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One-slide summary
Plasmons are longitudinal EM modes with typical energy 

 in Si, Ge semiconductorsωp ≈ 16 − 17 eV
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Plasmons can be produced by bremsstrahlung of recoiling nuclei. 
For sub-GeV dark matter, this provides a new way to observe 

nuclear recoils that would otherwise be too low in energy to detect.



Motivation
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Status of the Low-mass (GeV-scale) Dark Matter Searches

 27

Future improvement relies on suppression of known/unknown background with a 
reasonable large target mass.

Discovery Limits due to CEvNS 
(Ruppin, Billard et al.)

XENON1T 
S1+S2

XENON1T 
S2-Only

DarkSide-50 S2-Only

CRESST-III

Figure from talk by Kaixuan Ni at DPF 2019
Motivation
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Direct detection of dark matter has motivated many experimental efforts

Conventional channel: 2 à 2 dark matter – nucleus scattering 

From Schumann, 1903.03026
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Traditional approach to direct 
detection of dark matter: 

DM-nucleus scattering



Challenges for sub-GeV DM
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Kinematics of nuclear recoils from light dark matter

Drops quickly below mχ ∼ 10 GeV

Motivation
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Recoiling nucleus loses energy in material. Observables: heat, scintillation light, 
ionization

Sub-GeV DM is difficult to detect with conventional nuclear recoil searches 
Light DM deposits small recoil energy. 

Current state-of-the art:

ER =
|q|2

2mN


2µ2
�Nv2

mN

Ethreshold
R & 30 eV ! m� & 0.5GeV

Figure courtesy of the 
XENON1T collaboration

Best nuclear recoil threshold is currently  
(CRESST-III) with DM reach of . 

Large unknown backgrounds at these energies.

ER > 30 eV
mχ > 160 MeV



Dark Matter “Gold Rush”
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 Scintillation photons→

Graphic from talk by Kaixuan Ni

 Phonons→

Best threshold of  
(CRESST-III) from phonons and 

photons.

ER > 30 eV

ionized atoms or electron-hole pairs in 
semiconductors; many experiments 
have shown sensitivity to O(1) or few 
e-, corresponding to as low as ~eV 

electronic energy.

The charge and light yield for 
nuclear recoils below few hundred 

eV is not well understood, but 
expected to be ~0 on average.

Challenges for sub-GeV DM



Strategies for detecting nuclear recoils 
from sub-GeV DM

• Detectors in development to reach heat/phonon 
thresholds of ~ eV and below (e.g. SuperCDMS SNOLAB)
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1. Decreasing the heat threshold



Strategies for detecting nuclear recoils 
from sub-GeV DM

• Detectors in development to reach heat/phonon 
thresholds of ~ eV and below (e.g. SuperCDMS SNOLAB) 

• Direct phonon excitations from DM scattering  
At low enough energies, cannot treat as free nucleus; harmonic 
potential matters.  for acoustic and optical phonons 
in crystals. (many works, e.g. Griffin, Knapen, TL, Zurek 2018; Cox, Melia, Rajendran 2019)

ω ≈ 1 − 100 meV
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1. Decreasing the heat threshold

DM-phonon 

scattering

� � Kinematics of phonons 

relevant (and advantageous) 

for sub-MeV dark matter



Strategies for detecting nuclear recoils 
from sub-GeV DM

• Atomic Migdal effect 
Ionization of electrons 
which have to ‘catch up’ 
to recoiling nucleus 
(e.g. Ibe, Nakano, Shoji, Suzuki 2017)

8

2. Increasing the charge signal

Motivation
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At low energies, many-body effects in the material can become important and 
provide additional sensitivity

Examples:
• Phonons

• Migdal effect
(ionization from nuclear recoil)

• Plasmons (this talk)

Knapen, Lin, Pyle, Zurek, 1712.06598; Griffin, Knapen, Lin, Zurek, 1807.10291; 
Cox, Melia, Rajendran, 1905.05575; Campbell-Deem, Cox, Knapen, Lin, Melia, 1911.03482; 
Schutz, Zurek, 1604.08206; Knapen, Lin, Zurek, 1611.06228; Acanfora, Esposito, Polosa, 1902.02361

Ibe, Nakano, Shoji, Suzuki, 1707.07258; Dolan, Kahlhoefer, McCabe, 1711.09906;
Bell, Dent, Newstead, Sabharwal, Weiler, 1905.00046; Baxter, Kahn, Krnjaic, 1908.00012; 
Essig, Pradler, Sholapurkar, Yu, 1908.10881

Kurinsky, Baxter, Kahn, Krnjaic, 2002.06937; Kozaczuk, Lin, 2003.12077  

From 1711.09906

From 1711.09906



Strategies for detecting nuclear recoils 
from sub-GeV DM

• Atomic Migdal effect 
Ionization of electrons 
which have to ‘catch up’ 
to recoiling nucleus 
(e.g. Ibe, Nakano, Shoji, Suzuki 2017) 

• Bremsstrahlung of (transverse) photons in LXe 

• Plasmons (+ionization signals) in semiconductors 
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Many-body effects are relevant in many of these cases!

2. Increasing the charge signal

Motivation

Kozaczuk 4

At low energies, many-body effects in the material can become important and 
provide additional sensitivity

Examples:
• Phonons

• Migdal effect
(ionization from nuclear recoil)

• Plasmons (this talk)

Knapen, Lin, Pyle, Zurek, 1712.06598; Griffin, Knapen, Lin, Zurek, 1807.10291; 
Cox, Melia, Rajendran, 1905.05575; Campbell-Deem, Cox, Knapen, Lin, Melia, 1911.03482; 
Schutz, Zurek, 1604.08206; Knapen, Lin, Zurek, 1611.06228; Acanfora, Esposito, Polosa, 1902.02361

Ibe, Nakano, Shoji, Suzuki, 1707.07258; Dolan, Kahlhoefer, McCabe, 1711.09906;
Bell, Dent, Newstead, Sabharwal, Weiler, 1905.00046; Baxter, Kahn, Krnjaic, 1908.00012; 
Essig, Pradler, Sholapurkar, Yu, 1908.10881

Kurinsky, Baxter, Kahn, Krnjaic, 2002.06937; Kozaczuk, Lin, 2003.12077  

From 1711.09906

From 1711.09906

Kouvaris & Pradler 2016



Plasmons
• Simple picture: uniform 

displacement of electrons by r 
 
 
 
 
 
 

• Plasmons are quantized longitudinal 
E-field excitations in the medium 
(contrast with “transverse photons”)
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red: ion blue: electron

Electron gas in fixed ion background
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Limits on event rates

90% upper limits: 6.1 Hz/kg for 1e�, 5.6 ⇥ 10�2 Hz/kg for 2e�

We set new records for 1e� and 2e� rates in semiconductors
I cf. arXiV:2002.06937 from last Wine+Cheese

Sho Uemura SENSEI March 27, 2020 27/ 30

Slide from SENSEI talk, based on figure from Kurinsky et al.
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Plasmons from dark matter?
Kurinsky, Baxter, Kahn, Krnjaic (2002.06937) propose plasmons from DM as an 

explanation of low-energy excess rates seen in semiconductor-target experiments

Recent 
SENSEI 
results

• Excess in 1e- or 2e- bins 
(assumption requiring plasmon 
decays to phonons) 

• If nuclear recoil, requires 
O( ) probability to produce 
plasmons 

• Could also be excited by large flux 
of fast-moving millicharged DM

10−3 − 1

(more on this later)
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Plasmons from dark matter?
Our goal: calculate the plasmon excitation rate from nuclear 

recoils in semiconductors. This is an additional charge signal that 
should be included and can improve reach for sub-GeV DM.

�

�

Recoiling ion 
(nucleus + core 

electrons)

For nuclear recoil energy 
 

treat as a free nucleus with tightly 
bound core electrons. Valid for 

. 
 

Bremsstrahlung of a longitudinal mode, 
or a current source which loses energy 

to plasmon mode in the material.

ωphonon ≪ ER ≲ Ecore

10 MeV ≲ mχ ≲ 1 GeV

Plasmon decays to 
electron-hole pair



Electron gas model
• First approach: bremsstrahlung of a longitudinal mode in a simplified 

model of a metal (degenerate electron gas in fixed ion BG) 

• Plasmon appears as a zero of the dielectric function 
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Gauss’s law without 
external source ✏̂L(!,k)k ·E = 0 ! k ·E 6= 0 when ✏̂L(!,k) = 0

<latexit sha1_base64="su6cCVDxAsNU7DhW+ikqFujuCu4="></latexit>



Electron gas model
• First approach: bremsstrahlung of a longitudinal mode in a simplified 

model of a metal (degenerate electron gas in fixed ion BG) 

• Plasmon appears as a zero of the dielectric function 
 

• Or as a pole in the longitudinal propagator

14

(Coulomb gauge)

Gauss’s law without 
external source

D00(!,k) =
1

k2✏̂L(!,k)
=

1

k2 �⇧L(!,k)

✏̂L(!,k) = 1� ⇧L(!,k)

k2
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✏̂L(!,k)k ·E = 0 ! k ·E 6= 0 when ✏̂L(!,k) = 0
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• Dielectric function for non-interacting electrons (Lindhard formula) 
at zero temperature:

Electron gas model

15

(can be obtained from virtual electron excitations, or from forward scattering calculation)

Sum over occupied 
electron states |p⟩

 = energy of 
state  

ωp
|p⟩

✏̂L(!,k) = 1 + lim
⌘!0
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• Can be evaluated analytically for plane-wave states and spherical 
Fermi surface (with Fermi velocity  in Si)vF ≈ .007
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II. PLASMON EMISSION IN AN ELECTRON

GAS

To illustrate the essential ideas surrounding plasmon
production in materials, we will start with a simplified
scenario: the textbook model of a metal. Here, we have
a background of heavy ions surrounded by a free degen-
erate gas of valence electrons. Because the electrons have
a fast response time, we can treat the background of ions
as fixed when studying the linear response of the sys-
tem to perturbations. In this setup, there is a collective
mode of longitudinal electron oscillations, the plasmon.
Poisson’s equation in the absence of external charges,
✏̂L(!,k)k · E = 0, implies that collective longitudinal
oscillations can occur when ✏̂L(!,k) = 0, where ✏̂L(!,k)
is the longitudinal dielectric function of the material. A
plasmon mode therefore corresponds to ✏̂L(!,k) = 0.

To see the presence of this mode, we start with the
Lindhard formula for the longitudinal dielectric function

in a crystal at zero temperature [31]:

✏̂L(!,k) = 1 + lim
⌘!0

4⇡↵em
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ik·r

|p � ki|
2
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o

where we are summing over all occupied electron Bloch
states |pi, !p is the energy of the state |pi, V is the
volume of the system, and ↵em is the fine structure con-
stant. (The sum over di↵erent bands has been omitted in
this formula to simplify the discussion.) This represents
virtual electron-hole excitations that modify the prop-
agation of longitudinal electromagnetic fields. In par-
ticular, this dielectric function is related to the longi-
tudinal electromagnetic polarization tensor ⇧L(!,k) by
✏̂L(!,k) = 1 � ⇧L(!,k)/|k|

2, and the plasmon corre-
sponds to a pole in the longitudinal propagator (for re-
views that elaborate on this, see e.g. Refs. [32, 33]).

For a degenerate electron gas, Eq. 2 can be evalu-
ated with plane-wave states. Taking the Fermi surface to
be spherical and summing over states |pi with p < pF ,
where p = |p| and pF is the Fermi momentum, one finds

✏̂L(!,k) = 1 + lim
⌘!0
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In this expression, the plasma frequency is given by

!
2
p =

4⇡↵emne

me
(4)

where ne is the number density of valence electrons, me

is the (in-medium) electron mass, and vF ⇠ 10�2 is the
Fermi velocity.

