Probing The Cosmic Energy Density Inventory With Tomographic Intensity Mapping

Yi-Kuan Chiang CCAPP Fellow, Ohio State University

The Cosmic Energy Inventory

Masataka Fukugita

Institute for Advanced Study, Princeton, NJ 08540 USA and Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan

P. J. E. Peebles Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 USA

We present an inventory of the cosmic mean densities of energy associated with all the known states of matter and radiation at the present epoch. The observational and theoretical bases for the inventory have become rich enough to allow estimates with observational support for the densities of energy in some 40 forms. The result is a global portrait of the effects of the physical processes of cosmic evolution.

$\Omega_x = \rho_x / \rho_{crit}$

with x being Λ , DM, photons, stars, gas, dust, neutrinos, and other ~40 cosmic constituents

Fukugita & Peebles 2004 See also Fukugita, Hogan, Peebles 98

ABSTRACT

Fukugita & Peebles: $\Omega_{x,0}$ for all x

 \rightarrow summary statistics of the present-day universe (to the 1st moment)

To complete the picture, need $\Omega_x(z)$, or the growth rates $\dot{\Omega}_x(z)$

 \rightarrow summary statistics for the energy transfer in the universe

Extragalactic background light (EBL) as a messenger for Ω_x

By definition, EBL is $\Omega_{radiation}$. It also provides constraints on Ω_{star} , Ω_{dust} , $\Omega_{gas}, \Omega_{BH}...$ if we know the radiative mechanisms

"Galaxy surveys" are incomplete for the EBL or Ω_x "Intensity mapping" is complete, but contaminated & projected

galaxy catalog

intensity map

"Galaxy surveys" are incomplete for the EBL or Ω_x "Intensity mapping" is complete, but contaminated & projected

intensity map

projected cosmic web + foreground

• How do we filter out the foreground and get redshifts for photons to probe $\Omega_x(z)$?

Intensity map

Z1

 Z_2

Z3

"clustering-based redshift estimation": Newman+08, Menard+13, McQuinn+13

projected cosmic web +

foreground

foreground 2

foreground 1

2D intensity map from any photometric survey

 $I(\Phi)$ [Jy/sr]

"clustering-based redshift estimation": Newman+08, Menard+13, McQuinn+13

2D intensity map from any photometric survey 3D cosmic web tracers from redshift surveys (SDSS, DESI, PFS)

"clustering-based redshift estimation": Newman+08, Menard+13, McQuinn+13

2D intensity map from any photometric survey 3D cosmic web tracers from redshift surveys (SDSS, DESI, PFS)

"clustering-based redshift estimation": Newman+08, Menard+13, McQuinn+13

Z4

any photometric survey

2 million spec-z reference sources in SDSS+BOSS+eBOSS

Will be expanded with DESI, PFS..., high quality photo-z's can also be used

Clustering-based redshift tomography can be applied at any waveband

Sunyaev-Zel'dovich (SZ) & infrared background (CIB) Data: Planck 100 to 857 GHz + IRAS 100 and 60 μm

Planck 100 GHz

Paper I arXiv:2006.14650

The Cosmic Thermal History Probed by Sunyaev-Zeldovich Effect Tomography

¹Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, Columbus, OH 43210, USA ² Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, Chiba 277-8582, Japan ³Department of Physics & Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA ⁴Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str. 1, 85741 Garching, Germany

Paper II arXiv:2007.01679

The thermal and gravitational energy densities in the large-scale structure of the Universe

¹Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, Columbus, OH 43210, USA ²Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, Chiba 277-8582, Japan ³Max-Planck-Institut für Astrophysik, Karl-Sch ⁴Department of Physics & Astronomy, Johns Hopkins Unive

YI-KUAN CHIANG ^(D), ¹ RYU MAKIYA ^(D), ² BRICE MÉNARD ^(D), ^{3, 2} AND EIICHIRO KOMATSU ^(D), ²

YI-KUAN CHIANG,¹ RYU MAKIYA,² EIICHIRO KOMATSU,^{3,2} AND BRICE MÉNARD^{4,2}

Ryu Makiya

Eiichiro Komatsu

Brice Ménard

Ω_{th} — thermal energy, a clean probe of structure growth

Cen & Ostriker 99; Refregier+00

https://www.youtube.com/watch? v= mcRvkzCLEY

B. W. O'Shea with the Enzo code

Thermal Sunyaev-Zel'dovich effect

Sunyaev & Zel'dovich 1972 Mroczkowski +19

Ω_{th} — thermal energy, a clean probe of structure growth

Cen & Ostriker 99; Refregier+00

https://www.youtube.com/watch? v= mcRvkzCLEY

B. W. O'Shea with the Enzo code

Thermal Sunyaev-Zel'dovich effect

Spectral energy distribution (SED) of thermal SZ + CIB

Spectral energy distribution (SED) of thermal SZ + CIB

SED fitting

tSZ compton y history

Ζ

Bias-weighted gas pressure + Literature comparison

Insights from the halo model

- Clusters, groups, and proto-clusters dominate cosmic y
- y weighted halo bias can be robustly predicted

Chiang+ 2020a, b

Cluster pressure profile is known empirically (Arnaud+10, Planck+13), but absolute mass calibration is not. Our tSZ measurements give mass bias **B = M**_{500, true} / **M**_{500, empirical} ~1.27

Bias-weighted gas pressure

Cosmic thermal energy parameter

Thermal + non-thermal pressure balances gravity in halos

Work in progress – CIB / Ω_{dust} analysis

UV background, another piece of EBL with rich physics

Spectral Tagging the Cosmic UV Background in GALEX

Chiang+ 2019

Spectral Tagging the Cosmic UV Background in GALEX

Chiang+ 2019

What's next?

What's next? X-ray background = $\dot{\Omega}_{SMBH}$ + clusters + WHIM

What's next? X-ray background = $\dot{\Omega}_{SMBH}$ + clusters + WHIM

ROSAT 0.1-2.4 keV

1012

1014

1010

What's next?

Cosmic synchrotron background

Why synchrotron?

- Potentially constrains cosmic magnetism Ω_B and cosmic rays Ω_{CR}
- Known sources + extrapolation < reported monopole (Singal+18)
- Data revolution is happening now to 2030s, thanks to the interest in EOR 21cm

Long-wavelength radio survey landscape

- survey over 0.75–5 µm
- To launch in 2024

Topographer — clustering redshift on the cloud, for everyone http://tomographer.org

Concept & algorithm: Yi-Kuan Chiang & Brice Ménard

Web platform: Manuchehr Taghizadeh-Popp

Topographer — clustering redshift on the cloud, for everyone http://tomographer.org

Concept & algorithm: Yi-Kuan Chiang & Brice Ménard

Web platform: Manuchehr Taghizadeh-Popp

- Cosmic SZ tomography constrains the universe's thermal history, Ω_{th} and Ω_{non-th} \bullet
- Multiwavelength background light tomography can inform $\Omega_{radiation}$, Ω_{star} , Ω_{dust} , $\Omega_{\text{SMBH}}, \Omega_{\text{B}}..., \text{ and their growth rates}$
- The technique can be used for exotic sources (e.g., FRB) and go beyond EM waves

Summary

