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Part I: binary mergers and

narticle ph

Observation of black hole merges put GW
astrophysics and multi-messanger astronomy
firmly on the physics landscape. But what can we

learn in particle physics and cosmology?
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The stellar graveyard is ever expanding, neutron stars are especially
interesting from a particle physics perspective.
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The stellar graveyard is ever expanding, neutron stars are especially
interesting from a particle physics perspective.
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binary mergers
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Neutron stars result from the explosion of supernovae with masses of
between 10-30 solar masses. Their mass is typically about 2 solar
masses and their radius about 10 km.

They can be understood as a super large nucleus with 10°° neutrons
and no protons.

The structure of the neutron star is due to the balance of the strong
force and the gravitational force — neutron star equation of state
determines the relation between mass and radius.

Neutron stars are believed to spin axis | AN |
constitute the observed (milli sec) | L e
pulsarS magnetic

) field lines

Pulsars lead to the first indirect
observation of GWs in the 70s
— Hulse-Taylor binary

© NASA



GW170817 — (almost) only event with EM counterpart so far
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GW170817
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SNR > 32

masses are about 1.2 and 1.5 solar
masses each

Orbital separation at the end again
~0(100 km). Cannot be normal star;
one cannot be black hole.

— must be neutron stars?

Virgo didn’t see much but was very

important for localisation

What about EM couterparts?
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A strong (not so strong actually
considering the distance) gamma
ray burst was seen shortly after the
GW signal.

Good localization was possible even
though (or rather because) the event
was in the blind spot of Virgo.

Subsequent EM observations
could pinpoint the host galaxy.

— important for the H,
measurement



QCD equation of state

[Kurkela, Fraga, Schaeffer-Bilich, Vuorinen '14]
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The equation-of-state of quark matter is poorly known for finite
chemical potential.

These properties are important for neutron stars, in particular the
relation between mass and radius and the maximal mass that is
stable against gravitational collaps into a BH.

The EoS can in principle be tested via the GW signal of a neutron
star merger from the late stage where finite size effects and tidal
forces play a role.



QCD equation of state

[LIGO '2017]
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Cosmic pie

Atoms

Dark

4.6% Energy
i 71.4%
Matter
24%

TODAY

Dark energy and dark matter is only observed through their
gravitational forces. CC problem.

Do we really need them?
Perhaps modified gravity can accout for it?



Modified gravity landscape
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Hubble parameter

Due to the expansion of the Universe, distant
objects seem to recede from any observer
according to the Hubble law

UH:HQd

In order to determine H, one needs v, (via
the redshift) and d.

GW events can act as standard sirens since
their signal in principle encodes their
distance. (c.f. standard candles of
supernovae)

The redshift can be measured by identifying
the host galaxy which in this case was easy
due to the EM couterparts.

problems:
- peculiar motions (Doppler effect)
— LSS catalogues
- d degenerate with inclination — polarisation
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Results are not yet
competitive due to
degeneracy with
inclination. This will change
with a larger number of
events

vy ~ 3000 km/s
d ~ 43 Mpc



Part Il : GWs from cosmological

ohase transitions
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Future space telescopes

The LISA Project

Space based experiments are sensitive to smaller frequencies where
stochastic backgrounds GWs can provide a link to EW physics.
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Atomic physics at T~eV

Electron

0K 0K

The Cosmic Microwave Background links atomic physics to
cosmology at temperature T~eV




Nuclear physics at T~MeV
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Phase transition at T~100 GeV?

Possibly, the electroweak phase transition drove the Universe out-of-
equilibrium if it was of first order.



Electroweak phase transition

gravitational

) baryogenesis
waves - 'yod




Electroweak symmetry breaking

The Mexican hat potential is designed to lead to a finite Higgs
vacuum expectation value (VEV) and break the electroweak
symmetry
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Electroweak symmetry breaking

It can also be a strong phase transition if a potential barrier
seperates the new phase from the old phase

e

Vi<h=) at T - 100 FeV

\ L/,

o/

second-order
crossover

Wi<h=}) at

\

T == 100 GFeWV

J_

Vl<h=) at

Y

Vi<ch=) at T -~ 100 GeV

R
\/ / first-order

.




