Axion Dark Matter coupled to

Photons and Gravitons

Tomohiro Fujita (ICRR Tokyo U.)

Obata, TF & Michimura PRL**121**,161301(2018) TF, Tazaki & Toma PRL**122**,191101(2019) Nagano, TF, Obata & Michimura PRL**123**,111301(2019) TF, Tanaka, Obata & Yamada in prep.(2020)

23rd. Jun. 2020@IPMU

Outline of Talk

- 1. Introduction
- 2. Protoplanetary Disk (Photon)
- 3. GW Interferometer (Photon)
- 4. GW Amplification (Graviton)
- 5. Summary

Outline of Talk

- 1. Introduction
- 2. Protoplanetary Disk (Photon)
- 3. GW Interferometer (Photon)
- 4. GW Amplification (Graviton)
- 5. Summary

introduction

PRESENTATION

Who is Dark Matter?

PRESENTATION

introduction

DM candidates

introduction

PRESENTATION

DM candidates

Scalar Dark Matter (∋Axion & ALPs)

Different from particle DMs: production & evolution

In this talk, we make no assumption on its production & evolution.

Oscillating Scalar Field: $m \gg H$

 $\phi = (a/a_0)^{-\frac{3}{2}}\phi_0\cos(mt+\delta)$

 $\rho_{\phi} \propto a^{-3}, \ \delta_m \propto \text{amplitude pert. } \delta\phi(t, \mathbf{x})$

introduction

What characterizes ADM?

• ADM can be very light. $(10^{-22} \text{eV} \leq m)$

ADM may be coupled to gauge fields!

introduction

Axion-Photon Coupling

• Interaction term: $\mathcal{L}_{\phi\gamma} = \frac{1}{4} g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$

$\tilde{F}^{\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$

Axion-Graviton Coupling

• Interaction term: $\mathcal{L}_{\phi g} = \frac{1}{4} g_{CS} \phi R_{\mu \nu \rho \sigma} \tilde{R}^{\mu \nu \rho \sigma}$

 $\tilde{R}^{\mu\nu\rho\sigma} \equiv \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} R^{\mu\nu}_{\ \alpha\beta}$

Outline of Talk

1. Introduction

2. Protoplanetary Disk (Photon)

- 3. GW Interferometer (Photon)
- 4. GW Amplification (Graviton)
- 5. Summary

introduction

Axion-Photon Coupling

Interaction term: $\mathcal{L}_{\phi\gamma} = \frac{1}{4}g\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$

 $\left[\partial_t^2 - \partial_i^2\right] \mathbf{A} = -g\dot{\phi}\nabla \times \mathbf{A}$ Photon:

Axion: $\left[\partial_t^2 - \partial_i^2 + m^2\right]\phi = -g\dot{A}\cdot\nabla\times A$

Current constraint

Assume background DM axion: $\phi(t) = \phi_0 \cos(mt)$

 $-m\phi_0\sin(mt)$

Photon EoM: $[\partial_t^2 - \partial_i^2] \mathbf{A} = -g \dot{\phi} \nabla \times \mathbf{A}$

Assume background DM axion: $\phi(t) = \phi_0 \cos(mt)$

 $-m\phi_0\sin(mt)$

Photon EoM:
$$[\partial_t^2 - \partial_i^2] \mathbf{A} = -g \dot{\phi} \nabla \times \mathbf{A}$$

 $i\widehat{\boldsymbol{k}} \times \boldsymbol{e}_{L,R} = \pm \boldsymbol{e}_{L,R}$

Dispersion relations of Left/Right Pol. are modified

$$\omega_{L,R}^2 = k^2 \left[1 \pm g \phi_0 \frac{m}{k} \sin(mt) \right] \qquad \bigoplus_{\text{left handed}} p_{\text{iff handed}}$$

Speed of light changes depending on polarization!

Another consequence: Rotation of liner pol. Plane

Linear pol. Photon can be $\begin{pmatrix} 1\\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1\\ i \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1\\ -i \end{pmatrix}$, decomposed into circular pol.

