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NEW PHYSICS

Dynamical
Selection?

New Dynamics
in Particles



WHY DARK MATTER? (WHY NEW PARTICLE PHYSICS?)

» The dark matter paradigm is the only successful
framework for understanding the entire range of
observations from the time the Universe is 1 sec old.
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DARK MATTER HALOS AND FORMATION OF STRUCTURE IN THE UNIVERSE

On large scales, dark matter moves slowly
(cold) and doesn’t interact much other than
with gravity (collisionless)

CMB Planck map P g oy
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EVERYTHING WE KNOW ABOUT DM COMES FROM GRAVITY

Gravitational Interactions

Energy

o
M, ~1 GeV
Visible Sector Dark Matter
Weak Interactions
Inaccessibility




SUPER-WEAKLY INTERACTING

» Gravitational Coherence ....

... on cosmological scales!

» Helps us learn about aggregate properties of
dark matter

» Particle properties much harder

» Fundamental premise: DM has interactions other
than gravitational



PARTICLE PRYSICS PROVIDES SOME IDEAS

» Fundamental premise:
DM has interactions
other than gravitational
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Visible Sector Dark Matter

Sub-weak Interactions
Weak Interactions



PARTICLE PRYSICS PROVIDES SOME IDEAS

Sub-weak Interactions

Dark Matter Resides
<~ Here!
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Dark Matter itself is
simple, and parasitic
on the Visible Sector
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WHY THE (SUB-)WEAK SCALE IS COMPELLING

» Abundance of new stable states set by interaction rates in
the early universe

Freeze-out
Dark matter energy density is measured 4 !
4 g
I'=nov=H — 0~ ~

ATM? (20 TeV)?



WHY THE (SUB-)WEAK SCALE IS COMPELLING

» No new dynamics required from the Dark Matter!

» Forces for the dynamics is provided by the weak force

» As a byproduct, this scenario is quite predictive

» When looking for Dark Matter it helps to know what you are
looking for!



DARK MATTER DETECTION: A FULL COURT PRESS

10723 eV 100 GeV 1000 Mg

(deBroglie wavelength of galaxy) WIMP paradigm (Lyman-alpha forest)

1 Mg ~ 10°7 GeV



DARK MATTER DETECTION: A FULL COURT PRESS

10723 eV 100 GeV 1000 Mg

(deBroglie wavelength of galaxy) WIMP paradigm (Lyman-alpha forest)

» WIMP paradigm: a good place to start looking

» Reason: weak forces have the right scale, for detection,
abundance, and cosmology
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DETECTION OF DARK MATTER BY NUCLEAR RECOIL

» Milky way galaxy provides a source of dark matter
streaming through the earth

v ~ 300 km/s ~ 10 ¢



DETECTION OF DARK MATTER BY NUCLEAR RECOIL

» Nuclear recoil experiments: a billiard ball experiment
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THEORY AND EXPERIMENT INTERPLAY

» Predictive Dark Matter Interaction Rates

& - Cryostat pipe

Outer cryosia:
dome

Inner cryosiat
come

| PMT array

e

- Fleldcage

[ - PMT array

|

Inner cryosta:

coherent neutrino scaltering

- Outer cryoslat 1 1 10 100 1
o 1 WIMP Mass [GeV/e®]

10000
02 1 g APS Physics Today

Z
(] —— — ——

XENON



THEORY AND EXPERIMENT INTERPLAY

» Predictive Dark Matter Interaction Rates

Z-boson interacting
dark matter: ruled out

Higgs interacting dark
matter: active target
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DARK MATTER DETECTION: A FULL COURT PRESS

10723 oV 100 GeV 10" GeV 1000 M,

(deBroglie wavelength of galaxy) WIMP paradigm (Lyman-alpha forest)

1
(20 TeV)?

I'=nov=H — 0 ~

» Heavier dark matter: setting relic abundance through
interactions with Standard Model is challenging

» At heavier masses, detection through Standard Model
interactions is (generally) not motivated by abundance



DARK MATTER DETECTION: A FULL COURT PRESS

10~23 eV 1 eV 100 GeV 1000 Mg

(deBroglie wavelength of galaxy) WIMP paradigm (Lyman-alpha forest)

» Ultralight dark matter: dark matter behaves like a wave
rather than an individual particle, e.g. axion

» Detection techniques focus on utilizing this coherence

» Cavities, AMO techniques



DARK MATTER DETECTION: A FULL COURT PRESS

10723 eV 1 meV 100 GeV 1000 Mg

(deBroglie wavelength of galaxy) WIMP paradigm (Lyman-alpha forest)

» Focus on an intermediate range where observation via
particle interactions with SM is still highly motivated
though not detectable with traditional WIMP experiments

