcal{P}_{\text{eff}} \approx \frac{\rho}{(m_{\phi} \sigma)^3} \approx 10^2 M_{\odot} \left(\frac{10^{-21} \,\text{eV}}{m_{\phi}}\right)^3 \left(\frac{10^{-3}}{\sigma}\right)^3 \left(\frac{\rho}{0.01 \frac{M_{\odot}}{pc^3}}\right)$$
$$\lambda_{\text{dB}} \approx \frac{1}{m_{\phi} \sigma} \approx 100 \,\text{pc} \left(\frac{10^{-21} \,\text{eV}}{m_{\phi}}\right) \left(\frac{10^{-3}}{\sigma}\right)$$

$$\frac{d\sigma_{\star}^2}{dt} \simeq \frac{\sigma^2}{T_{\text{heat}}} \left(1 + \frac{2\sigma_{\star}^2}{\sigma^2}\right)^{-\frac{3}{2}} \text{ with } T_{\text{heat}} \simeq 0.14 \,\text{Gyr} \left(\frac{m_{\phi}}{10^{-21} \,\text{eV}}\right)^3 \left(\frac{0.01 \frac{M_{\odot}}{\text{pc}^3}}{\rho}\right)^2 \left(\frac{1}{10^{-21} \,\text{eV}}\right)^3 \left(\frac{1}{10^{-21} \,\text{eV}}\right)^2 \left(\frac{1}{10^{-21} \,\text$$

This has been used previously to constrain LSDM using limits on Milky Way disk thickness; see Church, Ostriker, Mocz (1809.04744)

**Bar-Or, Fouvry, Tremaine (1809.07673)** 

Induces 'heating', increased velocity dispersion in population





Joshua Eby (Weizmann)

## Constraints in Milky Way Dwarfs?

29



LSDM Substructure



# LSDM in Galaxies Summary

- Simulations predict the formation of a central soliton in galaxies when LSDM mass is  $10^{-22} \,\mathrm{eV} \lesssim m_{\phi} \lesssim 10^{-20} \,\mathrm{eV}$ 
  - large sample of SPARC galaxies! Constraint:  $m_{\phi} \gtrsim 10^{-21} \,\mathrm{eV}$
  - Soliton-Host Halo Relation tells us the (likely) properties of this soliton • Translates into kinematic constraint: Peak in rotational velocity not observed in
  - Baryons do not seem to spoil the picture
- Quasiparticle fluctuations in the outer halos 'heat' stellar populations
  - Measured velocity dispersion of Milky Way Dwarf Spheroidal galaxies can potentially probe  $10^{-21} \,\mathrm{eV} \lesssim m_{\phi} \lesssim 10^{-20} \,\mathrm{eV}$

# Substructure in our Solar System



Banerjee, Budker, JE, Kim, Perez (1902.08212)

Banerjee, Budker, Flambaum, JE, Kim, Matsedonskyi, Perez (1912.04295)



### Recall the Picture:

32

#### Halo supported by Sun "Solar Halo"

DM Background

Axion Halo







 $R_{\star} > AU$ 



33

 $M_2 - M_1$  $M_{2}$ M<sub>ext</sub>  $M_1$ 

Inner orbit "measures"  $M_1 + M_{ext}$ Outer orbit "measures"  $M_2 + M_{ext}$ Comparison of the two "measures"  $M_2 - M_1$ , the "extra" mass contained between the orbits

 $M_2 - M_1$  $M_{2}$  $M_{\rm ext}$  $M_1$ 

Inner orbit "measures"  $M_1 + M_{ext}$ Outer orbit "measures"  $M_2 + M_{ext}$ Comparison of the two "measures"  $M_2 - M_1$ , the "extra" mass contained between the orbits





 $M_2 - M_1$  $M_{2}$  $M_{\rm ext}$  $M_1$ 

Inner orbit "measures"  $M_1 + M_{ext}$ Outer orbit "measures"  $M_2 + M_{ext}$ Comparison of the two "measures"  $M_2 - M_1$ , the "extra" mass contained between the orbits



Solar System Ephemerides (Mercury, Mars, Saturn)

Pitjev and Pitjeva (1306.5534)



33

 $M_2 - M_1$  $M_{2}$  $M_{\rm ext}$  $M_1$ 

Inner orbit "measures"  $M_1 + M_{ext}$ Outer orbit "measures"  $M_2 + M_{ext}$ Comparison of the two "measures"  $M_2 - M_1$ , the "extra" mass contained between the orbits



Solar System Ephemerides (Mercury, Mars, Saturn) Pitjev and Pitjeva (1306.5534) Lunar Laser Ranging + LAGEOS Satellite

Adler (0808.0899)



