precision studies of low-scale leptogenesis and relation to dark matter¹

mikko laine

aec, itp, university of bern

¹ supported by the snf under grant 200020B-188712

motivation

explain neutrino properties with the minimal seesaw

$$\begin{split} \mathcal{L}_{\text{new-SM}} &\equiv \mathcal{L}_{\text{old-SM}} + \bar{\nu}_{\text{R}} i \not \! \partial \nu_{\text{R}} \\ &- (\bar{\nu}_{\text{R}} \, \tilde{\phi}^{\dagger} h_{\nu} \, \ell_{\text{L}} + \bar{\ell}_{\text{L}} \, h_{\nu}^{\dagger} \, \tilde{\phi} \, \nu_{\text{R}}) \\ &- \frac{1}{2} (\bar{\nu}_{\text{R}}^{c} M_{\text{M}} \nu_{\text{R}} + \bar{\nu}_{\text{R}} \, M_{\text{M}}^{\dagger} \nu_{\text{R}}^{c}) \end{split}$$

singular value decomposition & field rotation $\Rightarrow M_{\rm M} = {\rm diag}(M_1,M_2,M_3) \text{, where } M_I \geq 0$ we assume that $\{M_I\}$ are set in increasing order

prediction: \exists heavy states and lepton numbers are violated

there is a large parameter space

if only one neutrino yukawa contributes to a given mass difference²

$$|\Delta m_{\nu}| \simeq \frac{|(h_{\nu})_{Ia}|^2 v^2}{M_I}$$

traditionally: $M_I \stackrel{\rm GUT?}{\sim} 10^{15} \text{ GeV} \Leftrightarrow h_{\nu} \sim 1$ more recently: $M_I \sim 1...100 \text{ GeV} \Leftrightarrow h_{\nu} \sim 10^{-7}...10^{-6}$

² P. Minkowski, $\mu \rightarrow e\gamma$ at a Rate of One Out of 10⁹ Muon Decays?, PLB 67 (1977) 421; M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, 1306.4669; T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, PTP 64 (1980) 1103

many domains have been looked into

low-mass range is motivated at least by falsifibility³

\Rightarrow a large region to explore

³ for a review of current status see e.g. M. Chrzaszcz *et al*, A frequentist analysis of three right-handed neutrinos with GAMBIT, 1908.02302

general theoretical framework

classic leptogenesis: non-equilibrium in two variables⁴

consider $Y_R \simeq e_R/(Ms)$ and lepton asymmetry $Y_L \equiv n_L/s$ defining $\widehat{\Gamma} \equiv \Gamma/(3c_s^2H)$, $x \equiv \ln(T_{\max}/T)$, $Y' \equiv dY/dx$:

 $\begin{array}{l} \Rightarrow Y_L \neq 0 \text{ possible if } \widehat{\Gamma}_L \text{, } \widehat{\Gamma}_R \text{ "small" and } \widehat{\Gamma}_{L,R} \text{ "large"} \\ \Rightarrow \text{ "sphaleron equilibrium" , } Y_B + Y_L \simeq 0 \text{, then produces } Y_B \end{array}$

⁴ M. Fukugita, T. Yanagida, *Baryogenesis Without Grand Unification*, PLB 174 (1986) 45; for current status, see D. Bödeker and M. Wörmann, *Non-relativistic leptogenesis*, 1311.2593; D. Bödeker and M. Sangel, *Lepton asymmetry rate from quantum field theory: NLO in the hierarchical limit*, 1702.02155

low-scale leptogenesis involves more "slow" variables⁵

- $Y_L \rightarrow$ flavour asymmetries $Y_a \frac{1}{3} Y_B$, $a \in \{e, \mu, \tau\}$
- $Y_R \rightarrow$ density matrices $ho_{IJ}(k,\pm)$, $\pm \equiv$ helicity

it is convenient to employ helicity symmetries and asymmetries

$$\rho^{\pm} \equiv \frac{\rho(k,+) \pm \rho(k,-)}{2}$$

redshift $k_T\equiv \frac{k(T_{\min})\,a(T_{\min})}{a(T)}$, energies $\omega_T\equiv \sqrt{k_T^2+M_I^2}$

