Quarkonium Transport in Quark-Gluon Plasma: Open Quantum System & Effective Field Theory

Xiaojun Yao MIT

IPMU APEC Seminar

June 17, 2020

XY B.Müller, 1709.03529, 1811.09644

XY T.Mehen, 1811.07027, in preparation

XY W.Ke Y.Xu S.Bass B.Müller, 2004.06746

Heavy Ion Collisions and Quark-Gluon Plasma

- Asymptotic freedom —> deconfined phase of QCD expected at high temperature / density —> quark-gluon plasma (QGP)
- Study QGP: heavy ion collision experiments at RHIC and LHC

- Quark gluon plasma created in Au-Au / Pb-Pb collisions: nearly "perfect" liquid (small viscosity), strongly coupled, temperature ~150-500 MeV, lifetime ~ 10 fm/c
- Hard probes of QGP: jets, heavy quarks; large scale involved

- Quarkonium: bound state of $Q\bar{Q}$, nonrelativistic potential description
- Static screening: suppression of color attraction —> melting at high T —> reduced production —> thermometer

$$T = 0: V(r) = -\frac{A}{r} + Br \longrightarrow T \neq 0:$$
 Confining part flattened

- Quarkonium: bound state of $Q\bar{Q}$, nonrelativistic potential description
- Static screening: suppression of color attraction —> melting at high T —> reduced production —> thermometer

$$T = 0: V(r) = -\frac{A}{r} + Br \longrightarrow T \neq 0:$$
 Confining part flattened

- Static screening: suppression of color attraction —> melting at high T —> reduced production —> thermometer
- **Dynamical screening**: dissociation induced by dynamical process, imaginary potential

- Static screening: suppression of color attraction —> melting at high T —> reduced production —> thermometer
- Dynamical screening: dissociation induced by dynamical process, imaginary potential
- Recombination: unbound heavy quark pair forms quarkonium, can happen below melting T

Recombination Crucial for Phenomenology

Success of Semiclassical Transport

Evolution of distribution in phase space

$$(\partial_t + \boldsymbol{v} \cdot \nabla) f(\boldsymbol{x}, \boldsymbol{p}, t) = -C^{(-)}(\boldsymbol{x}, \boldsymbol{p}, t) + C^{(+)}(\boldsymbol{x}, \boldsymbol{p}, t)$$

Dissociation Recombination

Why semiclassical transport equation successful? Connection to QCD?

Compute Recombination from QCD

Evolution of distribution in phase space

$$(\partial_t + \boldsymbol{v} \cdot \nabla) f(\boldsymbol{x}, \boldsymbol{p}, t) = -C^{(-)}(\boldsymbol{x}, \boldsymbol{p}, t) + C^{(+)}(\boldsymbol{x}, \boldsymbol{p}, t)$$

Dissociation Recombination

Two screening effects from thermal loops

unbound pair

Real & imaginary parts —> static screening & dissociation

Recombination modeled:

 $\propto f_Q f_{ar{Q}}$ calculate from QCD? $\propto f_{J/\psi}^{
m eq}$

Put screening and recombination into same framework?

Importance of correlated recombination?

Contents

- Derivation of Boltzmann transport equation:
 - Open quantum system
 - Separation of scales, effective field theory
- Phenomenology:
 - Coupled transport equations of open and hidden heavy flavors
 - Impact of correlated recombination on bottomonium production

Open Quantum System

• Total system = subsystem + environment: $H = H_S + H_E + H_I$

$$U(t,0) = \mathcal{T}e^{-i\int_0^t \mathrm{d}t' H_I(t')}$$

General Procedure

- Assume weak coupling between subsystem/environment $H = H_S + H_E + H_I$
- Expand unitary evolution operator (time ordered perturbation theory)
- Trace out environment —> Lindblad equation

$$p_{S}(t) = \rho_{S}(0) - i \left[tH_{S} + \sum_{a,b} \sigma_{ab}(t)L_{ab}, \rho_{S}(0) \right] + \sum_{a,b,c,d} \gamma_{ab,cd}(t) \left(L_{ab}\rho_{S}(0)L_{cd}^{\dagger} - \frac{1}{2} \{ L_{cd}^{\dagger}L_{ab}, \rho_{S}(0) \} \right)$$