Electroweak phase transition

in the SM

The effective potential is | o e
the standard tool to study s
phase transition at finite L e
temperature. o
Lattice studies show that T eeeeme]
there is a crossover in ¢l s o cooono 100,
the SM. 10’ 10° 10° 10°

A light Higgs would lead
to a 1st-order PT.

[Kajantie, Laine, Rummukainen, Shaposhnikov '96]
[Buchmuller, Fodor, Helbig, Walliser '93]



Singlet extension

The Standard Model only features a
electroweak crossover.

A potential barrier and hence first-order
phase transitions are quite common in
extended scalar sectors:

V(h,s) = % (% — %)

+ m?s2 + Aot + N\, 8°h°

The singlet field has an additional 7., symmetry and is a
viable DM candidate.

The phase transition proceeds via
(h,S) — (va) — (h,S) — (U7O)
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First-order phase transitions

* first-order phase transitions proceed by
bubble nucleations

* in case of the electroweak phase
transition, the "Higgs bubble wall”
separates the symmetric from the broken
phase

 this is a violent process (v,q11 >~ O(c))
that drives the plasma out-of-equilibrium
and set the fluid into motion



Gravitational waves

During the first-order phase transitions, the
nucleated bubbles expand. Finally, the colliding
bubbles generate stochastic gravitational waves.



Observation

[Grojean&Servant '06]

The produced gravitational waves can be observed
with laser interferometers in space
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Observation

[Grojean&Servant '06]

The produced gravitational waves can be observed
with laser interferometers in space
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Strong phase transition at larger temperatures produce
the same energy fraction of gravitational waves but at
higher frequencies.



GWs from PTs

ArXiv activity:

inspire hep - gravitational waves inspire hep - GWs & PTs
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GWs from PTs

Arxiv activity:

inspire hep - gravitational waves inspire hep - GWs & PTs
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Sources of GWs from PTs

During and after the phase transition, several sources of
GWs are active

© Collisions of the scalar field configurations / initial fluid
shells

© Sound waves after the phase transition
(long-lasting — dominant source)

© Turbulence
~ Magnetic fields

Which source dominates depends on the characteristics
of the PT



State-of-the-art

[Hindmarsh, Huber , Rummukainen, Weir '13, 15, '17]

After the PT, the system can be descibed using
hydrodynamlcs (fluid + nggs)

The produced GW
spectrum can be
read off from the
simulation.

)

Really robust results
but how to
extrapolate to other
" - models and realistic
k() wall thickness?

dpyldInk (T,

tod vl Cvod el v ol v ol ol \IHH;




Length scales

- >

bubble size shell thickness = >

wall thickness <« »

detonation

One technical main problem of the 0.5 ————T——
simulations is that they have to ... I N
resolve differnt length scales: the b opuss

bubble size, the sound shell Thad i
thickness and the bubble wall Z 02l -
thickness. o1 N
In particular, the bubble wall s

thickness is many orders smaller
than the bubble size, so
extrapolations to the physical point § = 7
have to be used.



Novel simulations

We are concieving new simulations where the bubble wall
thickness only enters through the boundary conditions of the
simulation. We achieve this by doing simulations of colliding 1D
bubbles and then embed these bubbles into a 3D grid.

This assumes relatively weak phase transitions (and linear
superposition of sound waves) but is valid for very thin shells
and relativistic bubble wall velocities.

3d simulation 1d simulation

w,Vv

show cool

A """ B video here
(4




Final spectra

Many of these '10hi-weight simulations can be performed and the relevant
parameters of the GW spectra can be extracted. This also — for the first
time — gives access to phase transitions with thin shells and large wall

velocities.
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How to connect models and
simulations?