The plasmon appears as a zero in Eq. 3, which in the
small k limit has the form

✏̂L(!, k) ⇡ 1 �
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+ ...
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Thus the plasmon mode has frequency !p at k = 0 and
has a weak dispersion with momentum. In Eq. 5, we
have taken the ⌘ ! 0 limit and there is no imaginary
part, but in general there is a finite width � or inverse
damping time in the material, which can be accounted
for by taking !

2
! !

2+i!� in Eq. 5. In the free electron
gas model, the plasmon is long-lived at small k. Mean-
while, for k >

⇠ !p/vF , the plasmon dispersion matches
onto kinematically-accessible single electron-hole excita-
tions and thus has a large decay width. Given this large

width, the plasmon is only well-defined for k <
⇠ !p/vF

(roughly 2.4 keV in Si or Ge).
Because of the momentum cuto↵ and high energy

for plasmons, it is only kinematically possible for DM
to excite a single plasmon if the DM velocity is high,
v >

⇠ 0.01 [21]. However, it is possible for plasmons to be
produced by DM with typical halo velocities of v ⇠ 10�3

if they are produced in association with another excita-
tion such as a nuclear recoil; this gets around the restric-
tions of the 2-body kinematics by allowing the recoil to
absorb most of the momentum. Another way to view this
process is from the point of view of the recoiling ion: a
low-energy ion cannot excite the plasmon while satisfy-
ing energy and momentum conservation, but in this case
an o↵-shell ion emits the plasmon.

The rate for DM-nucleus scattering with plasmon emis-
sion can be obtained in the electron gas model using the
machinery of quantum field theory. The process is sim-
ply DM-nucleus scattering accompanied by electromag-
netic bremsstrahlung radiation [29], but with an exter-
nal longitudinal mode. We use the results of Ref. [34],
which obtained simple analytic approximations for the
k-dependent plasmon pole location and residue. The po-

Plasmon mode near classical 
plasmon frequency, with weak 

dispersion



Electron gas model
• Plasmon is infinitely long lived for 

small k in this toy model 

• For  (~2.4 keV in Si,Ge)  
the plasmon dispersion matches 
onto single electron excitations and 
there is a large plasmon decay width. 

• Plasmons cannot be directly 
produced by DM with typical halo 
velocities v ~ 1e-3:

k ≳ ωp/vF
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Plasmon mode near the classical plasma frequency and weak dispersion with k

Only well-defined for                        (~2.4 keV in Si, Ge). At higher k values, large 
width from kinematically accessible decays to electron-hole pairs. 

Plasmons cannot be produced directly by DM with typical halo velocities v ~10-3

Can instead be produced through nuclear recoils, as suggested in 2002.06937. 
Analogous to bremsstrahlung (Kouvaris, Pradler, 1607.01789) but with an 
external longitudinal mode
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To illustrate the essential ideas surrounding plasmon
production in materials, we will start with a simplified
scenario: the textbook model of a metal. Here, we have
a background of heavy ions surrounded by a free degen-
erate gas of valence electrons. Because the electrons have
a fast response time, we can treat the background of ions
as fixed when studying the linear response of the sys-
tem to perturbations. In this setup, there is a collective
mode of longitudinal electron oscillations, the plasmon.
Poisson’s equation in the absence of external charges,
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where we are summing over all occupied electron Bloch
states |pi, !p is the energy of the state |pi, V is the
volume of the system, and ↵em is the fine structure con-
stant. (The sum over di↵erent bands has been omitted in
this formula to simplify the discussion.) This represents
virtual electron-hole excitations that modify the prop-
agation of longitudinal electromagnetic fields. In par-
ticular, this dielectric function is related to the longi-
tudinal electromagnetic polarization tensor ⇧L(!,k) by
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In this expression, the plasma frequency is given by
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Thus the plasmon mode has frequency !p at k = 0 and
has a weak dispersion with momentum. In Eq. ??, we
have taken the ⌘ ! 0 limit and there is no imaginary
part, but in general there is a finite width � or inverse
damping time in the material, which can be accounted for
by taking !
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gas model, the plasmon is long-lived at small k. Mean-
while, for k >

⇠ !p/vF , the plasmon dispersion matches
onto kinematically-accessible single electron-hole excita-
tions and thus has a large decay width. Given this large

width, the plasmon is only well-defined for k <
⇠ !p/vF

(roughly 2.4 keV in Si or Ge).
Because of the momentum cuto↵ and high energy

for plasmons, it is only kinematically possible for DM
to excite a single plasmon if the DM velocity is high,
v >

⇠ 0.01 [? ]. However, it is possible for plasmons to be
produced by DM with typical halo velocities of v ⇠ 10�3

if they are produced in association with another excita-
tion such as a nuclear recoil; this gets around the restric-
tions of the 2-body kinematics by allowing the recoil to
absorb most of the momentum. Another way to view this
process is from the point of view of the recoiling ion: a
low-energy ion cannot excite the plasmon while satisfy-
ing energy and momentum conservation, but in this case
an o↵-shell ion emits the plasmon.

The rate for DM-nucleus scattering with plasmon emis-
sion can be obtained in the electron gas model using the
machinery of quantum field theory. The process is sim-
ply DM-nucleus scattering accompanied by electromag-
netic bremsstrahlung radiation [? ], but with an exter-
nal longitudinal mode. We use the results of Ref. [? ],
which obtained simple analytic approximations for the
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To illustrate the essential ideas surrounding plasmon
production in materials, we will start with a simplified
scenario: the textbook model of a metal. Here, we have
a background of heavy ions surrounded by a free degen-
erate gas of valence electrons. Because the electrons have
a fast response time, we can treat the background of ions
as fixed when studying the linear response of the sys-
tem to perturbations. In this setup, there is a collective
mode of longitudinal electron oscillations, the plasmon.
Poisson’s equation in the absence of external charges,
✏̂L(!,k)k · E = 0, implies that collective longitudinal
oscillations can occur when ✏̂L(!,k) = 0, where ✏̂L(!,k)
is the longitudinal dielectric function of the material. A
plasmon mode therefore corresponds to ✏̂L(!,k) = 0.

To see the presence of this mode, we start with the
Lindhard formula for the longitudinal dielectric function

in a crystal at zero temperature [? ]:
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where we are summing over all occupied electron Bloch
states |pi, !p is the energy of the state |pi, V is the
volume of the system, and ↵em is the fine structure con-
stant. (The sum over di↵erent bands has been omitted in
this formula to simplify the discussion.) This represents
virtual electron-hole excitations that modify the prop-
agation of longitudinal electromagnetic fields. In par-
ticular, this dielectric function is related to the longi-
tudinal electromagnetic polarization tensor ⇧L(!,k) by
✏̂L(!,k) = 1 � ⇧L(!,k)/|k|

2, and the plasmon corre-
sponds to a pole in the longitudinal propagator (for re-
views that elaborate on this, see e.g. Refs. [? ? ]).

For a degenerate electron gas, Eq. ?? can be evalu-
ated with plane-wave states. Taking the Fermi surface to
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In this expression, the plasma frequency is given by
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where ne is the number density of valence electrons, me
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Fermi velocity.
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Thus the plasmon mode has frequency !p at k = 0 and
has a weak dispersion with momentum. In Eq. ??, we
have taken the ⌘ ! 0 limit and there is no imaginary
part, but in general there is a finite width � or inverse
damping time in the material, which can be accounted for
by taking !

2
! !

2 + i!� in Eq. ??. In the free electron
gas model, the plasmon is long-lived at small k. Mean-
while, for k >

⇠ !p/vF , the plasmon dispersion matches
onto kinematically-accessible single electron-hole excita-
tions and thus has a large decay width. Given this large
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We present a first calculation of the rate for plasmon production in semiconductors from nuclei
recoiling against dark matter. The process is analogous to bremsstrahlung of transverse photon
modes, but with a longitudinal plasmon mode emitted instead. For dark matter in the 10 MeV
– 1 GeV mass range, we find that the plasmon bremsstrahlung rate is 4 � 5 orders of magnitude
smaller than that for elastic scattering, but 4 � 5 orders of magnitude larger than the transverse
bremsstrahlung rate. Because the plasmon can decay into electronic excitations and has character-
istic energy given by the plasma frequency !p, with !p ⇡ 16 eV in Si crystals, plasmon production
provides a distinctive signature and new method to detect nuclear recoils from sub-GeV dark matter.

I. INTRODUCTION

There have been significant e↵orts recently to directly
detect dark matter (DM) in the low-mass (sub-GeV)
regime [1]. As experiments lower their energy thresholds,
collective many-body e↵ects can become increasingly im-
portant and enhance the discovery potential beyond that
of traditional searches for hard nuclear recoils. Exam-
ples can be found in numerous theoretical studies of di-
rect detection of sub-GeV dark matter, including with
semiconductors [2–5], superconductors [6–8], Dirac ma-
terials [9–13], phonon excitations in crystals [14–17] and
in superfluid He [18–20], and others.

Recently, Ref. [21] has highlighted a number of low-
energy residual rates in experiments achieving the low-
est thresholds thus far, and points out the relevance of
many-body e↵ects for understanding them. The rates
are comparable in SENSEI [22], CDMS HVeV [23], and
EDELWEISS [24, 25], though much lower in DAMIC [26].
These experiments all rely on solid-state targets, namely
Si and Ge semiconductors.

Ref. [21] has proposed that such excesses could be ex-
plained as DM exciting in semiconductors, since no ex-
cesses with corresponding rates have been observed in
noble liquid experiments such as XENON1T [27] and
DarkSide [28]. One of their proposed ideas is the sec-
ondary production of plasmons during DM-nucleus scat-
tering from DM with mass in the 30 MeV – GeV range.
This could in principle match the observed rates if the
probability to produce the plasmon is ⇠ 10�3

� 1.
In this work, we provide a first estimate of the plas-

mon production rate from nuclei recoiling against GeV-
scale dark matter, focusing on Si and Ge semiconductors.
Plasmons in a semiconductor are the collective oscilla-
tions of the valence electrons. The key idea we will use
is to approximate the plasmon as a longitudinal mode
of a degenerate electron gas (i.e. a metal). This is jus-
tified since plasmons carry an energy of !p ⇡ 10 � 20
eV, which is much larger than the band gap ⇠ eV of a
semiconductor.

The process by which a recoiling nucleus can emit
a plasmon is similar to the bremsstrahlung emission
of transverse photons, which was previously treated in

Ref. [29]. Here we consider the bremsstrahlung of longi-
tudinal modes:

�(p) + N ! �(p0) + N(qN ) + !L(k) (1)

where � is the dark matter, N(qN ) is a nucleus with en-
ergy ER = q

2
N/(2mN ), and !L(k) is a plasmon mode

with 3-momentum k and energy !L(k). We will focus on
dark matter in the 10 MeV–1 GeV mass range. Then the
energy scales for the plasmon and nuclear recoils are both
>
⇠ eV, larger than the highest phonon energy ⇠ 40 � 60
meV in a Ge or Si crystal. As a result, we will treat the
DM interaction as scattering o↵ of a free ion (nucleus
surrounded by tightly-bound core electrons). The recoil-
ing ion is a current source and can lose energy into both
transverse photon and longitudinal plasmon modes.

