

MAKING DARK MATTER OUT OF LIGHT: The cosmology of SUB-MEV FREEZE-IN

Based on Dvorkin, Lin, **KS** in prep. (2011.xxxx) and Dvorkin, Lin, **KS** PRD (Editors' Suggestion, 2019)

Katelin Schutz, MIT→McGill IPMU APEC Seminar 11/4/2020

DARK MATTER EXISTS AND IS DARK*

MERGING GALAXY CLUSTERS

NORMAL MATTER GETS HOT SEEN IN X-RAYS

MASS SEEN WITH GRAVITATIONAL LENSING

LARGE SCALE STRUCTURE

THINGS DON'T CLUSTER AS WELL WHEN THEY ARE MADE OF ONLY BARYONS

WHAT IS THE DARK MATTER?

DARK MATTER MASS

(not to scale)

► Many possibilities spanning 90+ orders of magnitude!

DARK MATTER MASS

(not to scale)

THERMAL DARK MATTER CANDIDATE: WIMPS (FREEZE-OUT)

Thermal freeze-out

☑ Relic abundance is independent of initial conditions of reheating after inflation (as long as DM is in the bath)

Relevant couplings can be experimentally probed

WIMP (THERMAL FREEZE-OUT) INDIRECT DETECTION WINDOW

WIMP DIRECT DETECTION (MODEL DEPENDENT)

GOING BEYOND THE WIMP PARADIGM

- The WIMP was only one thermal scenario, emergence of the weak scale (WIMP miracle) could well be a coincidence of nature (e.g. "who ordered the muon?")
- The SM isn't minimal so why should the DM be minimal?
- Lots of new technologies and observations will allow us to probe different kinds of models

DARK MATTER MASS

(not to scale)

Deep dive on this mass range today, emphasize power of diverse astrophysical systems

MAKING DARK MATTER OUT OF LIGHT ("THERMAL-ISH" FREEZE-IN)

PHOTONS CAN DECAY IN A MEDIUM TO WEAKLY COUPLED PARTICLES

Photon has an in-medium mass inside plasma ("plasmon"), phase space available for decays

This process can extinguish stars quickly if the final state is unhindered by the plasma (this is a stellar energy loss mechanism in the Standard Model through decay to neutrinos)

WHITE DWARF COOLING AND POPULATION

WHITE DWARF COOLING AND POPULATION

WHITE DWARF COOLING AND POPULATION

This process makes dark matter efficiently in the early Universe, which is a hot, relativistic plasma!

Dvorkin, Lin, KS 1902.08623

This process makes dark matter efficiently in the early Universe, which is a hot, relativistic plasma!

This process makes dark matter efficiently in the early Universe, which is a hot, relativistic plasma!

This process makes dark matter efficiently in the early Universe, which is a hot, relativistic plasma!

This process makes dark matter efficiently in the early Universe, which is a hot, relativistic plasma!

This is the simplest way of making effectively charged DM (freeze-out is excluded)

MAKING SUB-MEV DARK MATTER FROM A THERMAL PROCESS

MAKING SUB-MEV DARK MATTER FROM A THERMAL PROCESS

MAKING SUB-MEV DARK MATTER FROM A THERMAL PROCESS

PLASMON DARK MATTER IS TESTABLE IN THE LAB

- DM never in thermal equilibrium means that the coupling must be <u>tiny</u>
- DM scattering via a very light mediator like a dark photon has a v⁻⁴ enhancement to the cross section (like Rutherford scattering)
- The typical speed of DM in our Galaxy is 10⁻³ c so that's 12 orders of magnitude of enhancement for a direct detection experiment!

PROPOSED DIRECT DETECTION EXPERIMENTS TARGETING FREEZE-IN

INCLUDING PLASMONS IS ESSENTIAL

Dvorkin, Lin, KS 1902.08623

Dvorkin, Lin, KS 1902.08623

A QUICK RECAP:

Thermal freeze-out

☑ Relic abundance is independent of initial conditions of reheating after inflation (as long as DM is in the bath)

Relevant couplings can be experimentally probed

Thermal freeze-in (specifically via a light vector including plasmon decay)

- Relic abundance is independent of initial conditions (most dark matter is made at low temperatures)
- \checkmark Fine with BBN and N_{eff} (above masses of a few keV)
- Relevant couplings can be experimentally probed, are a key benchmark in proposed experiments
PROPOSED DIRECT DETECTION EXPERIMENTS TARGETING FREEZE-IN

DARK MATTER IS BORN "Hot" From Freeze-In

*Quotation marks because DM does not thermalize with the SM and doesn't necessarily possess a temperature

Dvorkin, Lin, KS (PRD 2019)