$$H_{I} = \sum_{\alpha} O_{\alpha}^{(S)} \otimes O_{\alpha}^{(E)}$$

$$\gamma_{ab,cd}(t) \equiv \sum_{\alpha,\beta} \int_{0}^{t} dt_{1} \int_{0}^{t} dt_{2}C_{\alpha\beta}(t_{1}, t_{2}) \langle a|O_{\beta}^{(S)}(t_{2})|b\rangle \langle c|O_{\alpha}^{(S)}(t_{1})|d\rangle^{*}$$

$$C_{\alpha\beta}(t_{1}, t_{2}) \equiv \operatorname{Tr}_{E}(O_{\alpha}^{(E)}(t_{1})O_{\beta}^{(E)}(t_{2})\rho_{E}) \qquad L_{ab} = |a\rangle \langle b|$$

$$|a\rangle \text{ Eigenstates of } H_{S}$$

General Procedure

Lindblad equation:

$$\rho_S(t) = \rho_S(0) - i \Big[t H_S + \sum_{a,b} \sigma_{ab}(t) L_{ab}, \rho_S(0) \Big] + \sum_{a,b,c,d} \gamma_{ab,cd} \Big(L_{ab} \rho_S(0) L_{cd}^{\dagger} - \frac{1}{2} \{ L_{cd}^{\dagger} L_{ab}, \rho_S \} \Big)$$

Markovian approximation (separation of time scales)

Wigner transform (smearing for positivity)

$$f_{nl}(\boldsymbol{x},\boldsymbol{k},t) \equiv \int \frac{d^3k'}{(2\pi)^3} e^{i\boldsymbol{k}'\cdot\boldsymbol{x}} \langle \boldsymbol{k} + \frac{\boldsymbol{k}'}{2}, nl, 1 | \rho_S(t) | \boldsymbol{k} - \frac{\boldsymbol{k}'}{2}, nl, 1 \rangle$$

Semiclassical limit

Boltzmann transport equation

$$\frac{\partial}{\partial t} f_{nls}(\boldsymbol{x}, \boldsymbol{k}, t) + \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} f_{nls}(\boldsymbol{x}, \boldsymbol{k}, t) = \mathcal{C}_{nls}^{(+)}(\boldsymbol{x}, \boldsymbol{k}, t) - \mathcal{C}_{nls}^{(-)}(\boldsymbol{x}, \boldsymbol{k}, t)$$

From Open Quantum System to Transport Equation

Two Key Assumptions

1. System interacts weakly with environment?

2. Markovian approximation (no memory effect) ?

Separation of scales and effective field theory can be used to justify these

Separation of Scales

Separation of Scales

Inside QGP: thermal scales: T $M \gg Mv \gg Mv^2 \gtrsim T$

pNRQCD in medium

$$\mathcal{L}_{\text{pNRQCD}} = \int d^3 r \operatorname{Tr} \left(\mathrm{S}^{\dagger} (i\partial_0 - H_s) \mathrm{S} + \mathrm{O}^{\dagger} (iD_0 - H_o) \mathrm{O} + V_A (\mathrm{O}^{\dagger} \boldsymbol{r} \cdot g\boldsymbol{E} \mathrm{S} + \mathrm{h.c.}) + \frac{V_B}{2} \mathrm{O}^{\dagger} \{ \boldsymbol{r} \cdot g\boldsymbol{E}, \mathrm{O} \} + \cdots \right)$$

$$H_s = \frac{(i\nabla_{\rm cm})^2}{4M} + \frac{(i\nabla_{\rm rel})^2}{M} + V_s^{(0)} + \frac{V_s^{(1)}}{M} + \frac{V_s^{(2)}}{M^2} + \cdots$$

no hyperfine splitting to lowest order in v $_{17}$

$$|H\rangle \sim |Q\bar{Q}\rangle + |Q\bar{Q}g\rangle + \cdots$$

Octet Fock state suppressed in v Quarkonium = color singlet pair

Weak Coupling & Resummation

Separation of scales $M \gg Mv \gg Mv^2 \gtrsim T$ $\mathcal{L}_{pNRQCD} = \int d^3r \operatorname{Tr} \left(\mathrm{S}^{\dagger}(i\partial_0 - H_s) \mathrm{S} + \mathrm{O}^{\dagger}(iD_0 - H_o) \mathrm{O} + V_A(\mathrm{O}^{\dagger} \boldsymbol{r} \cdot g\boldsymbol{E} \mathrm{S} + \mathrm{h.c.}) + \frac{V_B}{2} \mathrm{O}^{\dagger} \{ \boldsymbol{r} \cdot g\boldsymbol{E}, \mathrm{O} \} + \cdots \right)$