⁵ original ideas were put forward by E.K. Akhmedov, V.A. Rubakov and A.Y. Smirnov, Baryogenesis via neutrino oscillations, hep-ph/9803255, and T. Asaka and M. Shaposhnikov, The ν MSM, dark matter and baryon asymmetry of the universe, hep-ph/0505013; general formalism is similar to G. Sigl and G. Raffelt, General kinetic description of relativistic mixed neutrinos, NPB 406 (1993) 423

evolution equation for lepton asymmetries

$$Y_{a}^{\prime} - \frac{Y_{B}^{\prime}}{3} = \frac{4}{s} \int_{\mathbf{k}_{T}} \operatorname{Tr} \{ n_{\mathrm{F}}^{\prime}(\omega_{T}) \underbrace{\widehat{A}_{(a)}^{+}}_{\propto \{\mu_{a}\}} + [\rho^{+} - n_{\mathrm{F}}(\omega_{T})] \underbrace{\widehat{B}_{(a)}^{+}}_{\mathsf{C-odd}} + \rho^{-} \underbrace{\widehat{B}_{(a)}^{-}}_{\mathsf{C-even}} \}$$

1st term: washout term ("equilibration" viz. $\widehat{\Gamma}_L$)

2nd term: source from helicity-symmetric non-equilibrium

3rd term: source from helicity-asymmetric non-equilibrium

coefficients contain the physics of fast (equilibrium) modes

$$A^+_{(a)II} = \mu_a \operatorname{Re}(h_{Ia} h^*_{Ia}) Q^+_{(a)I}$$

where $Q^{\pm}_{(a)} \equiv [Q_{(a+)} \pm Q_{(a-)}]/2$ and

$$\underbrace{Q_{(a\tau)I}}_{\text{C-even}} + \underbrace{\bar{Q}_{(a\tau)I}}_{\text{C-odd}} \equiv \frac{\bar{u}_{\mathbf{k}\tau I} \operatorname{Im} \Pi_{a}^{\mathrm{R}}(\mathcal{K}_{I}) u_{\mathbf{k}\tau I}}{\omega_{I}}$$

here $u_{{f k} au I}$ denotes an on-shell spinor of helicity $au=\pm$, and

$$\Pi_{a}^{\mathrm{R}}(\mathcal{K}) \equiv \int_{X} e^{i\tilde{K}\cdot X} \left\langle (\tilde{\phi}^{\dagger}\ell_{a})(X) \left(\bar{\ell}_{a}\tilde{\phi}\right)(0) \right\rangle \Big|_{k_{n}-i\mu_{a}\to -i[\omega+i0^{+}]}$$

examples of processes contributing to $\operatorname{Im} \Pi_a^{\mathrm{R}}$

by optical theorem Im $\mathcal{A} \Leftrightarrow \mathcal{A}^* \mathcal{A}$, e.g.

$1 \leftrightarrow 2$ require "lpm" resummation, a nice field-theory problem⁶

⁶ originally: A. Anisimov, D. Besak and D. Bödeker, *Thermal production of relativistic Majorana neutrinos: Strong enhancement by multiple soft scattering*, 1012.3784; D. Besak and D. Bödeker, *Thermal production of ultrarelativistic right-handed neutrinos: Complete leading-order results*, 1202.1288; resolved into helicity channels and generalized to broken phase and finite chemical potentials: J. Ghiglieri and ML, *Neutrino dynamics below the electroweak crossover*, 1605.07720; *GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations*, 1703.06087

example of a rate: $\Gamma_H \equiv \sum_{a,I=2,3} |h_{Ia}|^2 \langle Q^+_{(a)I} \rangle_{\mathbf{k}_T}$

sample results for baryogenesis

parametrization⁷

$$h_{\nu} = -i \sqrt{M} \, R(z) \, P_{H}(\phi_{1}) \, \underbrace{\sqrt{m_{\nu}} \, V^{\dagger}}_{\rm data} \, \frac{\sqrt{2}}{v} \label{eq:h_number}$$

two-flavour benchmark (*) from a previous scan:⁸

$$M_2 \ = \ 0.7688 \, {\rm GeV} \; , \quad M_3 \ = \ 0.7776 \, {\rm GeV} \; ,$$

$$z = 2.444 - i3.285$$
,

$$\phi_1 \ = \ -1.857 \;, \ \ \delta \ = \ -2.199 \;, \ \ H = {\rm inverted}$$

⁷ J.A. Casas and A. Ibarra, *Oscillating neutrinos and* $\mu \rightarrow e\gamma$, hep-ph/0103065; generalization beyond seesaw limit: A. Donini, P. Hernández, J. López-Pavón, M. Maltoni and T. Schwetz, *The minimal 3+2 neutrino model versus oscillation anomalies*, 1205.5230

⁸P. Hernández, M. Kekic, J. López-Pavón, J. Racker and J. Salvado, *Testable Baryogenesis* in Seesaw Models, 1606.06719; another extensive scan in S. Eijima, M. Shaposhnikov and I. Timiryasov, *Parameter space of baryogenesis in the* νMSM , 1808.10833

a partial scan of Y_B at $T\sim 100~{\rm GeV^{\,9}}$

 \Rightarrow it works!