With ADM BG
phase velocity
are different, $\frac{e^{ikT}}{2} \left[e^{i\int_t^{t+T}\delta\omega dt} \begin{pmatrix} 1\\i \end{pmatrix} + e^{-i\int_t^{t+T}\delta\omega dt} \begin{pmatrix} 1\\-i \end{pmatrix} \right]$ \Rightarrow polarization
plane rotates $= e^{ikT} \left(\frac{\cos(\int_t^{t+T}\delta\omega dt)}{-\sin(\int_t^{t+T}\delta\omega dt)} \right).$

Birefringence

Rotation angle synchronizes with Axion

$$\theta(t,T) = \int_t^{t+T} \delta\omega(t) \,\mathrm{d}t = -\frac{g_{a\gamma}}{2} \left[\phi(t+T) - \phi(t)\right],$$

Motion of the linear polarization plane

Birefringence

Rotation angle synchronizes with Axion

$$\theta(t,T) = \int_t^{t+T} \delta\omega(t) \,\mathrm{d}t = -\frac{g_{a\gamma}}{2} \left[\phi(t+T) - \phi(t)\right],$$

Motion of the linear polarization plane

Birefringence

Rotation angle synchronizes with Axion

$$\theta(t,T) = \int_t^{t+T} \delta\omega(t) \,\mathrm{d}t = -\frac{g_{a\gamma}}{2} \left[\phi(t+T) - \phi(t)\right],$$

Motion of the linear polarization plane

Rotation angle is $\sim 10^{-2}$ for largest coupling g

 $\rho_{\rm DM} = m^2 \phi_0^2 / 2 \approx 0.3 \ {\rm GeV/cm^3}$

 $g_{12} \equiv g_{a\gamma}/(10^{-12} \text{GeV}^{-1}),$

 $m_{22} \equiv m/(10^{-22} \text{eV})$

 $\theta(t,T) \approx 2 \times 10^{-2} \sin \Xi \sin(mt + \Xi + \delta) g_{12} m_{22}^{-1}$

 $\Xi \equiv mT/2 \approx 10^2 (T/10 \text{pc}) m_{22}$

How can we observe this?

In astro, we don't know the initial polarization plane. Can't measure θ ...

ProtoPlanetary Disk

Observations of PPD can be used!

PPD is a flattened gaseous object surrounding a young star.

PPDs are bright simply by scattering the central star's light.

Real data

Artist's image

Polarization of PPD

Scattered light should be polarized perpendicular to the scattering plane (=this monitor).

Initial polarization Plane is known!!

Obsevation of PPD

[Hashimoto et al. APJL729:L17(2011)]

We expect a concentric pattern of linear polarization.

Our Simulation without Axion DM

Is this angle 90° or not?

Obsevation of PPD [Hashimoto et al. APJL729:L17(2011)]

²olarized Intensity [mJy/(arcsec)²

We expect a concentric pattern of linear polarization.

Our Simulation without Axion DM

Observation by SUBARU

AB Aurigae (160pc away)

[Hashimoto et al. APJL729:L17(2011)]

Obsevation of PPD

The observation data reveals

[TF. Tazaki & Toma (2018)] See also 1903.02666 for CMB

New constraint

Compared to the prediction, we obtain the best constraint on g of ultralight ADM ($m \sim 10^{-22}$ eV)

Fedderke+ PRD100,015040(2019)

Long-term Obs of PPD

If we observe a PPD for longer time than m^{-1} , the periodic shift of θ should be detected.

Chigusa, Moroi & Nakayama: 1911.09850

Outline of Talk

- 1. Introduction
- 2. Protoplanetary Disk (Photon)

3. GW Interferometer (Photon)

- 4. GW Amplification (Graviton)
- 5. Summary

Can we use GW interferometers

to search for Axion DM?

[DeRocco & Hook, PRD 98, 035021 (2018)]

Yes!! Because GW interferometer is

Measure the other polarization component (horizontal) by filtering the original pol. component (vertical)

Coexist with GW observation

Tiny signal compensated by long operation time

Additional instruments at the tail enable interferometers to probe ADM during the GW observation run without loosing any sensitivity to GWs Long Run!

Sensitivity Curve for 1 year run

Sensitivity Curve for 1 year run

DANCE Act.1 has started!

PRESENTATION

Prototype exp. (Act.1) is being constructed in U. Tokyo. (Ando lab.)

