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Introduction to weak measurement



Shift operator

) ) N . d . )
« Momentum operator is defined as p = —i—In quantum mechanics.

« e~X%oP works as shift operator for Y(x): e "oPyi(x) = P(x — xy).

P(x) A (x)\?
W = x0) = P(x) — xp Dy (x, WY Lo

= e~ XoPyy(x) J —

0 Xo

o If Y(x) is approximated by Taylor expansion
up to the first order, (1 — ixyp) also works as
shift operator. v(@Q)

W = x0) ~ W) — % 52 |y o

W(x — xp)

= (1 — ixop)P(x)

X—Xg X



Conventional measurement

The interaction between a particle (measured object) and detector is
expressed with Von Neumann formula.

Particle . Final state
Ale;)=Alg;) R
|@;) ; Al@;) Al final eigenstates (simply, |¢;) now)
Detector g
V(@) 4@ — gA) JN
Value: Q Value:Q — 4 g4 Q
VonA Neumann interaction operator
| W (Q))! > (@il 9P o) W(Q))
=1 Shift operator on Q

Ale))=Alg) = Kol )e 9P |W(Q))

|\|J(Q — gAj) Meter’s shift




Weak measurement (1)

Let’s calculate conditional measurement with small coupling

btw particle

and detector (Weak Measurement: WM) with Von Neumann formula.

Condition-1:

Particle Al % Alos) Final state
@i @i .
. . Condition-3:
|(Pl> C dition.2: |(Pf> Selection of the final state
Detector g?2<111)0n : (Postselection)
(@) ——— ?
Operator:p = 0
@ If A |;) = Alg;), the same as
Meter: Q conventional measurement
| [W(Q)) > (@r|e' 9P | )| W(Q))
g<<l ~{or|(1 —igAp)| @)W (Q))
(or|Al ;)
= (¢ Icp-><1— ig| P | (@)
F (@fl@;)

A,



Weak measurement (2)

Particle . Final state )
Al@;) # Alg;)

[0, ; o) ]
Detector > . /;\ .....
Y (@) (W (Q — gAw)) oA gAw
Meter: Q Meter:Q — gA,,

@) W(Q)) > (@r]e'9? @) |W(Q))
p Shift operator on Q for the first

v(Q)

W)

llj(x - gAw)

= (@r

~ (@

order of approximation

P )

1—igAyp)|P(Q))

@L)N’([Q T gAWj)>

Meter’s shift



Weak value amplification (1)

nes N
Weak value: 4,, = M
(@r|@;) 41N
» Weak value can be amplified, choosing ~ —= . /F\ 0
small Re{or|@;) (weak value amplification) 0AW

> Selection of |(pl-)/|(pf> Is called as preselection/postselection.

 The gain of the weak value amplification and loss of statistics are in the
trade-off relationship.

* |f systematic errors dominate to statistical error, measurement accuracy
IS Improved significantly.
> At the first order, ostat/A,, does not change by postselection (because
both 4,, and stat. error depend on 1/vVN).

> AS syst. error Is constant, osyst/A,, decreases with larger A4,,,.



Uncertainty normalized by |g|

Weak value amplification (2)
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Existing experiments with weak measurement

« Measurement of 1 A displacement in Spin Hall effect of light: Science
319, 787 (2008)

* Light deflection measurement with 14 fm of linear travel resolution:
Phys. Rev. Lett. 102, 173601 (2009)

« Light intensity measurement with timing resolution of 5 x 10~* as:
Phys. Rev. A 100, 012109 (2019)

 Application for Cheshire cat experiment with neutrons: Nat. Commun.
5, 4492 EP (2014)

« Measurement of lifetime of two-states system in atoms: Phys. Rev. Lett.
111, 023604 (2013)

Benefit of WM Is already proven by existing experiments using
“photon and neutron”.