⁹ J. Ghiglieri and ML, Precision study of GeV-scale resonant leptogenesis, 1811.01971

 $Y_a - \frac{1}{3} Y_B$ could be much larger than Y_B^{10}

\Rightarrow relation to resonant sterile neutrino dark matter production?

¹⁰ see also S. Eijima and M. Shaposhnikov, *Fermion number violating effects in low scale leptogenesis*, 1703.06085

how precise are such results?

effect of kinetic non-equilibrium

 \Rightarrow uncertainties of $\mathcal{O}(1)$ but normally much less

how precise are such results?

computing coefficients at NLO $^{\rm 11}$

\Rightarrow uncertainties of $\mathcal{O}(15\%)$

 $^{^{11}}$ G. Jackson and ML, $\it A$ thermal neutrino interaction rate at NLO, 1910.12880

resonant dark matter production

large Y_a permits for resonant sterile neutrino production ¹²

¹² X.-D. Shi and G.M. Fuller, A New dark matter candidate: Nonthermal sterile neutrinos, astro-ph/9810076; ML and M. Shaposhnikov, Sterile neutrino dark matter as a consequence of νMSM -induced lepton asymmetry, 0804.4543; ... ; D. Bödeker and A. Klaus, Sterile neutrino dark matter: Impact of active-neutrino opacities, 2005.03039 inspired by supposed detection,¹³ consider modern setup¹⁴

1 light flavour ($\stackrel{?}{\Rightarrow}$ dm), 2 heavy flavours ($\stackrel{!}{\Rightarrow} \Delta m_{\nu}$, n_B), three lepton asymmetries, helicities, momentum dependence

obtain $|Y_a|$ from dynamics, **not** by hand

parameters of light flavour: $M_1=7~{\rm keV},\,\sin^2(2\theta)=2\times 10^{-10}$

maximal effect: all light yukawas equal $|h_{1a}| \simeq 1.6 \times 10^{-13}$

¹³ E. Bulbul et al, Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters, 1402.2301; A. Boyarsky et al, An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster, 1402.4119

¹⁴ J. Ghiglieri and ML, *Sterile neutrino dark matter via GeV-scale leptogenesis?*, 1905.08814

 $\Omega_1\approx\Omega_{\rm dm}$ can be obtained only if $|Y_a|\sim 10^{-5...-4}$

 \Rightarrow differences between M_H are due to entropy release \Rightarrow where could the factor $|Y_a|/|Y_B|\sim 10^5$ come from?

generic $|Y_a|$: only partial conversion to dark matter

 \Rightarrow entropy dilution is substantial for these parameters

 \Rightarrow final abundance remains below 10%

to do better need a "coincidence"¹⁵

at dm production, oscillation rate should be \sim Hubble rate

$$\langle \widehat{H}_{\lambda}
angle \, \equiv \, | {
m eigenvalue} \, (\langle {
m diag}(\widehat{\omega}_2, \widehat{\omega}_3) - \widehat{H}_{\!H}^+
angle_1 - rac{\mathbb{I}}{2} \, ({
m trace})) |$$

at dm production, interaction rate should be \sim Hubble rate

$$\langle \widehat{\Gamma}_{\!H} \rangle \!\equiv\! \sum_{a} \sum_{I=2,3} |h_{Ia}|^2 \langle \widehat{Q}^+_{(a)I} \rangle$$

¹⁵ L. Canetti *et al*, Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos, 1208.4607.

having such a coincidence requires fine-tuning¹⁶

¹⁶ J. Ghiglieri and ML, Sterile neutrino dark matter via coinciding resonances, 2004.10766

picking a point from the center, large $|Y_a|$ is possible

proof of existence: this gives more than enough of dm

code for spectra:¹⁷ https://zenodo.org/record/3938597

¹⁷ J. Ghiglieri and ML, *Improved determination of sterile neutrino dark matter spectrum*, 1506.06752

- \Rightarrow baryogenesis is possible with \gtrsim 0.1 GeV sterile neutrinos
- \Rightarrow model building \sim not much (?), thermal physics \sim fun
- \Rightarrow theoretical uncertainties $\lesssim 50\%$ by now
- \Rightarrow lepton asymmetries may be larger than baryon asymmetry
- \Rightarrow connection to dark matter exists but strongly constrained
- \Rightarrow experimental search could/should become an active field