 $\frac{\partial f}{\partial t} - H \frac{p^2}{E} \frac{\partial f}{\partial E} = \frac{C[f]}{E}$

un-truncated Boltzmann hierarchy:

how phase space changes over cosmic time

$$\frac{C[f_{X_1}]}{E_{X_1}} = \int \frac{d^3 p_{e_1}}{2E_{e_1}} \frac{d^3 p_{e_2}}{2E_{e_2}} \frac{d^3 p_{X_2}}{2E_{X_2}} f_{e_1} f_{e_2} \,\delta^{(4)}(\Sigma p) \left|\mathcal{M}\right|^2_{e_1 + e_2 \to X_1 + X_2} + \int \frac{d^3 p_{\gamma *}}{2E_{\gamma *}} \frac{d^3 p_{X_2}}{2E_{X_2}} f_{\gamma *} \,\delta^{(4)}(\Sigma p) \left|\mathcal{M}\right|^2_{\gamma * \to X_1 + X_2}$$

key fact: due to low DM occupation number, the collisions are actually independent of the DM phase space!

$$f_X(p,t) = \int_{t_i}^t dt' \, \frac{C\left(\frac{a(t)}{a(t')}\,p,t'\right)}{E}$$

Dvorkin, Lin, KS (PRD 2019)

Dvorkin, Lin, KS (PRD 2019)

DARK MATTER SELF-THERMALIZATION

DM self-scattering has v⁻⁴ scaling and is especially effective at late times

DARK MATTER SELF-THERMALIZATION

PHASE SPACE IMPLICATIONS For cosmology

Dvorkin, Lin, KS in prep.

VELOCITY EFFECTS ON CLUSTERING (WARM DARK MATTER EXAMPLE)

Warm dark matter initial conditions: $\Omega_{\chi} = \frac{m_{\chi}}{94 \text{ eV}} \frac{11}{4} \left(\frac{T_{\chi}}{T_{\gamma}}\right)^3$

A PROBE OF POWER SPECTRUM SUPPRESSION: LY-A FOREST

EFFECT ON LOW-MASS HALOS AND SUB HALOS

- Suppressed clustering on small scales would mean fewer low-mass halos and subhalos, which we can look for using various methods:
- <u>Choose your own adventure! (time permitting)</u> Stellar Streams
- Quadruply imaged, strongly lensed quasars
- Dwarf galaxy counts
- 21 cm cosmology

GRAVITATIONAL CLUSTERING AND PHASE SPACE

Dvorkin, Lin, KS in prep.

MAPPING WDM CONSTRAINTS TO FREEZE-IN CONSTRAINTS

DARK MATTER-BARYON DRAG APPARENT IN THE CMB

gravitational potential well

Collisionless dark matter

Photon-baryon fluid

V

M

gravity

radiation bressure

gravitational potential well

Partly collisional dark matter

Photon-baryon fluid

M

gravity

Scattering ~v⁻⁴ for freeze-in

radiation bressure

DM-BARYON SCATTERING AND PHASE SPACE

Dvorkin, Lin, KS in prep.

DM-BARYON DRAG RATE

DARK MATTER-BARYON DRAG EFFECT ON THE CMB

SUMMARY

- DM could be made by freeze-in off of decaying light, simplest way to make charged DM
- Key benchmark for sub-MeV direct detection experiments
- Non-thermal phase space
 structure leads to novel
 cosmology: warm DM behavior
 & baryon dragging
- It's a big Universe! Lots of complementarity between probes and room for creativity

COME JOIN ME AT MCGILL!

- Looking for grad students and postdocs with a willingness to mix it up, have fun thinking about different topics in the multi-pronged hunt for DM
- Montréal is a great place to live and work, French optional (both for living and professionally— McGill is an English-speaking institution)

ANY QUESTIONS?

BACKUP SLIDES

STELLAR STREAMS

STELLAR STREAMS (~40 KNOWN IN MILKY WAY)

GAIA HAS HELPED US "CLEAN" STREAMS

Features in stream imply a perturber

Bonaca, Hogg, Price-Whelan, Conroy (2018)

COULD THE PERTURBER OF GD-1 BE LUMINOUS?

Bonaca, Hogg, Price-Whelan, Conroy (2018)

LOOKING AT POWER SPECTRUM RATHER THAN INDIVIDUAL FEATURES

GD-1 stream, Trailing arm

Banik, Bovy, Bertone, Erkal, deBoer (2019)
CLAIMED MEASUREMENT OF THE HALO MASS FUNCTION

- Banik et al. (2019) claim WDM limit of 6.3 keV by combining power spectra of streams with classical satellites
- Constraint will also apply to freeze-in, limit of around 15 keV

STRONG LENSING

SUBSTRUCTURE CAN BE PROBED WITH GRAVITATIONAL LENSING

- Gravitationally lensed
 quasars can appear as
 four images surrounding
 lens galaxy
- Locations and relative fluxes of images are sensitive to substructure of lens galaxy (second derivatives of lensing potential)

EFFECTIVE CONVERGENCE MAP (HIGH-RANKING REALIZATION)

Gilman et al. (2019)