With these approximations, we find that the rate for
plasmon production through the process in Eq. 1 is typ-
ically 4-5 orders of magnitude smaller than the elastic
nuclear recoil rate, and therefore cannot explain the ex-
cesses studied in Ref. [21]. (Note that the mechanism
of Ref. [21] involved a plasmon produced in association
with many phonons, and is therefore not captured by
our approach.) Nevertheless, bremsstrahlung emission of
plasmons by a recoiling nucleus is a novel signature of
dark matter scattering in semiconductor targets, and we
find that the corresponding rate is around 5 orders of
magnitude larger than that for bremsstrahlung emission
of transverse modes. Because plasmons can be detected
in the form of electronic energy, this process can be used
to extend the reach of current experiments to much lower
DM masses.

The rest of this study is structured as follows. We will
begin in Sec. II with an introduction to the physics of
plasmons and provide an estimate for the plasmon rate in
a metal. We then discuss plasmon production in semicon-
ductors in Sec. III, computing the rate using a classical
approach (an alternative quantum mechanical derivation
is provided in an appendix). In Sec. IV, we use these re-
sults to estimate the potential reach of a plasmon search
in Si and Ge, comparing against the sensitivity provided
by elastic nuclear recoils and the Migdal e↵ect, wherein
an electron is excited in the nuclear recoil [30]. We con-
clude in Sec. V.
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We present a first calculation of the rate for plasmon production in semiconductors from nuclei
recoiling against dark matter. The process is analogous to bremsstrahlung of transverse photon
modes, but with a longitudinal plasmon mode emitted instead. For dark matter in the 10 MeV
– 1 GeV mass range, we find that the plasmon bremsstrahlung rate is 4 � 5 orders of magnitude
smaller than that for elastic scattering, but 4 � 5 orders of magnitude larger than the transverse
bremsstrahlung rate. Because the plasmon can decay into electronic excitations and has character-
istic energy given by the plasma frequency !p, with !p ⇡ 16 eV in Si crystals, plasmon production
provides a distinctive signature and new method to detect nuclear recoils from sub-GeV dark matter.

I. INTRODUCTION

There have been significant e↵orts recently to directly
detect dark matter (DM) in the low-mass (sub-GeV)
regime [? ]. As experiments lower their energy thresh-
olds, collective many-body e↵ects can become increas-
ingly important and enhance the discovery potential be-
yond that of traditional searches for hard nuclear recoils.
Examples can be found in numerous theoretical studies of
direct detection of sub-GeV dark matter, including with
semiconductors [? ? ? ? ], superconductors [? ? ? ],
Dirac materials [? ? ? ? ? ], phonon excitations in
crystals [? ? ? ? ] and in superfluid He [? ? ? ], and
others.

Recently, Ref. [? ] has highlighted a number of low-
energy residual rates in experiments achieving the low-
est thresholds thus far, and points out the relevance of
many-body e↵ects for understanding them. The rates
are comparable in SENSEI [? ], CDMS HVeV [? ], and
EDELWEISS [? ? ], though much lower in DAMIC [? ].
These experiments all rely on solid-state targets, namely
Si and Ge semiconductors.

Ref. [? ] has proposed that such excesses could be
explained as DM exciting in semiconductors, since no
excesses with corresponding rates have been observed in
noble liquid experiments such as XENON1T [? ] and
DarkSide [? ]. One of their proposed ideas is the sec-
ondary production of plasmons during DM-nucleus scat-
tering from DM with mass in the 30 MeV – GeV range.
This could in principle match the observed rates if the
probability to produce the plasmon is ⇠ 10�3

� 1.
In this work, we provide a first estimate of the plas-

mon production rate from nuclei recoiling against GeV-
scale dark matter, focusing on Si and Ge semiconductors.
Plasmons in a semiconductor are the collective oscilla-
tions of the valence electrons. The key idea we will use
is to approximate the plasmon as a longitudinal mode
of a degenerate electron gas (i.e. a metal). This is jus-
tified since plasmons carry an energy of !p ⇡ 10 � 20
eV, which is much larger than the band gap ⇠ eV of a
semiconductor.

The process by which a recoiling nucleus can emit
a plasmon is similar to the bremsstrahlung emission

of transverse photons, which was previously treated in
Ref. [? ]. Here we consider the bremsstrahlung of longi-
tudinal modes:

�(p) + N ! �(p0) + N(qN ) + !L(k) (1)

where � is the dark matter, N(qN ) is a nucleus with en-
ergy ER = q

2
N/(2mN ), and !L(k) is a plasmon mode

with 3-momentum k and energy !L(k). We will focus on
dark matter in the 10 MeV–1 GeV mass range. Then the
energy scales for the plasmon and nuclear recoils are both
>
⇠ eV, larger than the highest phonon energy ⇠ 40 � 60
meV in a Ge or Si crystal. As a result, we will treat the
DM interaction as scattering o↵ of a free ion (nucleus
surrounded by tightly-bound core electrons). The recoil-
ing ion is a current source and can lose energy into both
transverse photon and longitudinal plasmon modes.

With these approximations, we find that the rate for
plasmon production through the process in Eq. ?? is typ-
ically 4-5 orders of magnitude smaller than the elastic
nuclear recoil rate, and therefore cannot explain the ex-
cesses studied in Ref. [? ]. (Note that the mechanism
of Ref. [? ] involved a plasmon produced in association
with many phonons, and is therefore not captured by
our approach.) Nevertheless, bremsstrahlung emission of
plasmons by a recoiling nucleus is a novel signature of
dark matter scattering in semiconductor targets, and we
find that the corresponding rate is around 5 orders of
magnitude larger than that for bremsstrahlung emission
of transverse modes. Because plasmons can be detected
in the form of electronic energy, this process can be used
to extend the reach of current experiments to much lower
DM masses.

The rest of this study is structured as follows. We will
begin in Sec. ?? with an introduction to the physics of
plasmons and provide an estimate for the plasmon rate in
a metal. We then discuss plasmon production in semicon-
ductors in Sec. ??, computing the rate using a classical
approach (an alternative quantum mechanical derivation
is provided in an appendix). In Sec. ??, we use these re-
sults to estimate the potential reach of a plasmon search
in Si and Ge, comparing against the sensitivity provided
by elastic nuclear recoils and the Migdal e↵ect, wherein
an electron is excited in the nuclear recoil [? ]. We con-
clude in Sec. ??.
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larization vector for the longitudinal mode in Coulomb
gauge is given by
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µ
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with wavefunction renormalization given by
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2
F

!2
p

+ ... (7)

in the k ⌧ !p/vF limit. These results are obtained di-
rectly from the in-medium longitudinal polarization ten-
sor as described in Ref. [? ].

In what follows we will restrict ourselves to the soft
photon/plasmon limit, defined here to be when the three-
momentum of the photon/plasmon k satisfies |k| ⌧ |qN |

and |k · qN |/mN ⌧ !p, where qN is the momentum of
the recoiling ion. This is a good approximation for DM
masses in the range 10 MeV – 1 GeV, since the typi-
cal momentum transfer is |qN | ⇠ 2µ�Nv ⇠ 20 keV ⇥

(m�/10 MeV), which is much larger than the plasmon
cuto↵ momentum. We have restricted to DM masses
m�

<
⇠ 1 GeV so that ER = |qN |

2
/(2mN ) is not too large

compared to the typical binding energies of the core elec-
trons. In this limit, we can treat the ions as point parti-
cles of charge Zion and mass mN .

With these assumptions, the di↵erential cross section
for a recoiling ion to emit a plasmon in the soft limit is

d
2
�plasmon

dERdk
=

2Z
2
ion↵em

3⇡

ZL(k)k2

!L(k)3
ER

mN
⇥

d�

dER

�����
el

(8)

where ER = q
2
N/(2mN ) is the nuclear recoil energy and

d�/dER|el is the di↵erential cross section for elastic DM-
nucleus scattering, modified to account for the fact that
the DM deposits total energy ER + !L(k). As we ar-
gue in the following section, we expect this expression to
provide a reasonable approximation for the rate in simple
semiconductors as well, and we will use it to compute the
production rates from DM scattering in Sec. ??.

In comparison, the bremsstrahlung rate for transverse
photons in the soft limit is

d
2
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dERdk
=

4Z
2
ion↵em
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ZT (k)k2

!T (k)3
ER

mN
⇥
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dER
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el
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where the transverse modes are well-approximated by a

dispersion !T (k) =
q

!2
p + k2 and ZT (k) ⇡ 1. In the

limit of k � !p, the plasmon bremsstrahlung rate is en-
hanced by a large factor of ZL(k)k3

/!L(k)3; however,
this is partially counteracted by the cuto↵ in plasmon
momentum. Assuming Zion = 4, ER ⇠ 100 eV, and al-
lowing for k up to a keV, Eq. ?? indicates that plasmon
production will be roughly 4 orders of magnitude smaller
than the rate for elastic nuclear scattering. Meanwhile,
the production of transverse modes is smaller than elastic
recoils by roughly 10 orders of magnitude. While the rate

to emit plasmons is small, the plasmon is an electronic
excitation peaked around !p, which provides a unique
complementary signature for nuclear recoils from light
dark matter. In the following section, we discuss how
this simplified scenario is modified in semiconductors.

III. PLASMON EMISSION IN

SEMICONDUCTORS

In semiconductors such as Si and Ge, the plasmon
energy at zero momentum is well-approximated by the
plasma frequency !p, taking ne to be the number density
of valence electrons and me to be the e↵ective electron
mass in the material [? ]. As discussed above, the plas-
mon is a zero in the dielectric function or a pole in the lon-
gitudinal propagator for electromagnetic fields. In what
follows, we will use classical arguments to derive general
results for the energy transfer to soft plasmon and photon
modes in terms of the dielectric function. Given experi-
mental data or first-principles calculations for ✏̂(!,k), we
can in principle account for the many-body physics of a
semiconductor.

We begin this section with a discussion of how the di-
electric function in semiconductors di↵ers from that of
the simple model in the previous section. The first dif-
ference appears in the presence of a band gap, !g ⇡ 1
eV. However, for the materials under consideration such
as Si and Ge, the plasmon frequency !p ⇡ 10 � 20 eV
is much larger than the band gap !g ⇡ eV and the cor-
responding e↵ect is small. This can be seen for example
in the Fröhlich oscillator model for ✏̂L(!) in semiconduc-
tors considered by Refs. [? ? ], which predicts a dielectric
function nearly identical to Eq. ?? for ! near !p (we dis-
cuss this further below).

In contrast to the electron gas, the band structure of a
semiconductor also allows for interband electronic tran-
sitions. These contribute to both the real and imaginary
parts of ✏̂L(!,k) (see e.g. Ref. [? ]). In addition, one
needs to account for the electron wavefunctions, which
are not described by plane waves. Taking all this into
account, we expect the residue of the plasmon pole, the
plasmon dispersion relation and width to be sensitive to
the band structure and wavefunctions of the electron-hole
pairs that contribute to the correlation function. All of
this information is encapsulated inside ✏̂L(!,k).