Arguments breakdown if

- (1) large log: $Mv \rightarrow T$, VA has no running at one loop
- (2) large pT: medium boosted in rest frame of quarkonium, constrain to low pT

Resum octet-A0 interaction by field redefinition

$$O(\boldsymbol{R}, \boldsymbol{r}, t) \rightarrow W_{[(\boldsymbol{R}, t), (\boldsymbol{R}, t_L)]} \widetilde{O}(\boldsymbol{R}, \boldsymbol{r}, t) (W_{[(\boldsymbol{R}, t), (\boldsymbol{R}, t_R)]})^{\dagger}$$

18

$$C_{\alpha\beta}(t_1, t_2) \equiv \operatorname{Tr}_E(O_{\alpha}^{(E)}(t_1)O_{\beta}^{(E)}(t_2)\rho_E)$$

$$\bigvee$$

$$\langle WE(\mathbf{R}_1, t_1)WE(\mathbf{R}_2, t_2)\rangle_T$$

Everything Together: Boltzmann Equation

$$\rho_{S}(t) = \rho_{S}(0) - it[H_{\text{eff}}, \rho_{S}(0)] + \sum_{a,b,c,d} \gamma_{ab,cd} \left(L_{ab} \rho_{S}(0) L_{cd}^{\dagger} - \frac{1}{2} \{ L_{cd}^{\dagger} L_{ab}, \rho_{S} \} \right)$$
Wigner transform
$$\int \int \int dt dt = \int dt dt$$

Dividing by t, set t->0 add spin dependence

$$\partial_t f_{nls}(\boldsymbol{x}, \boldsymbol{k}, t) + \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} f_{nls}(\boldsymbol{x}, \boldsymbol{k}, t) = C_{nls}^{(+)} - C_{nls}^{(-)}$$

Not contradictory with t —> ∞

Markovian: environment correlation time << system relaxation time -> coarse-grained

environment correlation time << t << system relaxation time

$$\frac{1}{T} \ll t \ll \frac{1}{v^2 T}$$

20

Semiclassical Expansion in Recombination

When evaluating recombination term

$$\int \frac{\mathrm{d}^{3}k'}{(2\pi)^{3}} e^{i\boldsymbol{k}'\cdot\boldsymbol{x}_{\mathrm{cm}}} \left\langle \boldsymbol{p}_{\mathrm{cm}} + \frac{\boldsymbol{k}'}{2}, \boldsymbol{p}_{\mathrm{1rel}} \middle| \rho_{S}^{(8)}(0) \middle| \boldsymbol{p}_{\mathrm{cm}} - \frac{\boldsymbol{k}'}{2}, \boldsymbol{p}_{\mathrm{2rel}} \right\rangle$$
$$= \int \mathrm{d}^{3}x_{\mathrm{rel}} e^{-i(\boldsymbol{p}_{\mathrm{1rel}} - \boldsymbol{p}_{\mathrm{2rel}})\cdot\boldsymbol{x}_{\mathrm{rel}}} f_{Q\bar{Q}}^{(8)} \left(\boldsymbol{x}_{\mathrm{cm}}, \boldsymbol{p}_{\mathrm{cm}}, \boldsymbol{x}_{\mathrm{rel}}, \frac{\boldsymbol{p}_{\mathrm{1rel}} + \boldsymbol{p}_{\mathrm{2rel}}}{2}, t = 0 \right)$$

