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The seeds of non-Archimedean geometry were sown when Kurt Hensel
defined the field of p-adic numbers - Qp in 1897.

Later, Hasse envisioned a local-global ”principle” - a property or theorem
holds over Q if and only if it holds over R and Qp for all primes p.

Another motivation was to define analogues of certain analytic techniques
such as power series in a formal algebraic way to use in Number theory.
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The p-adic numbers are similar to R in that they extend the rational
numbers by a process called completion.

However, unlike R and C, the geometry of the p-adics is strange !
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Our goals in this talk are as follows.

1. We introduce the notion of a non-Archimedean field and describe in
some detail the construction of the field of p-adic numbers.

2. We discuss the obstructions to developing a theory of geometry over
non-Archimedean fields

3. We introduce Vladimir Berkovich’s approach to non-Archimedean
geometry which provides analytic spaces with nice topological
properties.

4. We describe our recent work that seeks to generalize results of
Hrushovski–Loeser concerning the homotopy type of the Berkovich
analytifications of quasi-projective varieties.
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The p-adic numbers

Let p be a prime number.

Definition (Order of Vanishing at p)

1. Given a ∈ Z, we define the order of vanishing ordp(a) of a at p as
the number e ∈ N such that pe is the largest power of p that divides
|a|.

2. Given q ∈ Q, we write q = a/b with a, b ∈ Z such that
gcd(a, b) = 1 and define ordp(a/b) = ordp(a)− ordp(b).

For example, if p = 5 then ordp(−5) = 1, ordp(15) = 1 and
ordp(3/2) = 0.
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The p-adic norm

The order of vanishing at p defines a natural norm on the rationals called
the p-adic norm which we denote |.|p.

Definition (p-adic norm)

Given z ∈ Q, we define

|z |p := (1/p)ordp(z).
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The p-adic norm

This is a well defined norm.

In particular,

a, b 7→ |a− b|p defines a metric on Q.

Intuitively, the larger the power of p that divides the number, the smaller
the number will be according to the p-adic norm.

Eg : 〈pn〉 7→ 0 with respect to |.|p while 〈1/pn〉 goes to ∞.
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The field Qp.

Definition (Qp)

The field Qp is defined to be the completion of Q with respect to the
metric induced by the p-adic norm i.e. the metric given by

a, b 7→ |a− b|p.

One can check easily that for every x , y ∈ Qp,

|x + y |p ≤ max{|x |p, |y |p}.

This property is stronger than the triangle inequality and it is this
inequality that warps the geometry of the p-adic numbers under the
p-adic metric.
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Non-Archimedean real valued fields

Definition

A non-Archimedean real valued field is a field F equipped with a
non-Archimedean valuation i.e. a function

|.| : F → R≥0

such that

1. For every x ∈ F , |x | = 0 if and only if x = 0.

2. For every x , y ∈ F , |xy | = |x ||y |.

3. For every x , y ∈ F , |x + y | ≤ max{|x |, |y |}.
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A non-Archimedean valuation is strange !

Notation : Given x ∈ Qp and r ∈ R>0, we write

B(x , r)− := {y ∈ Qp||y − x |p < r}

to denote the open ball around x and

B(x , r) := {y ∈ Qp||y − x |p ≤ r}

to denote the closed ball around x in Qp.

Lemma

Given a, b ∈ Qp and real numbers r ≤ r ′, we have that there exists only
one of two possibilities.

1. B(a, r)− ∩ B(b, r ′)− = ∅.

2. B(a, r)− ⊆ B(b, r ′)−.
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Growth of two Berkovich closed disks

Let a, b ∈ Qp and R := |a− b|p.
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Consequence : The closed unit disk in Qp is the disjoint union of finitely
many open sub disks.

In fact, given any two points x , y ∈ Qp, there does not exist a path from
x to y . We say that Qp is totally disconnected.

This makes it hard to draw pictures of simple objects like the closed or
open ball in Qp.
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Analytic functions on Qp

Suppose we were to define a p-adic analytic function analogous to
complex analytic functions.

Definition (Naive p-adic analytic function)

A p-adic analytic function on an open subset D of the p-adic numbers is
a function f : D → Qp that admits a Taylor series expansion in a
neighbourhood of every point of D i.e. for every point x0 ∈ D, we can
write

f (x) = a0 + a1(x − x0) + a2(x − x0)2 . . .

where for every i , ai ∈ Qp and the series converges to f (x) in some open
ball around x0.
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The class of naive p-adic analytic functions is too big

Example

Recall that the closed unit ball B(0, 1) ⊂ Qp is the disjoint union of
finitely many open unit balls i.e. there exists x1, . . . , xm ∈ B(0, 1) and

B(0, 1) =
⊔
i

B(xi , 1)−.

Consider the function f : B(0, 1)→ Qp defined as follows.

Let c1, . . . , cm ∈ Qp. For every 1 ≤ i ≤ m and z ∈ B(xi , 1)−, we set

f (z) = ci .
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By our previous definition such a function will be analytic, however
morally it should not be !

One of the goals of any theory of non-Archimedean geometry is to come
up with a meaningful way to be able to claim that the closed unit ball is
connected.
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Tate’s approach

In the early 60’s, John Tate developed a theory of non-Archimedean
geometry called Rigid geometry.

When confronted with the problem of a totally disconnected unit disk,
Tate’s idea was to

1. Restrict the notion of open subsets of a non-Archimedean space.

2. Specify when any such open set can be covered by other such
admissible opens.

3. Develop a good notion of structure sheaf for such spaces which
takes the place of a theory of non-Archimedean analytic functions.
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Tate’s Approach

The building blocks of rigid analytic spaces are motivated by an algebraic
construction.