» Arise generically in top-down constructions



DARK MATTER DETECTION: A FULL COURT PRESS

10_23 eV 1 keV 100 GeV 1000 M@

(deBroglie wavelength of galaxy) WIMP paradigm (Lyman-alpha forest)

» Dark sector dynamics are complex and astrophysically
relevant. A o2 < | Ge\/'> 2

~ CNy —24 2

» Abundance may still be set by (thermal) population from

SM sector ,
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PARADIGM SHIFT
Our thinking has shifted

From a single, stable very weakly

A
interacting particle .....
= S (WIMP, axion)
Z — .
3 v Models: Light DM sectors,
l l [ [] l Secluded WIMPs, Dark Forces, Asymmetric DM .....
ree Generatiom of Matter Production: freeze-in, freeze-out and decay,

asymmetric abundance, non-thermal mechanisms .....

...to a hidden world
with multiple states,
new interactions

Standard Model

Inaccessibility




HIDDEN SECTOR / VALLEY

» Presence of dark force allows for many new dark matter

theories
Standard Model Connector Dark Matter
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HIDDEN SECTOR / VALLEY

» Presence of dark force allows for many new dark matter
theories
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HIDDEN SECTOR / VALLEY

» Presence of dark force allows to lower mass scale in DM
sector; dramatically opens possible DM theories

Standard Model Connector Dark Matter

pure glue, light flavors, heavy flavors,
quirky asymmetric dark matter, Strongly
Interacting Massive Particle (SIMP), Wess-
Zumino-Witten SIMP

Energy

Darkogenesis, Xogenesis, Hylogenesis,
Cladogenesis, ADM from Leptogenesis,
Dark Affleck-Dine

’\Neak Dark photons, Freeze-in, WIMPless
miracle

Mirror Matter, Atomic Matter, Self-
Interacting Dark Matter, Magentic, Dark
Light Anapole and EDMs
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HIDDEN SECTOR / VALLEY

Energy

» When is it worth realizing a new model of dark matter?

€ cuarks @ LEPTONS @ BOSONS @@ HIGGS BOSON
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TERRESTRIAL EXPERIMENTS

» New Hidden Sector Mechanisms Require New
Experimental or Observational Probes

Standard Model Connector Dark Matter

Energy
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TERRESTRIAL EXPERIMENTS

» Probe dark sector via rare tunneling process at low energy

Standard Model Connector Dark Matter
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TERRESTRIAL EXPERIMENTS

» Probe dark sector via rare tunneling process at low energy

Standard Model Connector Dark Matter
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TERRESTRIAL EXPERIMENTS

» New Hidden Sector Mechanisms Require New
Experimental or Observational Probes

Standard Model Connector Dark Matter
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TOWARDS HIDDEN SECTOR DARK MATTER

» Push towards light dark matter
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LOOKING BEYOND BILLIARD BALLS

1 meV 1eV 1 keV 1 MeV 1 GeV 100 GeV
| | | | |
-
| | | | | mass
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Absorption Super-  Semiconductors Traditional WIMP
” conductors
aghons . lonization Nuclear recoil
Dirac :
. experiments
Materials
< Crystals /Superfluid
Helium Graphene
QCD axion, “ultralight frontier”
~meV energy  ~eV energy ~keV energy
resolution resolution resolution



Schutz, KZ 1604.08206,

EXCITING COLLECTIVE MODES Knapen Lin,Ple,KZ

1712.06598

» Once DM drops below an MeV, its deBroglie wavelength is longer
than the inter particle spacing in typical materials

» Therefore, coupling to collective excitations in materials makes sense!
» Collective excitations = phonon modes, spin waves (magnons)
» Can be applied to just about any material

» Calculations exist for superfluid helium, semiconductors,
superconductors, polar materials

» Details depend on
» 1) nature of collective modes in target material

» 2) nature of DM couplings to target



NATURE OF COLLECTIVE OSCILLATIONS OF IONS — PHONONS

» Number of collective modes: y Gals

3 x number of ions in unit
cell

» 3 of those modes describe in
phase oscillation — acoustic
phonons — have a gapless |
dispersion s * W s -

» The remaining modes are
gapped Acoustic ’ e ’ ® ’ o ’ @

Optical 94 94 P4 ¥V

Knapen, Lin, Pyle, KZ 1712.06598 Griffin, Knapen, Lin, KZ 1807.10291



NATURE OF COLLECTIVE MODES

| Sapphire
» Some materials have an ALO,

abundance of these modes

» When these gapped modes 50 =L
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DIRECTIONALITY IN ANISOTROPIC MATERIALS!