We got a grant (35kUSD/yr) and applied for another one to extend our experiment.

The first result (1m, 3months) will be obtained within a year

Image: Fill AOM FOM FOM FOM FOM PRESERVE 周辺長1m 7/ネス3×10³ Image: Fill AOM FOM FOM PRESERVE アクシオン信号 Collimator PRESERVE Image: Fill AOM FOM PRESERVE アクシオン信号 Collimator PRESERVE Image: Fill AOM FOM PRESERVE アクシオン信号 Collimator PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE Image: Fill AOM FOM PRESERVE Fill AOM FOM PRESERVE

DANCE Act 1の構成

Recent Proposals for ADM Search

Outline of Talk

- 1. Introduction
- 2. Protoplanetary Disk (Photon)
- 3. GW Interferometer (Photon)
- 4. GW Amplification (Graviton)
- 5. Summary

introduction

Axion-Photon Coupling

• Interaction term: $\mathcal{L}_{\phi\gamma} = \frac{1}{4} g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$

$\tilde{F}^{\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$

Axion-Graviton Coupling

• Interaction term: $\mathcal{L}_{\phi g} = \frac{1}{4} g_{CS} \phi R_{\mu \nu \rho \sigma} \tilde{R}^{\mu \nu \rho \sigma}$

 $\tilde{R}^{\mu\nu\rho\sigma} \equiv \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} R^{\mu\nu}_{\ \alpha\beta}$

[Yoshida & Soda (2017)]

GW amplification

[arXiv:1708.09592v2]

Exploring the string axiverse and parity violation in gravity with gravitational waves

Daiske Yoshida^{*} and Jiro Soda[†] Physics Department, Kobe University. (Dated: October 17, 2018)

We study gravitational waves in the presence of the string axion dark matter and the gravitational Chern-Simons coupling. We show that the parametric resonance of gravitational waves occurs due to the axion coherent oscillation and the circular polarization of gravitational waves is induced by the Chern-Simons coupling. For example, the gravitational waves should be enhanced ten times every 10^{-8} pc in the presence of the axion dark metter with were 10^{-10} eV provided the employee enstant $\ell = 10^8$ km. After 10 kpc propagation, the amplitude of GWs are enhanced by $10^{10^{12}}$ and the polarization of GWs becomes completely circular. However, we have never observed these signatures. This indicates that the Chern-Simons coupling constant and/or the abundance of the light string axion should be strongly constrained than the current limits $\ell \leq 10^8$ km and $\rho \leq 0.3$ GeV/cm³.

PACS numbers: 04.30.-w, 14.80.Va,95.35.+d

Keywords: string axiverse, parity violation in gravity, gravitational waves

GW amplification

Interaction term

$$S_{\rm CS} = \frac{1}{4} \alpha \, \int_{\mathcal{V}} dx^4 \sqrt{-g} \, \Phi \tilde{R} R$$

Oscillating axion

$$\Phi = \Phi_0 \cos(m\eta) \; ,$$

EoM for GWs

$$h_{\rm A}'' + \frac{\epsilon_{\rm A}\delta\,\cos(m\eta)}{1 + \epsilon_{\rm A}\frac{k}{m}\delta\,\sin(m\eta)}k\,h_{\rm A}' + k^2h_{\rm A} = 0$$

Small parameter

$$\delta \equiv \frac{\alpha}{\kappa} m^2 \Phi_0$$

[arXiv:1708.09592v2]

[Yoshida & Soda (2017)]

Exploring the string axiverse and parity violation in gravity with gravitational waves

Daiske Yoshida^{*} and Jiro Soda[†] Physics Department, Kobe University. (Dated: October 17, 2018)

We study gravitational waves in the presence of the string axion dark matter and the gravitational Chern-Simons coupling. We show that the parametric resonance of gravitational waves occurs due to the axion coherent oscillation and the circular polarization of gravitational waves is induced by the Chern-Simons coupling. For example, the gravitational waves should be enhanced ten times every 10^{-8} pc in the presence of the axion dark matter with mass 10^{-10} eV provided the coupling constant $\ell=10^8$ km. After 10 kpc propagation, the amplitude of GWs are enhanced by 10^{1012} and the polarization of GWs becomes completely circular. However, we have never observed these signatures. This indicates that the Chern-Simons coupling constant and/or the abundance of the light string axion should be strongly constrained than the current limits $\ell \leq 10^8$ km and $\rho \leq 0.3 \mbox{ GeV/cm}^3$.