LENSING CONSTRAINTS ON WDM

- Analysis of 8 quads by Gilman et al. 2019 excludes WDM lighter than 5.2 keV
- Slightly different analysis of 7 different quads by Hsueh et al. 2019 excludes WDM lighter than
 5.6 keV
- This translates to a limit of ~13 keV on freeze-in (depending on thermalization)

DWARF GALAXY COUNTS

FINDING NEW DWARF GALAXIES

Drlica-Wagner et al. (DES collaboration, 2019)

UNDERSTANDING GALAXY-HALO CONNECTION EMPIRICALLY

(DES Collaboration 2019) al. Nadler et

UNDERSTANDING GALAXY-HALO CONNECTION EMPIRICALLY

The presence of low-mass subhalos (after accounting for selection effects) is consistent with CDM and rules out WDM masses below 6.5 keV (and freeze-in below 17 keV)

Nadler et al. (DES Collaboration 2019,2020)

21 CM COSMOLOGY

21 cm emission

Whether we see this in emission or absorption depends on complicated physics of how the spin temperature, kinetic gas temperature (velocity) and CMB temperature are coupled...

 $T_{spin} = T_{kin} < T_{CMB}$

high density, frequent collisions couple spin and kinetic temperatures, not many free electrons to couple CMB and kinetic temperatures

 $T_{spin} = T_{CMB} > T_{kin}$

fewer collisions, spin temperature more coupled to CMB

WF effect couples ly- α photons to spin temperature, drives spin temperature down to kinetic temperature

 $T_{spin} \rightarrow T_{kin} > T_{CMB}$

bright sources heat up the gas, which eventually gets hotter than the CMB

same bright sources emit ionizing radiation, decreasing signal strength (fewer neutral atoms)

FEWER LOW-MASS HALOS & 21 CM

Sitwell et al. (2013)

FEWER LOW-MASS HALOS & 21 CM

MISCELLANEOUS

MASS DEPENDENCE OF PLASMON CHANNEL

Dvorkin, Lin, KS (PRD 2019)

un-truncated Boltzmann hierarchy:

$$\frac{C[f_{X_1}]}{E_{X_1}} = \int \frac{d^3 p_{e_1}}{2E_{e_1}} \frac{d^3 p_{e_2}}{2E_{X_2}} \frac{d^3 p_{X_2}}{2E_{X_2}} f_{e_1} f_{e_2} \,\delta^{(4)}(\Sigma p) \left|\mathcal{M}\right|^2_{e_1+e_2\to X_1+X_2} + \int \frac{d^3 p_{\gamma*}}{2E_{\gamma*}} \frac{d^3 p_{X_2}}{2E_{X_2}} f_{\gamma*} \,\delta^{(4)}(\Sigma p) \left|\mathcal{M}\right|^2_{\gamma*\to X_1+X_2}$$

annihilations

plasmon decays

Note frame dependent thermal factors, must evaluate in rest frame of plasma

$$\frac{C[f_{X_1}]}{E_{X_1}} = \int \frac{d^3 p_{e_1}}{2E_{e_1}} \frac{d^3 p_{e_2}}{2E_{e_2}} \frac{d^3 p_{X_2}}{2E_{X_2}} f_{e_1} f_{e_2} \,\delta^{(4)}(\Sigma p) \left|\mathcal{M}\right|^2_{e_1 + e_2 \to X_1 + X_2} + \int \frac{d^3 p_{\gamma*}}{2E_{\gamma*}} \frac{d^3 p_{X_2}}{2E_{X_2}} f_{\gamma*} \,\delta^{(4)}(\Sigma p) \left|\mathcal{M}\right|^2_{\gamma* \to X_1 + X_2}$$

NB: ignore scattering at early times (close to freeze-in) both with DM and with baryons because momenta are relatively high and t-channel scattering is peaked at low momentum transfer

$$\frac{C[f_{X_1}]}{E_{X_1}} = \int \frac{d^3 p_{e_1}}{2E_{e_1}} \frac{d^3 p_{e_2}}{2E_{e_2}} \frac{d^3 p_{X_2}}{2E_{X_2}} f_{e_1} f_{e_2} \,\delta^{(4)}(\Sigma p) \left|\mathcal{M}\right|^2_{e_1 + e_2 \to X_1 + X_2} + \int \frac{d^3 p_{\gamma *}}{2E_{\gamma *}} \frac{d^3 p_{X_2}}{2E_{X_2}} f_{\gamma *} \,\delta^{(4)}(\Sigma p) \left|\mathcal{M}\right|^2_{\gamma * \to X_1 + X_2}$$

key fact: due to low DM occupation number, the collisions are actually independent of the DM phase space!

un-truncated Boltzmann hierarchy:

$$f_X(p,t) = \int_{t_i}^t dt' \, \frac{C\left(\frac{a(t)}{a(t')}\,p,t'\right)}{E}$$

DARK MATTER SELF-THERMALIZATION

DM self-scattering has v⁻⁴ scaling and is especially effective at late times

DARK MATTER SELF-THERMALIZATION