The ring of analytic functions on the n-dimensional closed
ball in Qn

p should be

Qp〈T1, . . . ,Tn〉 := {
∑

i:=(i1,...,in)∈Nn

aiT
i1
1 . . .T

in
n |ai ∈ Qp, ai 7→ 0 when |i| 7→ ∞}.

Such algebras are called Tate algebras and belong to a more general class
called Affinoid algebras.
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Berkovich’s Approach

In the late eighties, Vladimir Berkovich developed a theory with good
topological properties.

The main idea of Berkovich was to add points to Tate’s rigid spaces !
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The Berkovich closed unit disk

Definition

The Berkovich closed unit disk over Qp is the set of multiplicative,

bounded semi-norms on the algebra Qp〈T 〉. We denote this M(Qp〈T 〉).

Observe that B(0, 1) ⊂M(Qp〈T 〉).

Given f ∈ Qp〈T 〉, we can define a function

f :M(Qp〈T 〉)→ R≥0

x 7→ |f (x)|.

The topology on M(Qp〈T 〉) is the weakest topology such that such

functions are continuous.
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How to draw the Berkovich closed unit disk

We work over Cp - the completion of the algebraic closure of Qp.

There is a natural way to describe the points of M(Cp 〈T 〉) using the
closed sub-disks of B(0, 1).

Given a ∈ Cp and r ∈ (0, 1], we can define a point ηa,r ∈M(Cp 〈T 〉).

The map

αa : [0, 1]→M(Cp〈T 〉)
r 7→ ηa,r

defines a path from a to the Gauss point - η0,1.
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How to draw the Berkovich closed disk

The Berkovich closed unit disk can be seen as segments connecting
points a ∈ Cp and the Gauss point which are glued together.

The glueing rule : Let R := |a− b|p.
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The full picture
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The Berkovich analytification

We fix a field K which is algebraically closed, complete with respect to a
non-trivial non-Archimedean real valuation.

Definition

Let X be a scheme of finite type over the field K . Let X an denote the set
of pairs (x , η) where x is a scheme theoretic point of X and η is a rank
one valuation on the residue field K (x) that extends the valuation of the
field K . The set X an is endowed with a topology whose pre-basic open
sets are of the form {(x , η) ∈ Uan||f (η)| ∈W } where U is a Zariski open
subset of X , f ∈ OX (U) and W is an open subspace of R≥0.
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of pairs (x , η) where x is a scheme theoretic point of X and η is a rank
one valuation on the residue field K (x) that extends the valuation of the
field K . The set X an is endowed with a topology whose pre-basic open
sets are of the form {(x , η) ∈ Uan||f (η)| ∈W } where U is a Zariski open
subset of X , f ∈ OX (U) and W is an open subspace of R≥0.
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1. The association X 7→ X an from the category of schemes of finite
type over K to the category of topological spaces defines a functor.

2. X is separated ⇐⇒ X an is Hausdorff.

3. X is proper ⇐⇒ X an is compact.

4. The space X an contains X (K ) as a dense subset and the topology
induced on X (K ) is the valuative topology.
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Homotopy type of V an

Theorem (Hrushovski–Loeser)

Let V be a quasi-projective K-variety.

Then there exists a deformation
retraction h : I × V an → V an to a subset Υ ⊂ V an which is
homeomorphic to a finite simplicial complex. Furthermore, finitely many
constructible subsets of V an can be preserved, in the sense that the
homotopy restricts to well defined homotopies on each of them.

Corollary (Hrushovski–Loeser)

Let V be a quasi-projective K-variety. Then V an is locally contractible.
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Compatible deformation retractions.

Statement

Let φ : V ′ → V be a flat surjective morphism between quasi-projective
K-varieties of finite type.

There exist deformation retractions
H : I × V an → V an and H ′ : I × V ′an → V ′an which are compatible with
the morphism φan i.e. the following diagram commutes.

I × V ′an V ′an

I × V an V an

H′

id×φan φan

H

Furthermore, if e denotes the end point of the interval I then the images
of the deformations Υ := H(e,V an) and Υ′ = H ′(e,V ′an) are
homeomorphic to finite simplicial complexes.
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Generic version of Statement

Theorem (JW)

Let φ : V ′ → V be a morphism between quasi-projective K-varieties
whose image is dense.

There exists a finite partition V of V into locally
closed sub-varieties such that for every W ∈ V, there exists a generalized
real interval IW and a pair of deformation retractions

H ′W : IW × V ′W
an → V ′W

an

and
HW : IW × V an

W → V an
W

which are compatible with respect to the morphism (φ|V ′
W

)an and whose
images are homeomorphic to finite simplicial complexes.
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When the base is a curve

Theorem (JW)

Let S be a smooth connected K-curve and X be a quasi-projective
K-variety. Let φ : X → S be a surjective morphism such that every
irreducible component of X dominates S. We assume in addition that
the fibres of φ are of dimension 1. There exists a pair of deformation
retractions

H ′ : I × X an → X an

and
H : I × San → San

which are compatible with respect to the morphism φan and whose
images are homeomorphic to finite simplicial complexes.
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The space V̂

Instead of constructing homotopies on V an where V is a quasi-projective
K -variety, we work in a space V̂ which was introduced by
Hrushovski–Loeser.

The space V̂ is a model theoretic analogue of V an. It allows us to use
powerful techniques from model theory such as compactness and
definability.

The key to defining homotopies in this context is to make use of deep
continuity criteria for functions defined on V̂ . The final homotopy on V̂
is a composition of several homotopies, each of whose continuity can be
verified using the results of Hrushovski–Loeser.
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Thank you!