PACS numbers: 04.30.-w, 14.80.Va,95.35.+d

Keywords: string axiverse, parity violation in gravity, gravitational waves

[Jung, Kim, Soda and Urakawa (2020)]

GW amplification

FIG. 2. The upper limit on the axion Chern-Simons coupling ℓ , assuming the absence of a resonance peak in the 11 GW observations at LIGO O1+O2. The gray shaded re-

Taking into account the axion coherence, the amplification becomes mild.

But they still claim a sharp resonant peak in GW spectrum is produced.

Our on-going work

Setup

[TF, Obata, Tanaka & Yamada in prep]

Action:

$$S \equiv \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R + \frac{M_{\rm Pl}\ell_{\rm dCS}^2}{4\sqrt{2}} \phi^* RR - \frac{1}{2} \left(\nabla_\mu \phi \nabla^\mu \phi + 2V(\phi) \right) + \mathcal{L}_{\rm mat} \right]$$

$\begin{array}{ll} \mbox{Oscillating axion} & \mbox{Axion amplitude} \\ \phi(t,x) = \frac{1}{2} \left(\phi_0(x) e^{-imt} + \phi_0^*(x) e^{imt} \right) & \ensuremath{\varepsilon}(x) \equiv \frac{\sqrt{2}\ell_{\rm dCS}^2}{M_{\rm Pl}} m^2 \phi_0(x) \\ \\ \mbox{EoM for GWs} \\ (\partial_t^2 - \partial_x^2) h_{\rm R/L} - \frac{1}{2} i \lambda_{\rm R/L} \left(\varepsilon(x) e^{-imt} + \varepsilon^*(x) e^{imt} \right) \partial_t \partial_x h_{\rm R/L} = 0, \end{array}$

So far, the same as Kobe group.

Analysis on resonance

Landau says a resonance is caused by the interaction btw 2 opposite modes, $\omega \approx m/2$ and $\omega \approx -m/2$.

Ansatz in the constant amplitude & phase case ($\epsilon = const$.)

$$h_{\rm R/L}(t,x) = A_0 e^{-i\omega t + ikx} + B_0 e^{-i(\omega - m)t + ikx} + c.c.$$

EoM yields the dispersion relation

$$\delta \omega^2 = \delta k^2 - \frac{m^2}{64} |\varepsilon|^2 \qquad \omega \approx k \approx m/2.$$

Resonant amplification within the band $|\delta k| < \frac{m|\varepsilon|}{2}$

Our on-going work

Wave packet

We know how a plane wave behaves:

$$h_{\delta\omega} \propto \exp\left[-i\delta\omega\left(t-x\,\delta\hat{k}\right)\right], \quad \hat{\delta k} \equiv \sqrt{1+\frac{|\varepsilon|^2}{64}\frac{m^2}{\delta\omega^2}},$$

As more realistic GW signal, consider a Gaussian wave packet $\propto \exp[-\delta\omega^2/2K^2]$.

$$h_{\text{packet}} = \frac{1}{\sqrt{2\pi}K} e^{-im(t-x)/2} \int d\delta\omega \, e^{f(\delta\omega)} \qquad f(\delta\omega) = -i\delta\omega \left(t - x\sqrt{1 + \frac{|\varepsilon|^2}{64}\frac{m^2}{\delta\omega^2}}\right) - \frac{\delta\omega^2}{2K^2}$$

Saddle point integral gives analytic results which respect the causality

$$h_{\text{packet}}(t > x) \sim \exp\left[\frac{m|\varepsilon|}{8}\sqrt{t^2 - x^2}\right]$$
$$h_{\text{packet}}(t < x) \sim \exp\left[-\frac{1}{2}K^2(x - t)^2\right]$$

Numerical results

Causal amplification

mx/2π

GW packet itself is not amplified much, but it gets a long growing tail behind it.

mt/2*π*

GW packet itself is not amplified much, but it gets a long growing tail behind it.