Classical analog exists for same relative momentum

Gradient expansion

LO = classical

$$f_{Q\bar{Q}}^{(8)}(\boldsymbol{x}_{cm}, \boldsymbol{p}_{cm}, \boldsymbol{x}_{rel}, \frac{\boldsymbol{p}_{1rel} + \boldsymbol{p}_{2rel}}{2}, t) = f_{Q\bar{Q}}^{(8)}(\boldsymbol{x}_{cm}, \boldsymbol{p}_{cm}, \boldsymbol{x}_{0}, \frac{\boldsymbol{p}_{1rel} + \boldsymbol{p}_{2rel}}{2}, t) + (\boldsymbol{x}_{rel} - \boldsymbol{x}_{0}) \cdot \nabla_{\boldsymbol{x}_{0}} f_{Q\bar{Q}}^{(8)}(\boldsymbol{x}_{cm}, \boldsymbol{p}_{cm}, \boldsymbol{x}_{0}, \frac{\boldsymbol{p}_{1rel} + \boldsymbol{p}_{2rel}}{2}, t) + \cdots$$

NLO = leading quantum correction

Importance of Scale Hierarchy

Success of transport equation in quarkonium phenomenology

Separation of scales $M \gg Mv \gg Mv^2 \gtrsim T$

Importance of Scale Hierarchy

Success of transport equation in quarkonium phenomenology

Separation of scales $M \gg Mv \gg Mv^2 \gtrsim T$

What if hierarchy breaks down?

 $M \gg Mv \gg T \gg Mv^2$

Practically not possible: v ~ 0.3 for bottomonium $M \gg Mv \sim T \gg Mv^2$

Dipole vertex no longer works No well-defined bound state

Coupled Transport Equations of Heavy Flavors

open heavy quark antiquark

Coupled Transport Equations of Heavy Flavors

open heavy quark antiquark

Coupled Transport Equations of Heavy Flavors

open heavy quark antiquark

$$\begin{aligned} &(\frac{\partial}{\partial t} + \dot{\boldsymbol{x}}_Q \cdot \nabla_{\boldsymbol{x}_Q} + \dot{\boldsymbol{x}}_{\bar{Q}} \cdot \nabla_{\boldsymbol{x}_{\bar{Q}}}) f_{Q\bar{Q}}(\boldsymbol{x}_Q, \boldsymbol{p}_Q, \boldsymbol{x}_{\bar{Q}}, \boldsymbol{p}_{\bar{Q}}, t) = \mathcal{C}_{Q\bar{Q}} - \mathcal{C}_{Q\bar{Q}}^+ + \mathcal{C}_{Q\bar{Q}}^- \\ &\text{each quarkonium state} \\ &\text{nl} = 1\text{S}, 2\text{S}, 1\text{P etc.} \end{aligned} \qquad (\frac{\partial}{\partial t} + \dot{\boldsymbol{x}} \cdot \nabla_{\boldsymbol{x}}) f_{nls}(\boldsymbol{x}, \boldsymbol{p}, t) = \mathcal{C}_{nls}^+ - \mathcal{C}_{nls}^- \end{aligned}$$

uncorrelated recombination

Coupled with Transport of Open Heavy Flavor

heavy quark antiquark

$$\begin{aligned} &(\frac{\partial}{\partial t} + \dot{\boldsymbol{x}}_Q \cdot \nabla_{\boldsymbol{x}_Q} + \dot{\boldsymbol{x}}_{\bar{Q}} \cdot \nabla_{\boldsymbol{x}_{\bar{Q}}}) f_{Q\bar{Q}}(\boldsymbol{x}_Q, \boldsymbol{p}_Q, \boldsymbol{x}_{\bar{Q}}, \boldsymbol{p}_{\bar{Q}}, t) = \mathcal{C}_{Q\bar{Q}} - \mathcal{C}_{Q\bar{Q}}^+ + \mathcal{C}_{Q\bar{Q}}^- \\ &\text{each quarkonium state} \\ &\text{nl} = 1\text{S}, 2\text{S}, 1\text{P etc.} \end{aligned} \qquad (\frac{\partial}{\partial t} + \dot{\boldsymbol{x}} \cdot \nabla_{\boldsymbol{x}}) f_{nls}(\boldsymbol{x}, \boldsymbol{p}, t) = \mathcal{C}_{nls}^+ - \mathcal{C}_{nls}^- \end{aligned}$$