Model-dependence

The Weinberg master formula determines how stochastic
gravitational waves are produced

dEcy ; N A

And generally the energy fraction in GWs scales as

Qcws(f) o< K?

where K denotes the kinetic energy fraction in the fluid
after the phase transition that is where the model-
dependence will enter for most parts.



Model-dependence

The Weinberg master formula determines how stochastic
gravitational waves are produced

dEcy ; N A

And generally the energy fraction in GWs scales as
t of
Qe (f) x K2 -

where K denotes the kinetic energy fraction in the fluid
after the phase transition that is where the model-
dependence will enter for most parts.




Kinetic energy with spherical

svymmet

The bulk kinetic energy depends on the enthalpy w and the
fluid velocity v and can be determined from an isolated
spherical bubble before collision
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Bag model

[Kosowsky, Turner , Watkins, '92]
[Espinosa, TK, No, Servant '10]

The kinetic enregy fraction has been calculated in the bag

model

1 1
= =g T — = —a_T*.
D 3a+ € Db 3a

eS:a+T4—|—e, ep =a_T*,

/4

bag
constant

The strength of the phase transition is characterized by
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and efficiency coefficient
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How to match to other models?

Fitting functions of these results are used in phenomenological
analysis but what is the strength parameter in a general
models? In particular if only quantities at nucleation

temperature are used?
DX = (X, (T},) — Xp(T3))

a o< Dp If the pressure difference vanishes, the
bubble becomes static

o o< De The energy difference fuels the kinetic
motion of the bulk fluid

The trace difference is the bag

a o< D oc (De — 3Dp) constant in the bag model and
also comes about naturally in
lattice simluations



A model comparison

[Giese, TK, van de Vis '20]

model /method M1 M2 M3 M4 M5 M6
SM; 0.00143 499 % | 3.55 % | -88.45 % | 713.34 %
SM, 0.00401 1.70 % | -0.72 % | -66.69 % | 351.90 %
SM3 0.00014 1.37 % | 0.94 % | -89.16 % | 779.35 %
SMy 0.00039 042 % | -0.32 % | -67.85 % | 405.11 %
2step; 0.00036 13.61 % | 17.39 % | -89.52 % | 945.17 %
2stepo 0.00563 15.68 % | 21.90 % | -50.01 % | 366.20 %
2steps 0.00070 35.97 % | 47.28 % | -89.85 % | 1235.34 %
2stepy 0.01576 40.05 % | 58.29 % | -41.80 % | 485.16 %
Table 4: Relative errors of the methods M2-M6 compared to the fully numerical result

M1. The model parameters are given in Table andand a wall velocity of &, = 0.9 was

used.

/4
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The matching equation

detonation detonation
05— _ 30 e —
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nucleation



The matching equation

[Giese, TK, van de Vis '20]
The temperature T can be eliminated using
po(Ty) —po(T-)  dpy/dT
eb(T+) — 6b(T_) deb/dT T,

This then leads to
vi _ (vyv_ /2 —1) + (De — Dp/c2) /wy

Y

2
cs .

v~ (vrv_/ = 1)+ vsv_(De — Dp/)fw;
DX = (X,(T},) — Xp(T7))

This motivates the following definition of the
strength parameter in terms of the pseudotrace
DO

f=e— 02, g = :




The matching equation

[Giese, TK, van de Vis '20]
The temperature T can be eliminated using

po(Ty) —po(T-)  dpyp/dT
eb(T+) — 6b(T_) - deb/dT T, @
This then leads to
vi _ (vv /= 1)+ (De— Dp/c2) jw,,
o (vsv_ /2 — 1)+ viv_(De — Dp/c2)]wy
DX = (Xs(Tn) — Xp(Th))

This motivates the following definition of the
strength parameter in terms of the pseudotre

K should only
depend on

these two
guantities!