### Effects on Experimental Sensitivity

I. Increased density:

Experimental signals  $\propto \phi$ 

Can be many orders of magnitude above "naive" local DM density



### Effects on Experimental Sensitivity

I. Increased density:

Experimental signals  $\propto \phi$ 

Can be many orders of magnitude above "naive" local DM density



#### 2. Long timescale for coherent oscillation







# Example: CASPEr Electric

- **Based in Boston University**
- Search for axion coupling  $\mathscr{L} \supset \frac{i \, g_d}{2} \phi \, \bar{N} \sigma_{\mu\nu} \gamma_5 N F^{\mu\nu}$

Induces oscillating atomic EDM signal 



, N [GeV $g_d$ 





# Example: CASPEr Electric

- **Based in Boston University**
- Search for axion coupling  $\mathscr{L} \supset \frac{i \, g_d}{2} \phi \, \bar{N} \sigma_{\mu\nu} \gamma_5 N F^{\mu\nu}$
- Induces oscillating atomic EDM signal



-2] [GeV





# Example: CASPEr Electric

- **Based in Boston University**
- Search for axion coupling  $\mathscr{L} \supset \frac{i \, g_d}{2} \phi \, \bar{N} \sigma_{\mu\nu} \gamma_5 N F^{\mu\nu}$
- Induces oscillating atomic EDM signal



-2-[GeV





### Effects on Experimental Sensitivity (2)

**Modified velocity dispersion**: 3.

Some experimental signals  $\propto \nabla \phi$ (e.g. CASPEr-Wind, GNOME, ...)

- Two components:
  - Wavefunction is hydrogen-like,  $\phi(r) \propto \exp(-r/R_{\star})$

$$\Rightarrow \nabla_{\rm rad} \phi \propto \frac{1}{R_{\star}}, "rac$$

Experiment, on Earth, moves through axion halo  $\Rightarrow \nabla_{tan} \phi \propto v_{rel}$ , "tangential gradient"

dial gradient"



## The Effect of the Gradient

- Nuclear Magnetic Resonance often used to search for pseudoscalar LSDM couplings, e.g. in CASPEr-Wind experiment



Joshua Eby (Weizmann)



### **Orientation and DM Wind**

 $(\overrightarrow{\nabla}\phi)_{\rm rad}\times\overrightarrow{S}_N\to 0$ 



### **Orientation and DMWind**



### **Orientation and DMWind**



### **Orientation and DMWind**



### Orientation and DM Wind

Sun

Earth

 $(\vec{\nabla}\phi)_{\rm rad}$ 

Solar Halo





Signal depends both on detector orientation and latitude!

### Orientation and DM Wind

Solar Halo

Sun

 $\vec{\nabla}\phi$ )<sub>rad</sub>

Earth



# Signal Modulation (Solar Halo)



bound axion halos in our solar system

• Upshot: Sideband analysis in existing axion experiments can distinguish virialized LSDM from
### Conclusions



- For LSDM at galactic scales:
  - Solitons not found in large sample of galactic rotation curves; constrain  $10^{-22} \,\mathrm{eV} \lesssim m_{\phi} \lesssim 10^{-21} \,\mathrm{eV}$  $\bullet$
  - Absence of excess velocity dispersion in Milky Way Dwarf Spheroidal galaxies potentially probes lacksquare $10^{-21} \,\mathrm{eV} \lesssim m_{\phi} \lesssim 10^{-20} \,\mathrm{eV}$
- For LSDM at solar system scale:
  - Scalar 'halos' bound to Earth or Sun offer novel modulating signals and directional information (if they in fact form)
  - Phenomenology interesting! Such halos can be probed even for very small couplings, due to large density and enhancement to coherence properties (compared to virialized DM)

### Thanks!

### Bonus Round

### Light Scalars: Phenomenological Story

- DM field  $\phi$  with extremely small mass  $10^{-22} \,\mathrm{eV} \lesssim m_{\phi} \lesssim \mathrm{eV}$
- Output Can have scalar or pseudoscalar couplings to matter



Might couple only gravitationally...!



"Relaxions"

Graham, Kaplan, Rajendran (1504.07551) Flacke, Frugiuele, Fuchs, Gupta, Perez (1610.02025)

### Minimizing NR energy $E[\psi] = \int d^3r \left[ \frac{|\nabla \psi|^2}{2m_{\phi}} + \frac{1}{2}V_g |\psi|^2 - \frac{1}{16f^2} |\psi|^4 + \frac{1}{288m_{\phi}f^4} |\psi|^6 - \dots \right]$ $\frac{E(R_{\star})}{M_{\star}} \sim \frac{a}{m_{\phi}^2 R_{\star}^2} - \frac{b G M_{\star}}{R_{\star}} - \frac{c M_{\star}}{m_{\phi}^2 f^2 R_{\star}^3} + \frac{d M_{\star}^2}{m_{\phi}^4 f^4 R_{\star}^6} - \dots$ or

43

Large  $R_{\star}$ : Balance these forces



### Dilute **Axion Stars**

Kaup (Phys Rev 1968); **Ruffini and Bonazzola (Phys Rev 1969)** 

Chavanis (1103.2050), with Delfini (1103.2054)