Despite the di↵erences between semiconductors and
metals, experimental data suggests that in relatively sim-
ple semiconductors, a slight modification of the free elec-
tron gas model of Sec. ?? can provide a good description
of the plasmon pole. The energy loss by charged parti-
cles in a material is characterized by Im(�1/✏̂L(!,k)),
and the plasmon appears as a pole in this quantity. As
discussed in Refs. [? ? ], the Fröhlich oscillator model
describes the plasmon line shape in the k ! 0 limit:
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in the k ⌧ !p/vF limit. These results are obtained di-
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sor as described in Ref. [? ].
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momentum of the photon/plasmon k satisfies |k| ⌧ |qN |

and |k · qN |/mN ⌧ !p, where qN is the momentum of
the recoiling ion. This is a good approximation for DM
masses in the range 10 MeV – 1 GeV, since the typi-
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(m�/10 MeV), which is much larger than the plasmon
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compared to the typical binding energies of the core elec-
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where ER = q
2
N/(2mN ) is the nuclear recoil energy and

d�/dER|el is the di↵erential cross section for elastic DM-
nucleus scattering, modified to account for the fact that
the DM deposits total energy ER + !L(k). As we ar-
gue in the following section, we expect this expression to
provide a reasonable approximation for the rate in simple
semiconductors as well, and we will use it to compute the
production rates from DM scattering in Sec. ??.
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where the transverse modes are well-approximated by a

dispersion !T (k) =
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p + k2 and ZT (k) ⇡ 1. In the
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/!L(k)3; however,
this is partially counteracted by the cuto↵ in plasmon
momentum. Assuming Zion = 4, ER ⇠ 100 eV, and al-
lowing for k up to a keV, Eq. ?? indicates that plasmon
production will be roughly 4 orders of magnitude smaller
than the rate for elastic nuclear scattering. Meanwhile,
the production of transverse modes is smaller than elastic
recoils by roughly 10 orders of magnitude. While the rate

to emit plasmons is small, the plasmon is an electronic
excitation peaked around !p, which provides a unique
complementary signature for nuclear recoils from light
dark matter. In the following section, we discuss how
this simplified scenario is modified in semiconductors.
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energy at zero momentum is well-approximated by the
plasma frequency !p, taking ne to be the number density
of valence electrons and me to be the e↵ective electron
mass in the material [? ]. As discussed above, the plas-
mon is a zero in the dielectric function or a pole in the lon-
gitudinal propagator for electromagnetic fields. In what
follows, we will use classical arguments to derive general
results for the energy transfer to soft plasmon and photon
modes in terms of the dielectric function. Given experi-
mental data or first-principles calculations for ✏̂(!,k), we
can in principle account for the many-body physics of a
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We begin this section with a discussion of how the di-
electric function in semiconductors di↵ers from that of
the simple model in the previous section. The first dif-
ference appears in the presence of a band gap, !g ⇡ 1
eV. However, for the materials under consideration such
as Si and Ge, the plasmon frequency !p ⇡ 10 � 20 eV
is much larger than the band gap !g ⇡ eV and the cor-
responding e↵ect is small. This can be seen for example
in the Fröhlich oscillator model for ✏̂L(!) in semiconduc-
tors considered by Refs. [? ? ], which predicts a dielectric
function nearly identical to Eq. ?? for ! near !p (we dis-
cuss this further below).

In contrast to the electron gas, the band structure of a
semiconductor also allows for interband electronic tran-
sitions. These contribute to both the real and imaginary
parts of ✏̂L(!,k) (see e.g. Ref. [? ]). In addition, one
needs to account for the electron wavefunctions, which
are not described by plane waves. Taking all this into
account, we expect the residue of the plasmon pole, the
plasmon dispersion relation and width to be sensitive to
the band structure and wavefunctions of the electron-hole
pairs that contribute to the correlation function. All of
this information is encapsulated inside ✏̂L(!,k).

Despite the di↵erences between semiconductors and
metals, experimental data suggests that in relatively sim-
ple semiconductors, a slight modification of the free elec-
tron gas model of Sec. ?? can provide a good description
of the plasmon pole. The energy loss by charged parti-
cles in a material is characterized by Im(�1/✏̂L(!,k)),
and the plasmon appears as a pole in this quantity. As
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in the k ⌧ !p/vF limit. These results are obtained di-
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N/(2mN ) is the nuclear recoil energy and

d�/dER|el is the di↵erential cross section for elastic DM-
nucleus scattering, modified to account for the fact that
the DM deposits total energy ER + !L(k). As we ar-
gue in the following section, we expect this expression to
provide a reasonable approximation for the rate in simple
semiconductors as well, and we will use it to compute the
production rates from DM scattering in Sec. ??.
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where the transverse modes are well-approximated by a

dispersion !T (k) =
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p + k2 and ZT (k) ⇡ 1. In the

limit of k � !p, the plasmon bremsstrahlung rate is en-
hanced by a large factor of ZL(k)k3

/!L(k)3; however,
this is partially counteracted by the cuto↵ in plasmon
momentum. Assuming Zion = 4, ER ⇠ 100 eV, and al-
lowing for k up to a keV, Eq. ?? indicates that plasmon
production will be roughly 4 orders of magnitude smaller
than the rate for elastic nuclear scattering. Meanwhile,
the production of transverse modes is smaller than elastic
recoils by roughly 10 orders of magnitude. While the rate

to emit plasmons is small, the plasmon is an electronic
excitation peaked around !p, which provides a unique
complementary signature for nuclear recoils from light
dark matter. In the following section, we discuss how
this simplified scenario is modified in semiconductors.

III. PLASMON EMISSION IN

SEMICONDUCTORS

In semiconductors such as Si and Ge, the plasmon
energy at zero momentum is well-approximated by the
plasma frequency !p, taking ne to be the number density
of valence electrons and me to be the e↵ective electron
mass in the material [? ]. As discussed above, the plas-
mon is a zero in the dielectric function or a pole in the lon-
gitudinal propagator for electromagnetic fields. In what
follows, we will use classical arguments to derive general
results for the energy transfer to soft plasmon and photon
modes in terms of the dielectric function. Given experi-
mental data or first-principles calculations for ✏̂(!,k), we
can in principle account for the many-body physics of a
semiconductor.

We begin this section with a discussion of how the di-
electric function in semiconductors di↵ers from that of
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as Si and Ge, the plasmon frequency !p ⇡ 10 � 20 eV
is much larger than the band gap !g ⇡ eV and the cor-
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parts of ✏̂L(!,k) (see e.g. Ref. [? ]). In addition, one
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account, we expect the residue of the plasmon pole, the
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Standard bremsstrahlung calculation in QFT 
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In the limit of soft brem,  (valid for us):k ≪ 2mNER

Elastic DM-nucleus 
scattering cross section



Electron gas model

18

d2�plasmon

dERdk
=

2Z2
ion↵em

3⇡

ZL(k)k2

!L(k)3
ER

mN
⇥ d�

dER

�����
el

<latexit sha1_base64="7mg6SpsnexyBZiaNpBPKheoKUEQ="></latexit>

In the limit of soft brem,  (valid for us):k ≪ 2mNER

Contrast with soft brem of transverse photons:

d2��

dERdk
=

4Z2
ion↵em

3⇡

ZT (k)k2

!T (k)3
ER

mN
⇥ d�

dER

�����
el

<latexit sha1_base64="EDy3JDoj4qFQM2ceSRoZUTJ+Ajc="></latexit>

∼ 10−5 − 10−4

∼ 10−10 − 10−9

Bremsstrahlung of plasmons is low-probability, but may be the 
leading ionization signal for low-energy nuclear recoils



Plasmon production in semiconductors

Differences from simplified electron gas picture: 
    

• Band gap:  
(but ) 

• Electron wavefunctions:  
plane waves  Bloch waves 

• Interband transitions 

These effects are all accounted for in the dielectric function 
of the material!  Rewrite plasmon production in terms of 

ωg ∼ O(1) eV
ωg ≪ ωp

→
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different bands, we should add a symbol, say n, to the C’s to serve as a band
index: Cn(k ! G). Thus the Bloch function for a state of wavevector k in the
band n can be written as

Periodic Zone Scheme

We can repeat a given Brillouin zone periodically through all of wavevec-
tor space. To repeat a zone, we translate the zone by a reciprocal lattice vector.
If we can translate a band from other zones into the first zone, we can translate
a band in the first zone into every other zone. In this scheme the energy !k of a
band is a periodic function in the reciprocal lattice:

(2)

Here !k!G is understood to refer to the same energy band as !k.

!k " !k!G .

"n,k " exp(ik ! r)un,k(r) " ! 
G

Cn(k ! G) exp[i(k ! G) ! r] .

9  Fermi Surfaces and Metals 225
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Extended zone scheme

Reduced zone scheme

Periodic zone scheme
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Figure 4 Three energy bands of a linear lattice plotted in (a) the extended (Brillouin), 
(b) reduced, and (c) periodic zone schemes.
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Plasmon production in semiconductorsPlasmon emission in semiconductors

Kozaczuk 13

Consider current sourced by ion recoiling against DM

Energy transfer to material given by 

Considering the longitudinal part (ignoring local field effects):

4

FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be

W = �
Z

d
3
k

Z 1

0

d!

(2⇡)4
2Re [J⇤

ion(!,k) ·E(!,k)] . (12)

Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
i

!
Zion evion ·

k

k
(13)

up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
the angular k integration yields

dWL
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without

c
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.
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transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
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Zion evion ·
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <
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We can also neglect the e↵ects of the ion harmonic po-
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on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
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comes
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.
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transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
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!, and the longitudinal current density corresponding to
Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
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The data is well approximated near the pole by the simplified
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the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
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where we have identified the quantity E
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the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
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Zion evion ·
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
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where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be

W = �
Z

d
3
k

Z 1

0

d!

(2⇡)4
2Re [J⇤

ion(!,k) ·E(!,k)] . (12)

Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
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where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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plotted here using collected experimental data on Si (solid
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where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
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Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.
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to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without

4

FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧
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Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
the angular k integration yields

dWL

dk
=

Z 1

0

d!
2Z2

ion↵em

3⇡2
|vion|2

k
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without

(neglecting damping effects, harmonic potential) 

Characterizes energy loss to 
longitudinal electronic 
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [37]
while data for the other k values is from scattering measure-
ments [38] (shown here for k along the [111] direction in the
crystal). The plasmon appears as a zero in the real part of the
dielectric function, or as a pole in Im(�1/✏̂L(!, k)). The data
is well approximated near the pole by the simplified model of
Sec. II: the dotted curves are Eq. 10, adapted with the residue
factor ZL(k) and !p ! !L(k) from Sec. II. The plasmon width
� is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [36] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in
Si [36]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. 10 reduces to the prediction of the
Drude-Sommerfeld model of a metal [31]; this is just the
free electron gas model of Sec. II, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. 5.

In Fig. 1, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. 10 with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. 1. For finite k, the simplified model of Sec. II
suggests that Eq. 10 should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. 1. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. II to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec II.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be

W = �
Z

d
3
k

Z 1

0

d!

(2⇡)4
2Re [J⇤

ion(!,k) ·E(!,k)] . (12)

Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. 11 becomes

Jion,L(!,k) =
i

!
Zion evion ·

k

k
(13)

up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. 13 and 14 into Eq. 12 and performing
the angular k integration yields

dWL
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=
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. 15 also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be

W = �
Z

d
3
k

Z 1

0

d!

(2⇡)4
2Re [J⇤

ion(!,k) ·E(!,k)] . (12)

Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
i

!
Zion evion ·

k

k
(13)

up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
the angular k integration yields

dWL

dk
=
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0
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2Z2

ion↵em

3⇡2
|vion|2

k
2
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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making the electron gas approximation of the previous
section1. The same quantity Im (�1/✏̂L(!,k)) charac-
terizes energy loss by fast electrons in metals or semicon-
ductors [? ? ].

To make contact with the result of Sec. ??, we ap-
proximate Im (�1/✏̂L(!,k)) using Eq. ?? modified with
a factor of ZL(k) and taking !p ! !L(k); as noted ear-
lier, this agrees well with the experimentally determined
energy loss function in Si (c.f. Fig. ??). To isolate the
contribution from the plasmon pole, we take the � ! 0
limit of this expression, which yields

Im

✓
�1

✏̂L(!,k)

◆
!