—> However, no proposal for experiments with other particles so far.
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Weak measurement in B® decays



B°-B° mixing

The mass eigenstates of neutral B meson (B;, By) are expressed by
mixture of the flavor eigenstates (B, B°):

_ 1 - -
1B,) = p|B) + q|B°) BY=S By +IBy) T VL
_ 0\ _ DO _ 1 LN
1Biu) =pIB%) — qlB) B =5 (B — 1By o+ v, :
\.’-"
5 I ?td :
Time evolutionatt = At — l. ~
H|By) = (mL - EFL) |BL) I Vi b

. A/ .
BO(At)) = e~i247] Bo) H1By) = (mys = 5T ) |Bu)

_ % (p-ibt(mu—3T) o =idt(mu—3Tn)) IBO) + zi (p-idt(mi—3T) _ =ist(mu—3Th)) 1BO)
p

B° and B are mixed during time evolution (B°- B® mixing).
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Postselection in BO decay (1)

Postselection
The state at the timing of B° decay is selected as [Bgecay) = r|B°) +
s|B®) (Ir]* + |s|*=1).

CP phase
/3“P||||dt1— 1073
p (Ipl=lql dueto 1 —|q|/|p| ~ )
.T—_Irl_ i <— Relative phase btw B°/B° in [Bgecay)
S 1—|r|?

- J

Let’s calculate probability of B°(At) decaying into Bgecay
(|(Bdecay|B°(At))|2), using these definitions.
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Postselection in BO decay (2)

|<Bdecay|BO (At)>|2

o-TlAt]

= — {1 + (2|r|? — 1) cos(AmAt) — 2|r|/1 — |r|? sin(8 — @) sin(AmAt)}

Here, negative At is taken into account with |At|.

- Probability density function with postselection
P(At|BO N Bdecay) CP phase

e—l"lAtI

= {1 + (2|r|? = 1) cos(AmAt) — 2|r|y/1 — |r|? sin(6 — @) sin(AmAt)}
0 /
Normalization factor

Postselection parameters
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At distribution with postselection

« Selection of CP eigenstate (|r| = 1/+/2 = 0.7) corresponds to the

conventional CPV measurement.

« Difference in At distributions between BY and B at At=0 is caused by
CP violation with CP phase ¢ (called as mixing induced CPV).

 The distribution variates, choosing different |r]|.

—N

1 The sensitivity to @ may be improved by selecting optimal | .

Conventional CPV meas.

0.35[

N

Ir|=0.7

E (0, 0) = (44.4,0)

— B(At=0) = B°

— B(At=0) = B’

Ir|=0.3

(0, 8) = (44.4, 0)

— B(At=0) = B°

— B(At=0) = B’
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How can postselection be realized?

« For WM, a fraction of BY/B° in the final state (|r|) and their relative
phase (0) have to be identified.

 vin BY->K%*y process seems to be possible tool for postselection:

4 N
* |r| can be determined by helicity of y associating

to B flavor (B> K% yr/ B°>K%*y,).

> In reality, the opposite helicity migrates in a
fraction of mg/ my, (ignored in this study).

* O corresponds to phase of v. E X ’
- BO_ /,____\I/\V ,_KO*
Choosing y-helicity/phase, |r| and 6 may =N g
be identified. b T
- YR
—

K°*y in the final states have to be consistent with the
state just before B® decay (|Bgecay) = r|B°) + s|B?)).



Validity of postselection with B decays (1)

To realize postselection choosing B° = K °*y, the final state must satisfy
consistency condition, i.e., |[K*°z)|yr) « |Bgecay) = r|B°) +s|BY).

U is the unitary operator to connect state of B® and decay products:

U|B®) = c|K°*)|yr) + [other decay modes] K)

U|B°) = c|K°*)|y,) + [other decay modes] o 4
- B v A—> o &)

B BY(At)) = K% . |U|B° (At »

( decayl ( )) <YF|< F | ( )) ~ - X .