Can handle both correlated and uncorrelated recombination

$$C_{Q\bar{Q}} = C_Q + C_{\bar{Q}}$$
 Each independently interact with medium:
(1) Potential between pair screened
(2) Potential depends on color, average = 0

We use "Lido" for open heavy flavor transport

W.Ke, Y.Xu, S.A.Bass, PRC 98, 064901 (2018)

Detailed Balance and Thermalization

Setup:

- QGP box w/ const T=300 MeV, 1S state & b quarks, total b flavor = 50 (fixed)
- Initial momenta sampled from uniform distributions 0-5 GeV
- Turn on/off open heavy quark transport

Dissociation-recombination interplay drives to detailed balance

Heavy quark energy gain/loss necessary to drive kinetic equilibrium of quarkonium

Upsilon in 5020 GeV PbPb Collision

Coulomb potential $\alpha_s^{\text{pot}} = 0.36$ $\alpha_s = 0.3$ vary by +(-)10% Pythia + nuclear PDF: EPPS16, uncertainty band 2+1D viscous hydro (calibrated) Bottomonium: 1S, 2S, 3S, 1P, 2P

with cross-talk (correlated) recombination

Upsilon in 5020 GeV PbPb Collision

Upsilon in 5020 GeV PbPb Collision

Flat y dependence:

- 1. medium description is longitudinally boost invariant
- 2. nPDF mild dependence on y

Upsilon(1S) Azimuthal Anisotropy in 5020 GeV PbPb

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} (1 + 2v_{2}\cos(2\phi) + \cdots)$$

- path dependence 1.
- reaction rates depend on relative velocity between medium and quarkonium 2.
- correlated recombination: medium interaction after dissociation but before 3. recombination; uncorrelated b-quarks negligible (different for charm)

Experimental Evidence of Correlated Recombination

Dissociation rate of 1P ~ dissociation rate of 2S, due to similar binding energy/size

In medium, $P(1P - >2S) \sim P(2S - >1P)$, via dissociation and correlated recombination

But more 1P states produced initially than 2S, so more 2S regenerated than 1P

Conclusion

- Quarkonium transport inside QGP:
 - Derivation of Boltzmann equation from open quantum system and effective field theory
 - Hierarchy of scales, nonrelativistic expansion, weak coupling, Markovian limit
- Phenomenological results from coupled transport equations, importance of correlated recombination for bottomonium
- Experimental test of correlated recombination: 1P v.s. 2S

Backup: NLO Contributions

35

Backup: Running of Dipole Interaction

36

XY, B.Müller arXiv:1811.09644

Backup: Numerical Implementation

- Test particle Monte Carlo $f(\boldsymbol{x}, \boldsymbol{p}, t) = \sum_{i} \delta^{3}(\boldsymbol{x} \boldsymbol{y}_{i}(t))\delta^{3}(\boldsymbol{p} \boldsymbol{k}_{i}(t))$
- Each time step: read in hydro-cell velocity, temperature; consider diffusion, dissociation, recombination in particle's rest frame and boost back
- If specific process occurs, sample incoming medium particles and outgoing particles from differential rates, conserving energy momentum
- Recombination term contains $f_{Q\bar{Q}}(m{x}_1,m{p}_1,m{x}_2,m{p}_2,t)$

For each HQ, search anti-HQ within a radius, weighted sum

$$f_{Q\bar{Q}}(\boldsymbol{x}_1, \boldsymbol{p}_1, \boldsymbol{x}_2, \boldsymbol{p}_2, t) = \sum_{i,j} \frac{e^{-(\boldsymbol{y}_i - \bar{\boldsymbol{y}}_j)^2 / 2a_B^2}}{(2\pi a_B)^{3/2}} \delta^3(\frac{\boldsymbol{x}_1 + \boldsymbol{x}_2}{2} - \frac{\boldsymbol{y}_i + \bar{\boldsymbol{y}}_j}{2}) \delta^3(\boldsymbol{p}_1 - \boldsymbol{k}_i) \delta^3(\boldsymbol{p}_2 - \bar{\boldsymbol{k}}_j)$$

Backup: Nuclear PDF