# or



43

Dilute

**Axion Stars** 



43

Dilute

**Axion Stars** 

$$\begin{array}{l} \textbf{Minimizing NR energy} \\ E[\psi] = \int d^3r \left[ \frac{|\nabla \psi|^2}{2m_{\phi}} + \frac{1}{2}V_g |\psi|^2 - \frac{1}{16f^2} |\psi|^4 + \frac{1}{288 m_{\phi} f^4} |\psi|^6 - \dots \right] \\ \textbf{or} \quad \frac{E(R_{\star})}{M_{\star}} \sim \frac{a}{m_{\phi}^2 R_{\star}^2} - \frac{b \, G M_{\star}}{R_{\star}} - \frac{c \, M_{\star}}{m_{\phi}^2 f^2 R_{\star}^3} + \frac{d \, M_{\star}^2}{m_{\phi}^4 f^4 \, R_{\star}^6} - \dots \end{array}$$



However, very unstable to decay (to relativistic axions) 

## (2)

Dense **Axion Stars** 

Braaten, Mohapatra, Zhang (1512.00108)

### Small $R_{\star}$ : Balance these forces





Joshua Eby (Weizmann)

### Maximum Axion Halo Density

$$10^{-17}$$

$$10^{-22}$$

$$10^{-27}$$

$$10^{-37}$$

$$10^{-37}$$

$$10^{-42}$$

$$10^{-18}$$

$$10^{-16}$$

$$10^{-10}$$



# Scalar LSDM Couplings

46

### Classic experiments look for long-range force from virtual $\phi$ exchange

Arvanitaki, Huang, Van Tilburg (1405.2925) Hees, Minazzoli, Savalle, Stadnik, Wolf (1807.04512)



(Effective Yukawa potential)

► Is there a way to do better??



# Scalar LSDM Couplings

### Classic experiments look for long-range force from virtual $\phi$ exchange

Arvanitaki, Huang, Van Tilburg (1405.2925) Hees, Minazzoli, Savalle, Stadnik, Wolf (1807.04512)



(Effective Yukawa potential)

### ► Is there a way to do better??



## Atomic Physics Probes

• Cutting-edge atomic experiments are achieving incredible sensitivity to variation of fundamental constants!

$$\left(\frac{\delta m_e}{m_e}\right)_{exp} \simeq 10^{-14}$$
$$\left(\frac{\delta m_e}{m_e}\right)_{exp} \simeq 10^{-18}$$

- Now possible at high frequency!
- Advantage: direct coupling to scalar field density  $|\phi| = \sqrt{2\rho_{DM}}/m_{\phi}$

$$\mathscr{L} \supset g_e \phi \,\overline{e} \, e + \frac{g_\gamma}{4} \phi \,\overline{e}$$

(Today) 
$$\left(\frac{\delta\alpha}{\alpha}\right)_{exp} \simeq 10^{-16}$$

(*Near future*)

$$\left(\frac{\delta\alpha}{\alpha}\right)_{exp} \simeq 10^{-18}$$

see e.g. Dynamical decoupling Atomic spectroscopy

Aharony, Ackerman, Ozeri, Perez, Savoray, Shaniv (1902.02788)

Antypas, Tretiak, Garcon, Ozeri, Perez, Budker (1905.02968)





### Sensitivity to Axion Halos

Big boost in the presence of an axion halo!



Banerjee, Budker, JE, Kim, Perez (1902.08212)



Joshua Eby (Weizmann)

### Detect transient axion stars on earth?

 $\delta \propto \rho_{local}^{-1} R_{\star}^{-4} m_{\phi}^{-2}$ 

 $\Gamma \propto \rho_{local} R_{\star}^3 m_{\phi}^2$ 



Banerjee, Budker, JE, Kim, Perez (1902.08212)



### The energy in the soliton is $E = \int d^{3}x \left[ \frac{|\nabla \psi|^{2}}{2m_{\phi}^{2}} + \frac{\Phi |\psi|^{2}}{2} \right] = \frac{1}{2}$

• Therefore  $E_{\lambda} = \frac{\mu_{\lambda}}{3} M_{\lambda} = \frac{\lambda^3}{3} \mu_1 M_1 \approx$ 

## Solving for Solitons (1.5)

$$\frac{M_P^2}{4\pi m_{\phi}} \int d^3x \left[ \frac{\nabla \chi^2}{2} + \frac{\Phi \chi^2}{2} \right] = \frac{\mu}{3} M$$

$$\lambda - 0.476 \lambda^3 \frac{M_P^2}{m_{\phi}}$$
, and  $M_{\lambda} \approx 2.06 \lambda \frac{M_P^2}{m_{\phi}}$ 

### Do baryons shift the soliton-host halo relation?

### $m_{\phi} = 10^{-22} \,\mathrm{eV}$



### $m_{\phi} = 10^{-21} \,\mathrm{eV}$

Bar, Blum, JE, Sato (1903.03402)