Constraints on intrinsic
alignments of elongated
low-mass galaxies out to z~2.5
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CANDELS observations: galaxies start out elongated
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CANDELS observations: galaxies start out elongated
/hang, Primack, Faber, Koo et al. (2019); van der Wel et al. 2014

Blue = elongated Statistically inferred from observed distributions of
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Redshift

Four stellar mass —redshift bins where >50% galaxies are likely elongated:

1.0 <z<1.59.0<logM, <9.5 20<z<2590<logMy <9.5

1.5<z<2.0,9.0<logM, <9.5 20<z2<2595<logM. <10.0
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Simulations: galaxies also start out elongated

Ceverino, Primack & Dekel 2015
- Elongated low-mass galaxies live in elongated low-mass dark matter halos
- The halos are accreting matter preferentially along direction of host filament

Stars
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Simulations: elongated galaxies are aligned with their halos
Tomassetti+16
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Could low-mass elongated galaxies be clean tracers
of the high-redshift cosmic web via their intrinsic alignments?

Pandya et al. (2019)
Two kinds of alignments
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Could low-mass elongated galaxies be clean tracers
of the high-redshift cosmic web via their intrinsic alignments?

Long history of intrinsic alignment studies...

See reviews by Kiessling+15 and Kirk+15

* Red elliptical galaxies: detections out to z~1

e e.9., Mandelbaum+06, Hirata+07, Joachimi+11, Samuroff+18, ...

* Blue disky galaxies: non-detections out to z~1.4

* e.g., Mandelbaum+11, Tonegawa+18
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CANDELS Observations

 All 5 CANDELS fields (~0.25 deg? total)

* Only use galaxies in prolate-dominated Msta—redshift bins
e effectively log Mstar = 9-10 and z=1.0-2.5 (Zhang+19)

* Require well-measured b/a, a and PA using GALFIT (F160W)

- -

quire spectroscopic or arism redshifts (Kodra. Newman+1¢€




CANDELS Mock Lightcones

Based on the Bolshoi-Planck DM-

only simulation
e Extract CANDELS-sized fields

Fill DM halos with galaxies using
abundance matching (Behroozi+19)
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Assume prolate galaxies hosted by
prolate halos

Following Tomassetti+16, make
extreme assumption that prolate

galaxies would point in same

direction as their host prolate halos One example mock lightcone
w/ 5 CANDELS subfields
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Alignments in mocks vs. observations

“Shape—position” “Shape—shape”

Neighbor can be Both galaxies must be
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Results: shape—position alignments &

Mocks: 3D real space
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Results: shape—position alignments &

Mocks: 3D redshift space

[__1 Nearest neighbors

All neighbors
p < 0.01 ! within 10 cMpc
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Results: shape—position alignments &

Mocks: 2D projected redshift space

[ 1 Nearest neighbors

All neighbors
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Results: shape—position alignments &

Mocks: 2D projected redshift space
with spectroscopic incompleteness & zgrism €rrors

p<«0.01 [ 1 Nearest neighbors
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One example realization out of 1000
Only ~54% of realizations show significant signal




Results: shape—position alignments &

CANDELS Observations

[__1 Nearest neighbors

All neighbors
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Results: shape—shape alignments

Mocks: 3D real space
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Results: shape—shape alignments
Mocks: 3D redshift space

[__1 Nearest neighbors

All neighbors

" within 10 cMpc
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Results: shape—shape alignments
Mocks: 2D projected redshift space

[ 1 Nearest neighbors

All neighbors
within 10 cMpc
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Results: shape—shape alignments <% »

Mocks: 2D projected redshift space
with spectroscopic incompleteness & zgrism €rrors
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One example realization out of 1000
Only ~2% of realizations show significant signal




Results: shape—shape alignments
CANDELS Observations

[ 1 Nearest neighbors

All neighbors
L) within 10 cMpc
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ack of expected signal due to
spectroscopic incompleteness/bias?

1 Zepec Only ® [he spectroscopic/grism
fraction is preferentially low
for galaxies with small b/a
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¢ Possibly due to bias in
spectroscopic selection
criteria and/or too faint

e Observing ~1200 more pairs
would help detect or firmly
rule out expected shape-
position signal (UCSC senior

0.0 0.2 0.4 0.6 0.8 10 T :
Projected b/a axis ratio thesis: Patrick Ward)



Other possible explanations for no observed signal?

 Misalignment between prolate galaxy & host halo orientation
 Halo orientation itself changes as a function of radius

» Contamination from misaligned edge-on disks

e Crude observed galaxy shape measurements (GALFIT)

Future prospects

Analyze full photometric CANDELS catalog for on-sky

alignments in broad redshift bins (Patrick Ward’s senior thesis)

nydro simulations (lllustris

Jse mocks to devise optimal spec-z targeting campaign
_ook for other alignments (e.g., shape-filament in COSMOS)
More detalled shape analysis as used in weak lensing studies
Make predictions using large-volume sufficient-resolution

NG 50 Mpc box; Haowen Zhang+)
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Main lakeaways

e Observations and simulations show that most low-mass
(Mstar=109-1010Msyn) galaxies at z>1 are elongated

e |n simulations, elongation is due to accretion along cosmic filament

* Could these low-mass elongated galaxies be clean tracers
of the high-redshift cosmic web via their intrinsic alignments”
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Bonus slides




Prolateness probabilities

Haowen Zhang+18
Low-mass (Mstar=109-109-5Msun), high-redshift (z=2.0-2.5) CANDELS bin

(a) observed distribution . (b) model distribution {c) residual
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Prolateness probabilities

Prolate Probability
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CANDELS: galaxies start out elongated

’

(a) CANDELS galaxy (b) VELA galaxy

/hang, Primack, Faber, Koo, et al. 2019



Spectroscopic incompleteness and grism redshift errors

Shape--position alignments
Only nearest neighbor pairs

1 2D mock (scaled)
1 2D mock + Zgyism €rrors (scaled)

- —-t 2D mock random subsample
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