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Observations of SMBHs in the early universe
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observed

Fan et al. (2001), 
Mortlock et al. (2011), 
Wu et al. (2015), 
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Yang et al. (2020)How do these SMBHs form so fast?
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Mini-halo Pop III star BH (~100 M⦿) SMBH

gas collapse, 
star formation

grav. collapse 
after lifetime

gas accretion, 
BH merger

?

Pop III stars are though to be 
as massive as  ~100 M⦿

Massive ones have >~ 300 M⦿

Hirano+2014, fig 3



Formation model: Pop III BH origin

Mini-halo Pop III star BH (~100 M⦿) SMBH

gas collapse, 
star formation

grav. collapse 
after lifetime

gas accretion, 
BH merger

?

Massive Pop III stars collapse to BHs of >~ 100 M⦿
(Heger & Woosley 2002)



l a
SMBH formation from a Pop III 
BH via Eddington accretion
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accretion looks work, but...



Radiation feedback 
suppresses accretion
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Formation model: Pop III BH origin

Mini-halo Pop III star BH (~100 M⦿) SMBH

gas collapse, 
star formation

grav. collapse 
after lifetime

gas accretion, 
BH merger

?

To alleviate the BH growth delay, 
alternative models are suggested
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DC model
l SMS can form in an “atomic-cooling” 
(AC) halos which cool via mostly HI lines

AC halo

SMS star

SMBH

BH
~105 M⦿

≳109 M⦿

Omukai (2001), fig3

HI cooling path, SMS formation
~ 8000 K

H2 cooling path, Pop III formation



DC model
l High temperature leads to high accretion 
rates à more massive stars form

SMS star

SMBH

BH
~105 M⦿

≳109 M⦿

Omukai (2001), fig3

HI cooling path, SMS formation
à0.1-1 M⦿/yr

H2 cooling path, Pop III formation
à ~10-3 M⦿/yr

AC halo



DC model
l High temperature leads to high accretion 
rates à more massive stars form

SMS star

SMBH

BH
~105 M⦿

≳109 M⦿

Omukai (2001), fig3

HI cooling path, SMS formation

H2 cooling path, Pop III formation

AC halo formation and SMS formation is usually 
thought to occur under the following conditions:
・Extremely metal poor
・Irradiated by strong Lyman-Werner (LW) radiation
・Free from tidal force dispersion
(e.g. Chon et al. 2016)

AC halo



DC in dynamical heated DM halos
l Wise et al. (2019, hereafter W19) proposed another 
possibility for SMS formation: 
u Strong dynamical heating + moderate LW 

radiation can produce DC halos, even w/ H2
z=18 z=17 z=16 z=15

W19, fig 1



Do SMSs form in the halos of W19? 
l W19 stopped simulations before star formation
l If stellar growth rate is <~ 0.04 M⦿/yr, the growing 
protostar contracts and emits copious amounts of 
ionizing photons which can cause feedback
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Do SMSs form in the halos of W19? 
l W19 predicted small stellar growth rates <~ 0.04 M⦿/yr
for stellar masses <~ 103 M⦿

W19, fig 4



Do SMSs form in the halos of W19? 
l W19 predicted small stellar growth rates <~ 0.04 M⦿/yr
for stellar masses <~ 103 M⦿

W19, fig 4

A growing protostar would contract, emit strong 
UV photons and may cause radiation feedback
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SMS formation in the halo of W19
l To judge whether 
the expectation is 
true, we performed 
1D RHD simulations 
(Sakurai, Haiman & 
Inayoshi 2020)

l Initial conditions 
from the LWH halo 
in W19

W19, fig 4



Basic HD equations & chemistry
l 1D RHD simulations using the ZEUS code (Stone & 
Norman 1992)

continuity eq.

e.o.m

energy eq.

chemical reactions & 
coolings
(9 species: H, H+, He, He+, 
He++, e-, H2, H2+, H-) 32 reactions



l Steady state RT

l # of frequency bins =50
l 0.04 eV < hν < 118 eV

l For LW radiation, we 
consider self-shieldings
by H2 and HI (Wolcott-
Green et al. 2011)

Radiation transfer (RT)

Whalen & Norman (2006)



Photon processes
l H & He photo-ionizations, H- photo-detachment and 
H2 photo-dissociations