ZL(k)⇡!L(k)

2
� (! � !L(k)) (16)

for ! > 0, where we have used the fact that !
2
g ⌧ !L(k)2

and ✏c ⇡ 1. Noting that the number of plasmons pro-
duced at a given energy is dWL/! and performing the !

integration, we arrive at

dNplasmon

dk
'

2Z
2
ion↵em

3⇡

ZL(k)k2

!L(k)3
ER

mN
. (17)

This can be interpreted as the probability for producing
a plasmon with momentum k for a given nuclear recoil
energy, ER. In terms of the cross-section, Eq. ?? corre-
sponds precisely to the prediction of Eq. ??, as antici-
pated.

A similar calculation can be done for transverse exci-
tations. The current in Eq. ?? sources a transverse field

ET (!,k) =
i!

k2 � !2✏̂T (!,k)
JT (!,k). (18)

The corresponding energy loss, WT , is given by the trans-
verse contributions to Eq. ??. Noting that the number
of photons produced at a given energy is dWT /!, the
photon production rate is

dN�

dk
=

Z
d!

8Z2
ion↵em

3⇡2

ERk
2

mN!2
Im

✓
�1

!2✏̂T (!,k)� k2

◆
. (19)

In this expression, ✏̂T (!,k) fully characterizes the trans-
verse response of the semiconductor and does not rely on
the simplifying assumptions of the model in Sec. ??.

We can again apply the oscillator model to infer an
analog of Eq. ?? for Im(�1/(!2

✏̂T (!,k) � k
2)). Starting

from the same Fröhlich model for ✏̂(!, 0) in e.g. Ref. [? ],
we compute Im(�1/(!2

✏̂T (!, 0)�k
2)), identify k

2+!
2
p as

!
2
T (k), and restore an overall residue factor ZT (k). Then,

taking !
2
g ⌧ !

2
p and ✏c ⇡ 1, one finds that for � ! 0

Im

✓
�1

!2✏̂T (!,k) � k2

◆
!

ZT (k) ⇡

2 !T (k)
� (! � !T (k)) . (20)

1
For comparison with previous studies of DM-induced electron

and phonon excitations [? ? ], note that the quantity

Im (�1/✏̂L(!,k)) is related to the dynamic structure factor by

S(!,k) = k2/(4⇡2↵emne) Im (�1/✏̂L(!,k)), where S(!,k) de-

scribes material response to density perturbations [? ? ]

Inserting this expression into Eq. ?? and performing the
! integration yields the di↵erential probability for excit-
ing a photon with a given k. In terms of the production
cross-section, the final result matches Eq. ??.

Eqs. ?? and ?? in principle fully characterize the en-
ergy loss to plasmons and transverse modes in semicon-
ductors. In order to obtain accurate predictions for DM
experiments, a number of e↵ects must be accounted for
in these energy loss functions. In the calculations above,
we have used the macroscopic Maxwell’s equations and
neglected the e↵ects of crystal periodicity. The relation-
ship between microscopic calculations of ✏̂(!,k) and the
energy loss functions is modified when taking into ac-
count the variation of the microscopic fields over a unit
cell; these corrections are often referred to as local field
e↵ects [? ? ]. They have been shown to modify the
plasmon lineshape and give a better match to electron
energy loss spectroscopy data in Si [? ].

In addition, aside from exciting a photon or plasmon,
an electron could also be excited above the band gap.
In the energy loss rates, this corresponds to a possi-
ble continuum of electron recoils away from the plasmon
and photon poles. This is related to the Migdal e↵ect
in atoms [? ? ? ? ], where electron excitations are
created from nuclear recoils; a first approximation for
semiconductors was studied in Ref. [? ]. Accounting for
this e↵ect would again require experimental data or first-
principles calculations of the structure factor or dielectric
functions.

Besides the plasmon production rate, one must also
determine the plasmon decay products, which would ul-
timately be detected experimentally. The imaginary part
of the dielectric function determines the plasmon de-
cay width, where � = !p Im(✏̂L(!p, 0)) in the k ! 0
limit. To infer its decay products, note that the quan-
tity Im(✏̂L(!, 0)) is closely related to the photoabsorption
rate �1(!) = ! Im(✏̂L(!, 0)); for ! larger than the band
gap, it is dominated by electronic transitions2. Analo-
gous to the electron gas case, where there is a large plas-
mon width to single electron excitations for k >

⇠ !p/vF ,
in semiconductors the plasmon width at zero momentum
can be attributed to the availability of electronic transi-
tions with ! = !p [? ]. We thus expect that plasmon
production leads to energy deposition into electron-hole
excitations peaked near !p. We will use this fact in the
next section when estimating the experimental sensitiv-
ity to plasmon production from DM scattering.

2
In the proposal of Ref. [? ], the plasmon decays dominantly to

phonons. Here we attribute the plasmon width and imaginary

part of the dielectric function to single electron transitions [? ],

which is also assumed in studies of bosonic DM absorption at

these energies and in the zero momentum limit [? ? ? ? ? ].

3

larization vector for the longitudinal mode in Coulomb
gauge is given by

"
µ
L =

p
ZL(k)

!L(k)

k
(1, 0, 0, 0) (6)

with wavefunction renormalization given by

ZL(k) ⇡ 1 �
3

5

k
2
v
2
F

!2
p

+ ... (7)

in the k ⌧ !p/vF limit. These results are obtained di-
rectly from the in-medium longitudinal polarization ten-
sor as described in Ref. [? ].

In what follows we will restrict ourselves to the soft
photon/plasmon limit, defined here to be when the three-
momentum of the photon/plasmon k satisfies |k| ⌧ |qN |

and |k · qN |/mN ⌧ !p, where qN is the momentum of
the recoiling ion. This is a good approximation for DM
masses in the range 10 MeV – 1 GeV, since the typi-
cal momentum transfer is |qN | ⇠ 2µ�Nv ⇠ 20 keV ⇥

(m�/10 MeV), which is much larger than the plasmon
cuto↵ momentum. We have restricted to DM masses
m�

<
⇠ 1 GeV so that ER = |qN |

2
/(2mN ) is not too large

compared to the typical binding energies of the core elec-
trons. In this limit, we can treat the ions as point parti-
cles of charge Zion and mass mN .

With these assumptions, the di↵erential cross section
for a recoiling ion to emit a plasmon in the soft limit is

d
2
�plasmon

dERdk
=

2Z
2
ion↵em

3⇡

ZL(k)k2

!L(k)3
ER

mN
⇥

d�

dER

�����
el

(8)

where ER = q
2
N/(2mN ) is the nuclear recoil energy and

d�/dER|el is the di↵erential cross section for elastic DM-
nucleus scattering, modified to account for the fact that
the DM deposits total energy ER + !L(k). As we ar-
gue in the following section, we expect this expression to
provide a reasonable approximation for the rate in simple
semiconductors as well, and we will use it to compute the
production rates from DM scattering in Sec. ??.

In comparison, the bremsstrahlung rate for transverse
photons in the soft limit is

d
2
��

dERdk
=

4Z
2
ion↵em

3⇡

ZT (k)k2

!T (k)3
ER

mN
⇥

d�

dER

�����
el

(9)

where the transverse modes are well-approximated by a

dispersion !T (k) =
q

!2
p + k2 and ZT (k) ⇡ 1. In the

limit of k � !p, the plasmon bremsstrahlung rate is en-
hanced by a large factor of ZL(k)k3

/!L(k)3; however,
this is partially counteracted by the cuto↵ in plasmon
momentum. Assuming Zion = 4, ER ⇠ 100 eV, and al-
lowing for k up to a keV, Eq. ?? indicates that plasmon
production will be roughly 4 orders of magnitude smaller
than the rate for elastic nuclear scattering. Meanwhile,
the production of transverse modes is smaller than elastic
recoils by roughly 10 orders of magnitude. While the rate

to emit plasmons is small, the plasmon is an electronic
excitation peaked around !p, which provides a unique
complementary signature for nuclear recoils from light
dark matter. In the following section, we discuss how
this simplified scenario is modified in semiconductors.

III. PLASMON EMISSION IN

SEMICONDUCTORS

In semiconductors such as Si and Ge, the plasmon
energy at zero momentum is well-approximated by the
plasma frequency !p, taking ne to be the number density
of valence electrons and me to be the e↵ective electron
mass in the material [? ]. As discussed above, the plas-
mon is a zero in the dielectric function or a pole in the lon-
gitudinal propagator for electromagnetic fields. In what
follows, we will use classical arguments to derive general
results for the energy transfer to soft plasmon and photon
modes in terms of the dielectric function. Given experi-
mental data or first-principles calculations for ✏̂(!,k), we
can in principle account for the many-body physics of a
semiconductor.

We begin this section with a discussion of how the di-
electric function in semiconductors di↵ers from that of
the simple model in the previous section. The first dif-
ference appears in the presence of a band gap, !g ⇡ 1
eV. However, for the materials under consideration such
as Si and Ge, the plasmon frequency !p ⇡ 10 � 20 eV
is much larger than the band gap !g ⇡ eV and the cor-
responding e↵ect is small. This can be seen for example
in the Fröhlich oscillator model for ✏̂L(!) in semiconduc-
tors considered by Refs. [? ? ], which predicts a dielectric
function nearly identical to Eq. ?? for ! near !p (we dis-
cuss this further below).

In contrast to the electron gas, the band structure of a
semiconductor also allows for interband electronic tran-
sitions. These contribute to both the real and imaginary
parts of ✏̂L(!,k) (see e.g. Ref. [? ]). In addition, one
needs to account for the electron wavefunctions, which
are not described by plane waves. Taking all this into
account, we expect the residue of the plasmon pole, the
plasmon dispersion relation and width to be sensitive to
the band structure and wavefunctions of the electron-hole
pairs that contribute to the correlation function. All of
this information is encapsulated inside ✏̂L(!,k).

Despite the di↵erences between semiconductors and
metals, experimental data suggests that in relatively sim-
ple semiconductors, a slight modification of the free elec-
tron gas model of Sec. ?? can provide a good description
of the plasmon pole. The energy loss by charged parti-
cles in a material is characterized by Im(�1/✏̂L(!,k)),
and the plasmon appears as a pole in this quantity. As
discussed in Refs. [? ? ], the Fröhlich oscillator model
describes the plasmon line shape in the k ! 0 limit:

Im
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Approximating the Lorentzian as a 
delta function:
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be

W = �
Z

d
3
k

Z 1

0

d!

(2⇡)4
2Re [J⇤

ion(!,k) ·E(!,k)] . (12)

Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
i

!
Zion evion ·

k

k
(13)

up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
the angular k integration yields

dWL

dk
=

Z 1

0

d!
2Z2

ion↵em

3⇡2
|vion|2

k
2

!3
Im

✓
�1

✏̂L(!,k)

◆
. (15)

As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without

Im

✓
�1

✏̂L(!,k)

◆
' ZL(!, k)

!L(k)2!�

(!2 � !L(k)2)
2 + !2�2

Approximating the Lorentzian as a 
delta function:

Precisely matches free electron 
gas result from before:

5

making the electron gas approximation of the previous
section1. The same quantity Im (�1/✏̂L(!,k)) charac-
terizes energy loss by fast electrons in metals or semicon-
ductors [? ? ].

To make contact with the result of Sec. ??, we ap-
proximate Im (�1/✏̂L(!,k)) using Eq. ?? modified with
a factor of ZL(k) and taking !p ! !L(k); as noted ear-
lier, this agrees well with the experimentally determined
energy loss function in Si (c.f. Fig. ??). To isolate the
contribution from the plasmon pole, we take the � ! 0
limit of this expression, which yields

Im

✓
�1

✏̂L(!,k)

◆
!