A sound argument to go beyond

the bag model

[Leitao and Megevand '14] y-model

1 1
ps = —ayT* —¢, es =a T +e, cc=——
3 v —1
1 14 1 14
o, = —a_T", ep = —a_(v—1)T",
3 3
model /method M1 M2 :
SM, 0.00143 || 0.45 %
SM, 0.00401 || 0.43 %
SM; 0.00014 || 0.04 % | < ...
SM, 0.00039 | 0.04 % | <
2step; 0.00036 || -0.21 % |
2stepy 0.00563 || -0.80 % =TI
2steps 0.00070 | -0.77 % | "1 | S SRR
2stepy 0.01576 || -3.52 % b

Table 4: Relative errors of the methods M2-M6 compared to the fully numerical result
M1. The model parameters are given in Table andand a wall velocity of &, = 0.9 was
used.



Coding the kinetic energy fraction

01 | import numpy as np

02 | from scipy.integrate import odeint
03 | from scipy.integrate import simps
04
05 | def kappaNuModel(cs2,al,vp):

06 nu = 1./cs2+1.

o7 tmp = 1.-3.*%al+vp**x2x(1./cs2+3.%*al)
08 disc = 4*vpx*2x(1.-nu)+tmp**2

09 if disc<O0:

10 print("vp too small for detonation")
11 return 0
12 vm = (tmp+np.sqrt(disc))/2/(nu-1.)/vp

13 wm = (-1.+3.*al+(vp/vm)*(-1.+nu+3.*al))
14 wm /= (-1.+nu-vp/vm)

15

16 def dfdv(xiw, v, nu):

17 X1, W= XiW

18 dxidv = (((xi-v)/(1.-xi*v))**2x(nu-1.)-1.)
19 dxidv *= (1.-v*xi)*xi/2./v/(1.-v**2)

20 dwdv = nu*(xi-v)/(1.-xi*v)*w/(1.-v**2)

21 return [dxidv,dwdv]

22

23 n = 501 # change accuracy here

24 vs = np.linspace((vp-vm)/(1.-vp*vm), 0, n)
25 sol = odeint(dfdv, [vp,1.], vs, args=(nu,))
26 xis, ws = (sol[:,0],-sol[:,1]*wm/al*4./vp**3)
27
28 return simps(ws*(xis*vs)**2/(1.-vs**2), xis)

Table 5: Python code to calculate s in the v-model as a function of the speed of sound
squared c2, the strength of the phase transition aj and the wall velocity &,.



Summary

To extrapolate the results from hydrodynamic
simulations to other models one needs the energy
fraction of a single expanding bubble.

In the literature this is typically done by matching the
bag model where the energy fraction is known (as a fit).

This leads to errors of order O(1) or O(10).

A model-independent approach suggests to use the
speed-of-sound in the broken phase and the pseudo-
lrace in the strength parameter of the matching.

This reduces the error to O(few %) using the Python
code snippet.



Putting it all together

The different sources and the relation to particlue physics model building is discussed
in publications by the LISA cosmology working group on GWs from cosmological

phase transitions:

Science with the space-based
interferometer eLISA. Il: Gravitational
waves from cosmological phase
transitions

Caprini et al.

arxiv/1512.06239

Detecting ravitational waves from
cosmological phase transitions with
LISA: an update

Caprini et al.

arxiv/1910.13125

web-tool by David Weir
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Conclusions

The observation of Gravitational Waves started a new era
In astro physics.

The main appeal of these observations is that one can
probe the era before electromagnetic decoupling.

In principle, experiments as LISA/LIGO/DECIGO allow to
test phase transitions (and hence particle physics) from
EW scales up to very high scales ~ 10° GeV.

KAGREA will join the LIGO/VIRGO network soon.

_ISA will fly in the 2030s and cover a large range of
cosmological phase transitions in terms of strength and
temperatures close to electroweak scales.
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