Whalen & Norman (2006)

Abel et al. (1997)

Reaction rates  & heating rates

Radiation pressure force



Input radiation sources
l From center: Stellar BB + 
(putative) circum-stellar 
disk BB

l Background: LW 
background source (as in 
W19)



Grid parameters

l Grid points are 
logarithmically 
spaced

l rmin is chosen so 
that it is comparable 
to the star’s initial 
gravitational radius



Fitting stellar models
l Fitting ZAMS models 
for <0.04 M⦿/yr

l Fitting supergiant 
protostar models for 
>0.04 M⦿/yr

l The latter models are 
fitted from 
calculations of the 
STELLAR code (Yorke 
& Bodenheimer 2008)

l Mstar,ini= 2 M⦿
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Accretion rates & stellar masses
l Radiation temporarily stops accretion @ 600-7000 yr
l The accretion rate recovers again @ >7000 yr

accretion 
stops

accretion 
resumes



Accretion rates & stellar masses
l Stellar masses grows to > 105 M⦿
l SMS forms even with contracting protostars

>105 M⦿



Density & velocity 
(w/ radiation) 
l Density is initially 
isothermal profile ∝ r-2
for r<1pc

l While the accretion 
stops, inner density 
becomes high and inner 
velocity becomes 0 
(r< 0.01 pc)

radius (pc)
10.10.01 10

ρ∝ r-2

v=0



Density & velocity 
(w/ radiation) 
l After the accretion rate 
recovers (Mstar>100 M⦿), 
the density profile follows 
a free-fall one ∝ r-1.5

l The velocity becomes 
free-fall velocity for 
r <~1 pc

radius (pc)
10.10.01 10

ρ∝r-1.5

v∝r-0.5



Temperature & H2 
fraction
l Temperature is initially 
<~ 1000 K due to effective 
H2 cooling 

l After the accretion rate 
recovers (Mstar>100 M⦿), 
the central temperature 
reaches ~ 8000 K where 
HI cooling is effective

radius (pc)
10.10.01 10

HI cooling

H2 cooling



Temperature & H2 
fraction
l For Mstar > 100 M⦿, the 
central stellar LW radiation 
propagates out and 
dissociates H2 in the outer 
region (r <~10 pc)

radius (pc)
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Electron fraction
l At Mstar~104 M⦿, a 
fully ionized region 
(r<0.005 pc) and 
partially ionized region 
(0.005pc < r < 0.07 pc) 
form 

l Despite the strong 
stellar EUV radiation, 
the HII region does not 
expand due to high 
density and effective H 
recombination

collisional ionization & 
H recombination balance



Reason why the inflow is stopped
l Photoheating overcomes gravity while H2 is 
dissociated and H2 cooling becomes ineffective

radius (pc)
10.10.01 10

radius (pc)
10.10.01 10

H2 cooling ineffective

photoheating 
> gravity

photoheating



Reason why the inflow resumes
l The self-gravity of the gas builds up as the outer 
shells fall in and accumulate



Impact of the parameters
l SMS >~ 104-105 M⦿ forms even if there is no self-
shielding, or even if the gas density is 0.1 times smaller



Comparison to other works
l We performed a simulation for a Pop III formation 
case with an initial condition from Hirano et al. (2015)

1D RHD sim.
Mstar,fin~ 2000 M⦿

From Hirano+15 2D RHD sim. 
Mstar,fin~50 M⦿
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Caveats
l Spherical assumption

u If an accretion disk forms, radiation can more 
easily escape from polar regions and can more 
suppress the accretion

u Turbulence and grav. interactions between stars 
can make the central star move to a lower density 
region (Regan et al. 2020)

u Outflows and magnetic fields can also suppress 
the stellar growth (e.g. Rosen & Krumholz 2020)



Summary
l Several SMBHs at 
high-z >~ 6 are 
observed but their 
origins are still 
uncertain

l The DC model is a 
promising model for 
explaining the origin

DC model

Pop III BH model



Summary
l We study whether 
SMS can form in a 
dynamically heated 
halo of W19 by 1D 
RHD simulations

l SMS > 105 M⦿ forms 
even with strong 
stellar EUV radiation

l Multi dimensional 
studies with detailed 
physics are needed

w/ rad.

w/o rad.

>105 M⦿
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