Knapen, Lin, Pyle, KZ 1712.06598 Griffin, Knapen, Lin, KZ 1807.10291

» Crystal Lattice is not Isotropic

» Especially pronounced in
sapphire

o)
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OPTICAL PHONGONS IN POLAR MATERIALS

Griffin, Inzani, Trickle, Zhang, KZ, 1910.10716
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COMMON R&D PATH

» Sensor can be coupled to
multiple targets

» Zero-field read-out of
phonons

» Now funded by DoE —
TESSERACT (TES with
Sub-EV Resolution and
Cryogenic Targets)

» For a polar crystal target
— Sub-eV Polar
Interactions Cryogenic
Experiment (SPICE)



HIDDEN SECTOR / VALLEY

» When is it worth realizing a new model of dark matter?

Standard Model Connector Dark Matter

pure glue, light flavors, heavy flavors;
quirky asymmetric dark matter, Strongly
Interacting Massive Particle (SIMP), Wess-
Zuming-\Ak

Energy
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Darkogenesis, Xogenesis, Hylogenesis,
Cladogenesis, ADM from Leptogenesis,
Dark Affleck-Dine
’\Neak Dark photons, Freeze-in, WIMPless
. . miracle
High Energy Collider |
B B R ks e Mirror Matter, Atomic Matter, Self-
Interacting Dark Matter, Magentic, Dark
Light Anapole and EDMs
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IMPLICATIONS OF A NEW QCD-LIKE OR WEAKLY COUPLED HIDDEN SECTOR

» Strong First-Order Phase Transitions?

» Baryogengesis can be done in the dark sector =

“dar1<ogeneSiS” Shelton, KZ 1008.1997 Hall, Konstandin, McGehee, Murayama, Servant 1910.08068

» First-order phase transition forms bubbles

» Bubbles collide and generate gravitational waves




IMPLICATIONS OF A NEW QCD-LIKE OR WEAKLY COUPLED HIDDEN SECTOR

» Strong First-Order Phase Transitions?

» Baryogengesis can be done in the dark sector =
“darkogenesis”

» The first-order phase transition gives rise to gravitational
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HIDDEN SECTOR / VALLEY

» When is it worth realizing a new model of dark matter?

A Standard Model Connector

Energy

’Weak

€ cuarks @ LEPTONS @ BOSONS @ HIGGS BOSON

Dark Matter

pure glue, light flavors, heavy flavors,
quirky asymmetric dark matter, Strongly
Interacting Massive Particle (SIMP), Wess-
Zumino-Wi ——

Darkogenesis, Xogenesis, Hylogenesis,
Cladogenesis, ADM from Leptogenesis,
Dark Affleck-Dine

Dark photons, Freeze-in, WIMPless
miracle

High Energy Collider

Mirror Matter, Atomic Matter, Self-
Interacting Dark Matter, Magentic, Dark
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BIG BANG NUCLEOSYNTHESIS AND THE DARK SECTOR

baryon density parameter Qdh?
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REMOVE ELECTROMAGNETISM FROM STANDARD MODEL

» Take BBN temp at 0.1 MeV (due to deuterium bottleneck)

» Solve Boltzmann equation CZ_]Z — knLoLnv

» With Coulomb barrier N ~ 9.5

» Without Coulomb barrier N ~ 1
{1
1024 |
l"
1004 i

Gresham, Lou, KZ 1707.02316 1078




LARGE BOUND STATES WITH LARGE INTERACTION CROSS-SECTIONS

» Usual picture is that dark matter is collisionless

» Large bound states have geometric interaction cross-
sections

» Interactions are dissipational = “hit-and-stick”

Gresham, Lou, KZ 1707.02316



LARGE BOUND STATES WITH LARGE INTERACTION CROSS-SECTIONS

» Usual picture is that dark matter is collisionless

» Large bound states have geometric interaction cross-
sections

» Nugget properties are predictive and characterized by
saturation density

Gresham, Lou, KZ 1707.02316



DARK MATTER SELF-INTERACTIONS AND DARK MATTER HALOS

» Dark matter self-interactions (elastic or dissipational)
change the shape of dark matter halos, their density
profiles, and the amount of substructure

» How much and whether current observation agrees with
collisionless CDM paradigm is a source of active debate




DISSIPATIONAL DARK MATTER AND BLACK HOLE FORMATION

» If dark matter interactions “hit-and-stick”, dark matter
kinetic energy dissipates and can easily sink to the center
of a halo, eventually forming Super Massive Black Holes

» It’s not currently known how SMBHs form

» Could Dark Matter play a role?
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SUMMARY

» Field of identifying the nature of dark matter is broad and
vibrant

» We are, every year, learning more about the history and structure
of the Universe

» Traditionally, the field has focused on weak scale dark matter as
the leading hypothesis

» The WIMP tyranny has been broken and new experiments are
moving forward

» e.g. Direct detection with solid state devices and novel intensity
experiments

» Potentially important implications for cosmology and formation
of structure



THE OUTLOOK

-n  The universe is dominated by invisibles!
=" WIMP or (axion)
-» How to be ready for anything? Hidden Sectors

=r  How do I search for these things?

il =n .
rlogn .