ZL(k)⇡!L(k)

2
� (! � !L(k)) (16)

for ! > 0, where we have used the fact that !
2
g ⌧ !L(k)2

and ✏c ⇡ 1. Noting that the number of plasmons pro-
duced at a given energy is dWL/! and performing the !

integration, we arrive at

dNplasmon

dk
'

2Z
2
ion↵em

3⇡

ZL(k)k2

!L(k)3
ER

mN
. (17)

This can be interpreted as the probability for producing
a plasmon with momentum k for a given nuclear recoil
energy, ER. In terms of the cross-section, Eq. ?? corre-
sponds precisely to the prediction of Eq. ??, as antici-
pated.

A similar calculation can be done for transverse exci-
tations. The current in Eq. ?? sources a transverse field

ET (!,k) =
i!

k2 � !2✏̂T (!,k)
JT (!,k). (18)

The corresponding energy loss, WT , is given by the trans-
verse contributions to Eq. ??. Noting that the number
of photons produced at a given energy is dWT /!, the
photon production rate is

dN�

dk
=

Z
d!

8Z2
ion↵em

3⇡2

ERk
2

mN!2
Im

✓
�1

!2✏̂T (!,k)� k2

◆
. (19)

In this expression, ✏̂T (!,k) fully characterizes the trans-
verse response of the semiconductor and does not rely on
the simplifying assumptions of the model in Sec. ??.

We can again apply the oscillator model to infer an
analog of Eq. ?? for Im(�1/(!2

✏̂T (!,k) � k
2)). Starting

from the same Fröhlich model for ✏̂(!, 0) in e.g. Ref. [? ],
we compute Im(�1/(!2

✏̂T (!, 0)�k
2)), identify k

2+!
2
p as

!
2
T (k), and restore an overall residue factor ZT (k). Then,

taking !
2
g ⌧ !

2
p and ✏c ⇡ 1, one finds that for � ! 0

Im

✓
�1

!2✏̂T (!,k) � k2

◆
!

ZT (k) ⇡

2 !T (k)
� (! � !T (k)) . (20)

1
For comparison with previous studies of DM-induced electron

and phonon excitations [? ? ], note that the quantity

Im (�1/✏̂L(!,k)) is related to the dynamic structure factor by

S(!,k) = k2/(4⇡2↵emne) Im (�1/✏̂L(!,k)), where S(!,k) de-

scribes material response to density perturbations [? ? ]

Inserting this expression into Eq. ?? and performing the
! integration yields the di↵erential probability for excit-
ing a photon with a given k. In terms of the production
cross-section, the final result matches Eq. ??.

Eqs. ?? and ?? in principle fully characterize the en-
ergy loss to plasmons and transverse modes in semicon-
ductors. In order to obtain accurate predictions for DM
experiments, a number of e↵ects must be accounted for
in these energy loss functions. In the calculations above,
we have used the macroscopic Maxwell’s equations and
neglected the e↵ects of crystal periodicity. The relation-
ship between microscopic calculations of ✏̂(!,k) and the
energy loss functions is modified when taking into ac-
count the variation of the microscopic fields over a unit
cell; these corrections are often referred to as local field
e↵ects [? ? ]. They have been shown to modify the
plasmon lineshape and give a better match to electron
energy loss spectroscopy data in Si [? ].

In addition, aside from exciting a photon or plasmon,
an electron could also be excited above the band gap.
In the energy loss rates, this corresponds to a possi-
ble continuum of electron recoils away from the plasmon
and photon poles. This is related to the Migdal e↵ect
in atoms [? ? ? ? ], where electron excitations are
created from nuclear recoils; a first approximation for
semiconductors was studied in Ref. [? ]. Accounting for
this e↵ect would again require experimental data or first-
principles calculations of the structure factor or dielectric
functions.

Besides the plasmon production rate, one must also
determine the plasmon decay products, which would ul-
timately be detected experimentally. The imaginary part
of the dielectric function determines the plasmon de-
cay width, where � = !p Im(✏̂L(!p, 0)) in the k ! 0
limit. To infer its decay products, note that the quan-
tity Im(✏̂L(!, 0)) is closely related to the photoabsorption
rate �1(!) = ! Im(✏̂L(!, 0)); for ! larger than the band
gap, it is dominated by electronic transitions2. Analo-
gous to the electron gas case, where there is a large plas-
mon width to single electron excitations for k >

⇠ !p/vF ,
in semiconductors the plasmon width at zero momentum
can be attributed to the availability of electronic transi-
tions with ! = !p [? ]. We thus expect that plasmon
production leads to energy deposition into electron-hole
excitations peaked near !p. We will use this fact in the
next section when estimating the experimental sensitiv-
ity to plasmon production from DM scattering.

2
In the proposal of Ref. [? ], the plasmon decays dominantly to

phonons. Here we attribute the plasmon width and imaginary

part of the dielectric function to single electron transitions [? ],

which is also assumed in studies of bosonic DM absorption at

these energies and in the zero momentum limit [? ? ? ? ? ].

3

larization vector for the longitudinal mode in Coulomb
gauge is given by

"
µ
L =

p
ZL(k)

!L(k)

k
(1, 0, 0, 0) (6)

with wavefunction renormalization given by

ZL(k) ⇡ 1 �
3

5

k
2
v
2
F

!2
p

+ ... (7)

in the k ⌧ !p/vF limit. These results are obtained di-
rectly from the in-medium longitudinal polarization ten-
sor as described in Ref. [? ].

In what follows we will restrict ourselves to the soft
photon/plasmon limit, defined here to be when the three-
momentum of the photon/plasmon k satisfies |k| ⌧ |qN |

and |k · qN |/mN ⌧ !p, where qN is the momentum of
the recoiling ion. This is a good approximation for DM
masses in the range 10 MeV – 1 GeV, since the typi-
cal momentum transfer is |qN | ⇠ 2µ�Nv ⇠ 20 keV ⇥

(m�/10 MeV), which is much larger than the plasmon
cuto↵ momentum. We have restricted to DM masses
m�

<
⇠ 1 GeV so that ER = |qN |

2
/(2mN ) is not too large

compared to the typical binding energies of the core elec-
trons. In this limit, we can treat the ions as point parti-
cles of charge Zion and mass mN .

With these assumptions, the di↵erential cross section
for a recoiling ion to emit a plasmon in the soft limit is

d
2
�plasmon

dERdk
=

2Z
2
ion↵em

3⇡

ZL(k)k2

!L(k)3
ER

mN
⇥

d�

dER

�����
el

(8)

where ER = q
2
N/(2mN ) is the nuclear recoil energy and

d�/dER|el is the di↵erential cross section for elastic DM-
nucleus scattering, modified to account for the fact that
the DM deposits total energy ER + !L(k). As we ar-
gue in the following section, we expect this expression to
provide a reasonable approximation for the rate in simple
semiconductors as well, and we will use it to compute the
production rates from DM scattering in Sec. ??.

In comparison, the bremsstrahlung rate for transverse
photons in the soft limit is

d
2
��

dERdk
=

4Z
2
ion↵em

3⇡

ZT (k)k2

!T (k)3
ER

mN
⇥

d�

dER

�����
el

(9)

where the transverse modes are well-approximated by a

dispersion !T (k) =
q

!2
p + k2 and ZT (k) ⇡ 1. In the

limit of k � !p, the plasmon bremsstrahlung rate is en-
hanced by a large factor of ZL(k)k3

/!L(k)3; however,
this is partially counteracted by the cuto↵ in plasmon
momentum. Assuming Zion = 4, ER ⇠ 100 eV, and al-
lowing for k up to a keV, Eq. ?? indicates that plasmon
production will be roughly 4 orders of magnitude smaller
than the rate for elastic nuclear scattering. Meanwhile,
the production of transverse modes is smaller than elastic
recoils by roughly 10 orders of magnitude. While the rate

to emit plasmons is small, the plasmon is an electronic
excitation peaked around !p, which provides a unique
complementary signature for nuclear recoils from light
dark matter. In the following section, we discuss how
this simplified scenario is modified in semiconductors.

III. PLASMON EMISSION IN

SEMICONDUCTORS

In semiconductors such as Si and Ge, the plasmon
energy at zero momentum is well-approximated by the
plasma frequency !p, taking ne to be the number density
of valence electrons and me to be the e↵ective electron
mass in the material [? ]. As discussed above, the plas-
mon is a zero in the dielectric function or a pole in the lon-
gitudinal propagator for electromagnetic fields. In what
follows, we will use classical arguments to derive general
results for the energy transfer to soft plasmon and photon
modes in terms of the dielectric function. Given experi-
mental data or first-principles calculations for ✏̂(!,k), we
can in principle account for the many-body physics of a
semiconductor.

We begin this section with a discussion of how the di-
electric function in semiconductors di↵ers from that of
the simple model in the previous section. The first dif-
ference appears in the presence of a band gap, !g ⇡ 1
eV. However, for the materials under consideration such
as Si and Ge, the plasmon frequency !p ⇡ 10 � 20 eV
is much larger than the band gap !g ⇡ eV and the cor-
responding e↵ect is small. This can be seen for example
in the Fröhlich oscillator model for ✏̂L(!) in semiconduc-
tors considered by Refs. [? ? ], which predicts a dielectric
function nearly identical to Eq. ?? for ! near !p (we dis-
cuss this further below).

In contrast to the electron gas, the band structure of a
semiconductor also allows for interband electronic tran-
sitions. These contribute to both the real and imaginary
parts of ✏̂L(!,k) (see e.g. Ref. [? ]). In addition, one
needs to account for the electron wavefunctions, which
are not described by plane waves. Taking all this into
account, we expect the residue of the plasmon pole, the
plasmon dispersion relation and width to be sensitive to
the band structure and wavefunctions of the electron-hole
pairs that contribute to the correlation function. All of
this information is encapsulated inside ✏̂L(!,k).

Despite the di↵erences between semiconductors and
metals, experimental data suggests that in relatively sim-
ple semiconductors, a slight modification of the free elec-
tron gas model of Sec. ?? can provide a good description
of the plasmon pole. The energy loss by charged parti-
cles in a material is characterized by Im(�1/✏̂L(!,k)),
and the plasmon appears as a pole in this quantity. As
discussed in Refs. [? ? ], the Fröhlich oscillator model
describes the plasmon line shape in the k ! 0 limit:

Im

✓
�1

✏̂L(!, 0)

◆
'

1

✏c

�
!
2
p � !

2
g

�
!�

�
!2 � !2

p

�2
+ !2�2

(10)

This is equivalent to the result 
obtained in the electron gas model



3110 J. P. WALTER AND M. L. COHEN

p. =k ~ q/kq .

20

) 15

3
F

10
2= »nl (1+~)/(1 - ~) I

~ (3. 6)
This condition requires a fairly linear e(q) curve,
l. e. ~

Dropping terms in q in the integrand, the dielec-
tric function becomes

1

&(q, &u)=1+; =1+ ', 2-pinp.dp, K,' 1+y
P 1 —y

(3.5)
where y= &u/qvz. The lower zero (which looks like
a damped transverselike mode in the continuum)
arises when

5 (3.7)

0.25 0.50 0.75 1.00 1.25

For small q, the difference in the Fermi factors
becomes

(3.4)f(k+q) -f(k) = q ~ = qp. 6(k kz), -
Bk

where

q 7l

a
FIG. 13. Plots of the zeros of e &(q, ~) for silicon and a

free-electron gas in the (q, ~) plane.

which agrees well with the computer calculations.
For silicon the lower zero does not result from

a linear dispersion curve, but a gap appears in the
spectrum. This is the most significant difference
between the two dielectric functions. At higher q,
the two curves tend to merge, but it is more dif-
ficult to calculate the zeros of &, in this region of
the plane. In other words, it is the gap in the
spectrum at smaller q which distinguishes the sili-
con case from the free-electron-gas case as ex-
pected.
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Energy loss function

Numerical calculations of the full dielectric 
function of Si, using state-of-art electron wave 
functions and accounting for electron-electron 

interactions, also agree with this picture.

