PROBING HEATING WITH THE LYMAN ALPHA FOREST

ROBIN KOOISTRA

Collaborators: Khee-Gan Lee (IPMU), Shigeki Inoue (Tsukuba), Naoki Yoshida (IPMU), Renyue Cen (Princeton) & Metin Ata (IPMU)

AVL

Kavli IPMU Postdoc Colloquium, 30-10-2020

OUTLINE

- Introduction: Intergalactic medium & Lyman alpha forest
- Probing feedback
- Cluster preheating
- Conclusion

THE INTERGALACTIC MEDIUM

- Gas in between galaxies: mostly H + He
- Distribution largely follows DM field $\delta_{DM} \equiv \rho_{DM} / \rho_{DM,c} 1$
 - But smoothed due to baryon pressure
- Mostly neutral at high $z \gtrsim 7-8$
- Mostly ionized now, after reionization: $x_{HI} \lesssim 10^{-5-6}$

THE INTERGALACTIC MEDIUM

- WHIM (*T*_K=10⁵- 10⁷ K)
 - Shock-heated gas
 - Oxygen lines
 - X-ray
 - Thermal Sunyaev Zeldovich effect
 - Likely contains most missing baryons
- Cold IGM (T_K=10²- 10⁵ K)
 - Sensitive to feedback/heating from AGN & galaxies
 - Lyα absorption
 - Emission line intensity mapping
 - UV -> space
 - Integrated line intensity along filament
 - 21 cm -> radio

e.g., de Graaff+2017

e.g., Pichon+2001, Lee+2014

e.g, Silva, RK+2016

Takeuchi+2014 Kooistra+2017 Kooistra+2019

Martin+2009

THE LYMAN ALPHA FOREST

LYMAN-ALPHA FOREST

- Absorption depends on underlying density field and astrophysics
 - $\tau_{\alpha} \propto n_{HI} \propto x_{HI}(\Gamma_{UVB}, T_0, \gamma) \times (1 + \delta)$
- Observed quantity is: $F = F_0 e^{-\tau_{\alpha}}$
- Can also use Lyman break galaxies as background source (Lee+2014)
- Dense distribution of sightlines allows for reconstruction of 3D absorption field (Pichon+2001, Caucci+2008)
- Fluctuating Gunn-Peterson Approximation (FGPA):
 - Temperature follows power-law: T = $T_0(1 + \delta_{DM})^{\gamma-1}$
 - Then $\tau_{FGPA} \propto (1 + \delta_{\rm DM})^{2-0.7(\gamma-1)}$

LYMAN ALPHA FOREST

 Extract Lyα skewers from simulations

Smoothed to 3 Mpc/h

$$\delta_F \equiv {F \over F} - 1$$

PROBING HEATING

- What effect does heating have on Lyα forest?
- Simulations:
 - Nyx (100 Mpc/h)³, no feedback
 - EAGLE: (67.77 Mpc/h)³ including AGN feedback
 - Illustris and IllustrisTNG: same (75 Mpc/h)³, different AGN/stellar feedback models
 - Illustris AGN feedback too strong
- Extract skewers on N = 800^2 , 512^2 , 600^2 grid along z-direction
- Extra feedback/heating moves contours upwards in
 Lyα transmission

$$\delta_{DM} \equiv \frac{\rho_{DM}}{\rho_{DM,c}} - 1^{\frac{1}{2}}$$

PROBING HEATING

- FGPA vs true flux
 - Comparison between FGPA and real flux can be used to constrain feedback models in observations
 - Observationally need estimate for DM density field

CLAMATO-SURVEY

- COSMOS Lyman-Alpha Mapping And Tomography Observations
 - Survey with LRIS on Keck of the COSMOS field
 - 2-4h integrations with g < 24.8
- First systematic use of galaxies
- Mean transverse separation of 2.4 Mpc/h
- Ly α forest redshift range: 2.05 < z < 2.55
 - 21 Mpc/h x 27 Mpc/h x 340 Mpc/h
- Data release public: Lee+2018

CLAMATO-SURVEY

• 3D map generated by Wiener Filtering the sightlines

https://www.youtube.com/watch?v=QGtXi7P4u4g Created by Thomas Müller

DM-DENSITY COSMOS FIELD

Ata+2020

- COSMIC BIRTH (Kitaura+2019,Ata+2020): Bayesian inference of initial density field from spectroscopic galaxy survey data
- Use data from multiple surveys and taking into account the radial and angular selection functions
- Single realizations can be used to estimate variance

COSMOS FIELD PROTO-CLUSTERS

- Lyα absorption field recovers known overdensities seen in galaxy distributions (e.g., Lee + 2018)
- Use CLAMATO survey to study proto-clusters

"Hyperion" overdensity at z ~ 2.5

VUDS galaxy density

sity CLAMATO Lyα absorption Cucciati+2018

CLUSTER PREHEATING

- Galaxy clusters form from large overdensities
- Without feedback, gas in clusters should mostly be heated through gravitational contraction: self-similarity
- L_x-T relation too steep to be explained by self-similarity (slope = 2)
- Excess entropy K at small/intermediate radii in clusters
- Extra heating into proto-clusters at high z :
 - Feedback from stars
 - AGN

Navarro, Frenk & White 1995

simulated clusters
 preheated sims
 x, <> observations

14

- Goal: effect of preheating on Lyα absorption of proto-clusters
- Zoom-in simulations of proto-cluster regions in (300 Mpc/h)³ volume simulation box with AREPO
- Turn off all feedback, no starformation, no metal cooling
- Inject energy into proto-cluster at z = 3:
 - Inject energy into particles with $\delta_g > 5$ to raise entropy above entropy floor (Borgani+2001)
 - Different entropy floors: $K_{fl} = 0$, 30, 50 and 100 keV cm²

 $K = T n_e^{-2/3}$

15

16

 $\delta_{F_{real}} \equiv \frac{F_{real}}{\overline{F}} - 1$

Where \overline{F} from Becker+2013

Real-space Lyα flux (Kulkarni+2015)

$$F_{real} = e^{-\tau_{real}}$$
$$\tau_{real} = \frac{3\lambda_{\alpha}^{3}A_{10}}{8\pi H(z)}n_{F}$$

- Extract random spectra, add noise with CLAMATO specifications
- Heat injection causes distribution for proto-clusters to tilt
- Random regions for control sample

- Simulations do not have sufficient resolution to reach observed Lyα forest scales
 - Switch to higher resolution: $2x10^8 M_{\odot}/h$ DM resolution
- Injection scheme fails at higher resolution: clusters explode
- New scheme: inject constant energy at z = 3 for all particles

Halo 43, $M_{halo}^{z=0, s=0} = 7.51e+14 M_{\odot}$, z = 2.002

NEXT STEPS

- Finish higher-resolution simulations, energy-based injection scheme
 - 1 keV, 3 keV & 10 keV per particle
- Compare to data in CLAMATO
 - Use DM density reconstruction realizations as variance

CONCLUSIONS:

- Lyman alpha forest excellent probe of heating/feedback in IGM
 - FGPA vs observed flux
- Zoom-in simulations of proto-clusters at z = 2-3
- Effect of preheating on Lyα absorption in proto-clusters:
 - Heat injection at z = 3
 - Tilts δ_{DM} - δ_F distribution at z = 2
- CLAMATO survey allows for this study with both Lyα absorption field & DM density field
- In progress:
 - Run higher resolution proto-cluster simulations with energy-based injection scheme
 - Full comparison with CLAMATO data to constrain feedback models & cluster preheating