[TF, Obata, Tanaka & Yamada in prep]

Axion Coherence

Axion oscillation is **NOT** coherent over a scale $\lambda_c \approx (mv)^{-1}$.

 $\phi(t, x) = \Phi(x) \cos(mt + \delta(x))$ and $\delta(x)$ varies

In our formulation

A simple simulation inside Milky way galaxy ($v \approx 10^{-3}$)

 $\phi_{0}(x) = \Phi(x)e^{i\delta(x)}$ Phase $\delta(x)$ $\varepsilon(x) \equiv \frac{\sqrt{2}\ell_{dCS}^{2}}{M_{Pl}}m^{2}\phi_{0}(x)$ Account for $\epsilon(x)$!

Our on-going work

Re-analysis on resonance

Ansatz in the varying amplitude & phase case ($\epsilon \neq const$.)

$$h_{\rm R/L}(t,x) = \left(A(x) e^{-imt/2} + B(x) e^{imt/2}\right) e^{-i\delta\omega(t-x) + im/2x}$$

EoM yields our master equation w.r.t. $X \equiv A'/A$

$$X' + X^2 + \left(2i\delta\omega - \frac{\varepsilon'}{\varepsilon}\right)X + \frac{m^2}{64}|\varepsilon|^2 = 0$$

We found a consistent analytic solution for $|\epsilon| \ll 1$

$$X(x) = \frac{m^2}{64} \int_x^{x_{\text{end}}} \mathrm{d}y \,\varepsilon(x) \varepsilon^*(y) e^{-2i\delta\omega(x-y)}$$

Evaluate it with a Gaussian $\epsilon \qquad \langle \varepsilon(x)\varepsilon^*(y)\rangle = |\overline{\varepsilon}|^2 \exp\left[-\frac{(x-y)^2}{2\lambda_{\rm ob}^2}\right]$

Our on-going work

Incoherent amplification

How large is C?

Axion DM starts oscillating at $m = H(t_{osc})$ and then ϕ is homogeneous.

After that, the amplitude decreases and the incoherence develops.

Amplification is most efficient at t_{osc} in the early universe!?

Require the backreaction not to alter the Axion DM dynamics.

GW Amplification $h_{after} = e^{N_*} h_{before}$ is mild $N_* < 10$ at $H = H_*$

Then we can estimate the parameter ${\mathcal C}$ at present

$$\mathcal{C} \approx 3 \times 10^{-2} \,\Omega_A^{-1}(t_{\rm eq}) \left(\frac{N_*}{10}\right) \left(\frac{L}{10 \,\rm kpc}\right) \left(\frac{\rho_{\rm DM}}{0.3 \,\rm GeV/\,cm^3}\right) \left(\frac{v}{7 \times 10^{-4}}\right)^{-1} \left(\frac{H_*}{H(t_{\rm eq})}\right)^{-1/2} \,\rm e^{-1/2}$$

No significant amplification by Axion DM....

Our on-going work

Way out??

If the axion is not DM, there may be a chance to have great amplifications.

Conditions

- Axion has to start oscillating well after m = H
- Non-DM axion forms clouds

Preliminary estimate

$$\mathcal{C} = \frac{1}{2} \left(\frac{3\sqrt{\pi^7/2} N_*^2 \left(m\ell_{\rm dCS} \right)^4}{\left(L_1 H_* \right)^4} \right)^{1/3} \approx 10 \left(\frac{N_*}{10} \right)^{2/3} \left(m\ell_{\rm dCS} \right)^{4/3} \left(L_1 H_* \right)^{-4/3}$$

Outline of Talk

- 1. Introduction
- 2. Protoplanetary Disk (Photon)
- 3. GW Interferometer (Photon)
- 4. GW Amplification (Graviton)

5. Summary

Summary

Axion DM may be coupled to photon & graviton

Photon coupling causes **Birefringence**

Observations of protoplanetary disks are useful to search for ultralight ADM (m $\sim 10^{-22}$)

GW interferometer are sensitive to ADM with 10^{-16} eV $< m < 10^{-12}$ eV

Graviton coupling causes GW amplification

GW packet itself is not enhanced but gets a amplified tail

Considering cosmology, ADM won't cause significant amplification.

Thank you !