Highly damped

Plasmon width in semiconductors well-
explained by interband transitions (i.e., 

decays to kinematically accessible 
electron-hole transition) 

Corresponds to ~4-5 observed e- once 
cascade effects accounted for (see e.g. 

Alig et al 1980)

Plasmon
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Ionization signals from nuclear recoils

Energy loss function contains information about all electronic 
excitations (charge signals), even away from plasmon pole. 

This is analog of the atomic Migdal effect in semiconductors.

We are working on numerical calculations of the energy loss 
function using standard methods in condensed matter.

Expect there to be a resonance in the material response at 
plasmon pole  what I’ll show today only includes plasmon pole. 

We are working on followup to include everything
→

dNL

d!dk
=

4Z2
ion↵em

3⇡2

ER

mN

k2

!3
Im

✓
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Plasmon production rate
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Kozaczuk 17

Given these results, we can compute the rate for plasmon production from DM-
nucleus scattering

Assumes universal coupling to nucleons

6

FIG. 2. Comparison of the di↵erential scattering rate for elastic nuclear recoils and nuclear recoils with plasmon emission. It
is assumed that the DM has a spin-independent contact interaction with equal coupling to all nucleons. The band for plasmon
emission shows the range of rates if we vary between maximum plasmon momentum of kmax = !p/vF (lower values) up to
kmax = 2!p/vF (upper values). We also show rates for bremsstrahlung of transverse modes as a function of photon energy !� ;
the solid lines are obtained using Eq. ?? and the dashed lines use the results of Ref. [? ] with data on the dielectric functions
from Refs. [? ? ]. Note for Ge the data is limited and the dashed line is uncertain within a factor of few.

IV. RATE RESULTS

We now compute the plasmon production rate from
DM-nucleus scattering. Given our assumptions, the total
rate to emit plasmons via bremsstrahlung is

dR

dER
= NT

⇢�

m�

Z

vmin

d
3v v f(v)

Z kmax

0
dk

d
2
�

dER dk
. (21)

Here, NT is the target number density, ⇢� = 0.4
GeV/cm3 is the local dark matter density, and f(v) is
the DM velocity distribution in the Earth’s frame, which
we take to be the Standard Halo Model with v0 = 220
km/s, ve = 240 km/s, and vesc = 550 km/s. Since we are
working in the soft limit, we approximate the threshold
velocity for exciting a plasmon as

vmin =
1

p
2mNER

✓
mNER

µN�
+ !p

◆
(22)

with µN� the nucleus-DM reduced mass. This is identi-
cal to the threshold velocity for inelastic DM scattering
with mass splitting � = !p. (We have neglected the weak
dispersion in the plasmon mode to simplify the veloc-
ity integral.) In order to estimate the e↵ects of the k-
dependent dispersion and wavefunction renormalization,
the rate is computed from Eq. ?? using the results of
Ref. [? ] for !L(k), ZL(k). As argued in the previous
section, this should provide a reasonable estimate of the
rate in relatively simple semiconductors.

In Fig. ?? we compare the rate for elastic nuclear
recoils, bremsstrahlung production of plasmons, and
bremsstrahlung production of transverse modes for m�

= 1 GeV. Here it is assumed that DM couples equally

to all nucleons with a DM-nucleon cross section of �n.
Then the elastic scattering cross section is d�/dER|el =
A

2
�nmN/(2µ

2
�nv

2), where µ�n is the DM-nucleon re-
duced mass. The nuclear form factor can be neglected
for the low energy recoils considered here.

For plasmon emission in both Si and Ge targets we take
!p = 16 eV [? ]. Compared to elastic nuclear recoils,
plasmon emission is suppressed by 4-5 orders of magni-
tude, depending on the maximum plasmon momentum
kmax, which we vary between !p/vF and 2!p/vF . For
tranverse bremsstrahlung, we show both the result de-
rived in our approach, which should be valid for energies
below O(100) eV, and the result of Ref. [? ], which was
computed for atomic targets and thus not appropriate
for low energies. We expect the full result to interpolate
between these two, but we defer a more detailed anal-
ysis of this to future work. In either case, the rate for
transverse photon emission is smaller than the plasmon
emission rate by another ⇠5 orders of magnitude, in line
with the discussion of Sec. ??.

Plasmon emission is relatively more important for
larger DM masses and more energetic ions, which can
be seen in the factor of ER/mN in the di↵erential cross
sections. For m� < 1 GeV, the probability for plasmon
emission is thus even smaller than that shown in Fig. ??.
However, the plasmon can deposit energy in electronic
excitations, so this can still be a promising way to search
for low-energy nuclear recoils from DM, as we will discuss
below.

Finally, while we do expect the probability for plasmon
emission to grow for m� > 1 GeV, we caution against
numerical extrapolation of our results to much higher
masses. This is because we have treated the nucleus and
core electrons together as a point particle. For heavier

Atomic result from 1607.01789 

d�

dER

����
el

=
A2mN�n

2µ2
�nv

2
Assume universal coupling to nucleons

Solid: electron gas model — valid if  not too much larger than  (Si) or  (Ge) 
Dashed: atomic calculation from Kouvaris & Pradler 1607.01789

ωγ ωcore ∼ 100 eV 30 eV
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Sensitivity for 1 kg-year exposure, assuming ER > 100 meV to avoid phonon regime

Notes about Migdal curves (1908.10881): does not restrict in ER (extrapolates free NR to phonon 
regime) and applies atomic picture to semiconductors (not valid for delocalized electrons?). 

Plasmon search (peaked charge signal at 16-20 eV) can enhance sensitivity to nuclear 
recoils from sub-GeV dark matter!
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Implications for excess rates?

• Excess in 1e- or 2e- bins (assumption requiring plasmon decays to phonons) 
 

• If nuclear recoil, requires O( ) probability to produce plasmons 

• Could also be excited by large flux of fast-moving millicharged DM

10−3 − 1

Proposal from Kurinsky, Baxter, Kahn, Krnjaic (2002.06937)

Plasmon decay products have not been directly measured.  Other measurements + theory 
point to plasmon decay to electron excitation (4-5 e- measured)

The probability to excite the plasmon via bremsstrahlung is much smaller, 10−5 − 10−4

8
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<latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit><latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit><latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit><latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit>

{
<latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit><latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit><latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit><latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit>

{ <latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit><latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit><latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit><latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit> { <latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit><latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit><latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit><latexit sha1_base64="jo8vH8spqa5lgBBLJYWhE9w5pRk=">AAAB6XicdZDNSgMxFIXv1L9a/6ou3QSL4KokRWy7K7pxWcXaQltKJs20oZnMkGSEMvQN3LhQxK1v5M63MdNWUNEDgY9z7iX3Xj+WwliMP7zcyura+kZ+s7C1vbO7V9w/uDNRohlvsUhGuuNTw6VQvGWFlbwTa05DX/K2P7nM8vY910ZE6tZOY94P6UiJQDBqnXXTSwfFEi5jjAkhKANSPccO6vVahdQQySKnEizVHBTfe8OIJSFXlklqTJfg2PZTqq1gks8KvcTwmLIJHfGuQ0VDbvrpfNIZOnHOEAWRdk9ZNHe/d6Q0NGYa+q4ypHZsfmeZ+VfWTWxQ66dCxYnlii0+ChKJbISytdFQaM6snDqgTAs3K2Jjqimz7jgFd4SvTdH/cFcpE8fXZ6XGxfIceTiCYzgFAlVowBU0oQUMAniAJ3j2Jt6j9+K9Lkpz3rLnEH7Ie/sE6HyNmw==</latexit>

�

( <latexit sha1_base64="h4glPyNv1DG0b6zoM3Bw29WuXi4=">AAAB7nicdVDLSsNAFJ3UV62vqks3g0VwFSa1xnZX6sZlBfuAJpTJdJIOnUzCzEQooR/hxoUibv0ed/6N04egogcuHM65l3vvCVLOlEbowyqsrW9sbhW3Szu7e/sH5cOjrkoySWiHJDyR/QArypmgHc00p/1UUhwHnPaCyfXc791TqVgi7vQ0pX6MI8FCRrA2Us9rsSjy8mG5guxGA9UcFyL7EqGq2zAEXVTrrgsdGy1QASu0h+V3b5SQLKZCE46VGjgo1X6OpWaE01nJyxRNMZngiA4MFTimys8X587gmVFGMEykKaHhQv0+keNYqWkcmM4Y67H67c3Fv7xBpsO6nzORZpoKslwUZhzqBM5/hyMmKdF8aggmkplbIRljiYk2CZVMCF+fwv9Jt2o7ht/WKs3WKo4iOAGn4Bw44Ao0wQ1ogw4gYAIewBN4tlLr0XqxXpetBWs1cwx+wHr7BJBKj7g=</latexit><latexit sha1_base64="h4glPyNv1DG0b6zoM3Bw29WuXi4=">AAAB7nicdVDLSsNAFJ3UV62vqks3g0VwFSa1xnZX6sZlBfuAJpTJdJIOnUzCzEQooR/hxoUibv0ed/6N04egogcuHM65l3vvCVLOlEbowyqsrW9sbhW3Szu7e/sH5cOjrkoySWiHJDyR/QArypmgHc00p/1UUhwHnPaCyfXc791TqVgi7vQ0pX6MI8FCRrA2Us9rsSjy8mG5guxGA9UcFyL7EqGq2zAEXVTrrgsdGy1QASu0h+V3b5SQLKZCE46VGjgo1X6OpWaE01nJyxRNMZngiA4MFTimys8X587gmVFGMEykKaHhQv0+keNYqWkcmM4Y67H67c3Fv7xBpsO6nzORZpoKslwUZhzqBM5/hyMmKdF8aggmkplbIRljiYk2CZVMCF+fwv9Jt2o7ht/WKs3WKo4iOAGn4Bw44Ao0wQ1ogw4gYAIewBN4tlLr0XqxXpetBWs1cwx+wHr7BJBKj7g=</latexit><latexit sha1_base64="h4glPyNv1DG0b6zoM3Bw29WuXi4=">AAAB7nicdVDLSsNAFJ3UV62vqks3g0VwFSa1xnZX6sZlBfuAJpTJdJIOnUzCzEQooR/hxoUibv0ed/6N04egogcuHM65l3vvCVLOlEbowyqsrW9sbhW3Szu7e/sH5cOjrkoySWiHJDyR/QArypmgHc00p/1UUhwHnPaCyfXc791TqVgi7vQ0pX6MI8FCRrA2Us9rsSjy8mG5guxGA9UcFyL7EqGq2zAEXVTrrgsdGy1QASu0h+V3b5SQLKZCE46VGjgo1X6OpWaE01nJyxRNMZngiA4MFTimys8X587gmVFGMEykKaHhQv0+keNYqWkcmM4Y67H67c3Fv7xBpsO6nzORZpoKslwUZhzqBM5/hyMmKdF8aggmkplbIRljiYk2CZVMCF+fwv9Jt2o7ht/WKs3WKo4iOAGn4Bw44Ao0wQ1ogw4gYAIewBN4tlLr0XqxXpetBWs1cwx+wHr7BJBKj7g=</latexit><latexit sha1_base64="h4glPyNv1DG0b6zoM3Bw29WuXi4=">AAAB7nicdVDLSsNAFJ3UV62vqks3g0VwFSa1xnZX6sZlBfuAJpTJdJIOnUzCzEQooR/hxoUibv0ed/6N04egogcuHM65l3vvCVLOlEbowyqsrW9sbhW3Szu7e/sH5cOjrkoySWiHJDyR/QArypmgHc00p/1UUhwHnPaCyfXc791TqVgi7vQ0pX6MI8FCRrA2Us9rsSjy8mG5guxGA9UcFyL7EqGq2zAEXVTrrgsdGy1QASu0h+V3b5SQLKZCE46VGjgo1X6OpWaE01nJyxRNMZngiA4MFTimys8X587gmVFGMEykKaHhQv0+keNYqWkcmM4Y67H67c3Fv7xBpsO6nzORZpoKslwUZhzqBM5/hyMmKdF8aggmkplbIRljiYk2CZVMCF+fwv9Jt2o7ht/WKs3WKo4iOAGn4Bw44Ao0wQ1ogw4gYAIewBN4tlLr0XqxXpetBWs1cwx+wHr7BJBKj7g=</latexit>

plasmon (energy)
<latexit sha1_base64="UR6g0lQsnGG7+bCwpYHdGb2evZI=">AAACAnicdVBNSwMxEM36WetX1ZN4CRZBQUq2am1vRS8eK1gVuqVk02kNJtklyQrLUrz4V7x4UMSrv8Kb/8a0VlDRBwOP92aSmRfGghtLyLs3MTk1PTObm8vPLywuLRdWVs9NlGgGTRaJSF+G1IDgCpqWWwGXsQYqQwEX4fXx0L+4AW14pM5sGkNb0r7iPc6odVKnsJ4FWuJYUCMjhYNdvA0KdD/dGXQKRVKq1ci+X8GkdEBIuVJzhOyVq5UK9ktkhCIao9EpvAXdiCUSlGXuPdPySWzbGdWWMwGDfJAYiCm7pn1oOaqoBNPORicM8JZTurgXaVfK4pH6fSKj0phUhq5TUntlfntD8S+vldhetZ1xFScWFPv8qJcIbCM8zAN3uQZmReoIZZq7XTG7opoy61LLuxC+LsX/k/NyyXf8dL9YPxrHkUMbaBNtIx8dojo6QQ3URAzdonv0iJ68O+/Be/ZePlsnvPHMGvoB7/UDiTaW4Q==</latexit><latexit sha1_base64="UR6g0lQsnGG7+bCwpYHdGb2evZI=">AAACAnicdVBNSwMxEM36WetX1ZN4CRZBQUq2am1vRS8eK1gVuqVk02kNJtklyQrLUrz4V7x4UMSrv8Kb/8a0VlDRBwOP92aSmRfGghtLyLs3MTk1PTObm8vPLywuLRdWVs9NlGgGTRaJSF+G1IDgCpqWWwGXsQYqQwEX4fXx0L+4AW14pM5sGkNb0r7iPc6odVKnsJ4FWuJYUCMjhYNdvA0KdD/dGXQKRVKq1ci+X8GkdEBIuVJzhOyVq5UK9ktkhCIao9EpvAXdiCUSlGXuPdPySWzbGdWWMwGDfJAYiCm7pn1oOaqoBNPORicM8JZTurgXaVfK4pH6fSKj0phUhq5TUntlfntD8S+vldhetZ1xFScWFPv8qJcIbCM8zAN3uQZmReoIZZq7XTG7opoy61LLuxC+LsX/k/NyyXf8dL9YPxrHkUMbaBNtIx8dojo6QQ3URAzdonv0iJ68O+/Be/ZePlsnvPHMGvoB7/UDiTaW4Q==</latexit><latexit sha1_base64="UR6g0lQsnGG7+bCwpYHdGb2evZI=">AAACAnicdVBNSwMxEM36WetX1ZN4CRZBQUq2am1vRS8eK1gVuqVk02kNJtklyQrLUrz4V7x4UMSrv8Kb/8a0VlDRBwOP92aSmRfGghtLyLs3MTk1PTObm8vPLywuLRdWVs9NlGgGTRaJSF+G1IDgCpqWWwGXsQYqQwEX4fXx0L+4AW14pM5sGkNb0r7iPc6odVKnsJ4FWuJYUCMjhYNdvA0KdD/dGXQKRVKq1ci+X8GkdEBIuVJzhOyVq5UK9ktkhCIao9EpvAXdiCUSlGXuPdPySWzbGdWWMwGDfJAYiCm7pn1oOaqoBNPORicM8JZTurgXaVfK4pH6fSKj0phUhq5TUntlfntD8S+vldhetZ1xFScWFPv8qJcIbCM8zAN3uQZmReoIZZq7XTG7opoy61LLuxC+LsX/k/NyyXf8dL9YPxrHkUMbaBNtIx8dojo6QQ3URAzdonv0iJ68O+/Be/ZePlsnvPHMGvoB7/UDiTaW4Q==</latexit><latexit sha1_base64="UR6g0lQsnGG7+bCwpYHdGb2evZI=">AAACAnicdVBNSwMxEM36WetX1ZN4CRZBQUq2am1vRS8eK1gVuqVk02kNJtklyQrLUrz4V7x4UMSrv8Kb/8a0VlDRBwOP92aSmRfGghtLyLs3MTk1PTObm8vPLywuLRdWVs9NlGgGTRaJSF+G1IDgCpqWWwGXsQYqQwEX4fXx0L+4AW14pM5sGkNb0r7iPc6odVKnsJ4FWuJYUCMjhYNdvA0KdD/dGXQKRVKq1ci+X8GkdEBIuVJzhOyVq5UK9ktkhCIao9EpvAXdiCUSlGXuPdPySWzbGdWWMwGDfJAYiCm7pn1oOaqoBNPORicM8JZTurgXaVfK4pH6fSKj0phUhq5TUntlfntD8S+vldhetZ1xFScWFPv8qJcIbCM8zAN3uQZmReoIZZq7XTG7opoy61LLuxC+LsX/k/NyyXf8dL9YPxrHkUMbaBNtIx8dojo6QQ3URAzdonv0iJ68O+/Be/ZePlsnvPHMGvoB7/UDiTaW4Q==</latexit>
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FIG. 3. Cartoon of indirect plasmon excitation through a
hard scattering event, where the imparted momentum is dom-
inantly carried by multiple phonons, while the imparted en-
ergy is carried by the low-momentum plasmon.

IV. DARK MATTER SCENARIOS FOR
PLASMON EXCITATION

Having excluded the possibility that the plasmon could
arise from SM particles, we now make a further leap and
consider the hypothesis that DM could account for these
plasmon excitations. If a DM particle with mass m� and
incident velocity v deposits energy E and momentum q
in a detector, energy conservation requires

E = q ·v �
q2

2m�
, (5)

which implies

q �
E

v
, (6)

which is saturated in the limit of forward scattering and
m ! 1. Taking E = Ep = 16 eV for the typical plasmon
energy in Ge, we find that to excite the plasmon directly
(i.e. q < qc, see Eq. (4)) we must have

v & 10�2 (direct plasmon excitation). (7)

Since this exceeds Galactic escape velocity in the Earth
frame [57], gravitationally-bound DM with v ⇠ 10�3 can-
not directly excite a long-range plasmon. However, we
identify two qualitatively distinct mechanisms by which
DM (or a sub-component) can still account for the ob-
served excesses:

• Scenario 1, Secondary Plasmon: In analogy
with the Migdal e↵ect [21, 58], if halo DM with the
standard Maxwellian velocity distribution peaked
at v ⇠ 10�3 first scatters o↵ a target nucleus, the
interaction can transfer a majority of the momen-
tum to phonons, while imparting most of the de-
posited energy to the plasmon which carries q < qc
(see Fig. 3).7 The plasmon can then decay to

7 Note that the scale of the momentum transfers we will consider,
O(15 keV) from Eq. (6), is precisely in the regime between single-

phonons and electron/hole pairs. In this scenario,
the signal rates scale as Z2 where Z is the atomic
number of the target material.

• Scenario 2, Fast DM Sub-Component: Al-
though the majority of halo DM in our Galaxy must
satisfy v . 10�3 to account for observed rotation
curves, it is possible that a small fraction f ⌧ 1
of the local DM density is accelerated to speeds
v & 10�2 above Galactic escape velocity (e.g by so-
lar reflection [61, 62]).8 Unlike in Scenario 1 above,
here the rate scales inversely with the target’s mass
density and is independent of Z since the plasmon
is excited directly without the DM having to first
undergo nuclear scattering.

These scenarios are complementary: Scenario 1 requires
no non-standard DM ingredients but features large the-
oretical uncertainty in the plasmon-phonon coupling; by
contrast, Scenario 2 has no theoretical uncertainty in the
direct plasmon excitation probability, which is in one-
to-one correspondence with an EELS measurement, but
requires an explanation for the fast DM sub-component.
In both scenarios, a plasmon with a large branching ra-
tio to phonons only can accommodate the spectral shape
of the excess and match the total observed rate in the
EDELWEISS 78 V run for 2 or more charges, ⇠ 20 Hz/kg
[6].

Theoretically, both of these scenarios can be realized
within a standard framework for DM below the GeV
scale. Let � be a DM candidate particle of mass m�

coupled to a new spin-1 U(1) gauge boson A0, which ki-
netically mixes with the SM photon. Here � can be a
scalar or a fermion and such an interaction has long been
a standard benchmark for sub-GeV DM studies [73–75].
In the mass eigenbasis, the Lagrangian for this model can
be written

L � �
m2

A0

2
A0

µA0µ + A0
µ(eJµ

EM + gDJµ
D), (8)

where JEM is the SM electromagnetic current,  ⌧ 1
is a small kinetic mixing parameter, gD is the DM-A0

coupling constant and Jµ
D is the DM current

Jµ
D =

(
i(�⇤@µ� � �@µ�⇤) Scalar

�̄�µ� Fermion,
(9)

which are analogous to scalar and fermionic versions of
“dark electromagnetism” with a massive dark photon.

phonon excitation and direct nuclear scattering, where direct
multi-phonon production is expected to dominate [59]. Indeed,
the displacement energy of bulk Ge is 10–50 eV [60], so below this
energy, an elastic nuclear recoil is not even an on-shell state, and
the non-electronic energy must appear in the form of phonons –
see Appendix B.

8 Other possibilities for achieving a fast sub-component of dark
sector particles include boosted DM [63–65], cosmic ray up-
scattering [66–69], direct production in supernovae [70, 71], and
acceleration from supernova remnants [72].

Note Kurinsky et al. also 
propose mechanism where 

multiple phonons are produced 
in association with plasmon

This likely requires large 
phonon-plasmon coupling, and 

has not been studied so far.
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Next steps
• Numerical studies of energy loss functions to obtain full inelastic 

ionization signal from nuclear recoils; revisit existing data to obtain 
limits on sub-GeV dark matter. 

• We are computing ionization produced in the ‘hard’ process of the 
DM-nucleus scattering. Depending on ER, there are additional 
contributions to charge yield from the subsequent nuclear recoil; 
complicated materials science problem. 

• Extend our framework to the phonon regime, where effects of the 
ion potential are important. 



Summary
Many body effects can be important for sub-GeV dark 

matter detection. Plasmons are an example of a 
collective mode that can be excited by DM.  

Plasmon production yields a charge signal at ~16-20 eV 
that can be used to such for low-energy nuclear recoils. 

There are off-pole contributions too (in progress). 

Thanks!