_ v

|K2*) = & |KO) + &, |K°) H

lYr) = n1lyr) +n2lyL) vE, )

(BIniK O Kyrl + 51K Kyrl + Ema(K [yl + En3{K°1¢y.1)T (|B°XBC| + [B°)(B°|)

= c(E5m3(B° + &ni(B°|)



Validity of postselection with B decays (2)

(Kzl(yrl U = c(§3n3(B°| + &mi(B°[)

should be (Bgecay| = 7(B°| + s(B°|.

Experimentally, it is easy to choose CP eigenstate for |Ky)

by detecting K*°> KIn":

Ki (= KS10)) = & 1K) + §,|K ™)
\

1 _
=|—= (K*") + |K™))

CP eigenstate

V2

Y 1
51:52:\/—5

N =T

N2 =S

> ye) = rlye) + slyy)

The postselection is realized by selecting y-helicity/phase
in B> K%y (K*°> K21Y).
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Applicaion of WM to CPV
measurement in Belle Il experiment
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Belle 11 experiment

« The experiment to measure CP violation and
search for new physics, using SuperKEKB
electron-positron collider.

> Electron: 7 GeV, Positron: 4 GeV

. . ] ] N Y
* 40 times larger instantaneous luminosity than §e|
KEKB accelerator: L = 8 x 1035 cm2st &~ -

« Aim to collect 50 ab® of data until 2031.% |~
> 5.5 x 101° B-B pairs

- Advantage for WM

e Initial state (Y(4S)=> B-B) is fixed.

e Large statistics (5.5 x 101° B+ B pairs)
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Total integrated Daily luminosity [fb*]

Status of Belle Il experiment

Belle Il experiment started full physics data-taking on March 2019.

> The instantaneous luminosity reached at 2.4x 1034 cm2s1,

> ~90 fbt of integrated luminosity was accumulated.

50 abt will be collected until ~2031 upgrading the accelerator.

Integrated luminosity in 2019-2021

Belle Il Online luminosity

Exp: 7-8-10-12-14 - All runs
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CPV measurement at Belle 11 (1)

1. Y(4S) is generated at e*e ™ collision Y(4S)
with asymmetric energy. e~ (7GeV) O e’ (4GeV)

10.58 GeV ~ 2m o

2. B°-B? system from decay of Y(4S) travels with
8 (= p/E = 3/11).

« B%/BY almost stationary at c.m system of Y(4S) .

e Two BY’s are defined as B*8 and B¢”.

3. Flavor of B8 at decay time (At = 0) BO (orEO)Q\
is identified by using the decay ~_ BT .
products (f*28). Wﬁ f tag)
- Flavor of B? is also identified At=0

due to entanglement. Identify B°(or B°)
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CPV measurement at Belle 11 (2)

4. Flavor of BCP is mixed before the decay at t = At (= % .
BO _
B¢F ; Mixed state of B°/B° L
Btag E_N ftag |
At =0 A= Z

By

5. CP eigenstate of B“F (At) is selected by using decay products.
Then, At is measured for B*8 = B%and BY separately.

BO

CP . : 0 /RO . _
-~ B E Mixed state of B /B A/§<fcp: \/iz (lBO> + |BO))
‘\__,/m i
Btas EN ftag |
At!: 0 At :I =

By
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CPV measurement at Belle 11 (3)

6. If difference exists in At distribution between B*9 = B? and B,
this is evidence for CPV.

\ At distributions for B®? - t*n~ @Belle

Btag — BO Btag - EO (
/ \ i
At % s0 [ =
|
g I
Conventional measurement corresponds ¢ (5™ =
to WM, selecting (7], 0) ~ (1/+/2, 0). :
1 - £
* |Bdecay>:_(|BO)i|BO>) E ol PR o
V2 8 I N, —N_ |
§ 2l MK L
z 11 0.5<r<1.0
In this study, sensitivity to CPV Is € oI L F
- - - . T 1 + N_
investigated, selecting (|r|, 6) dynamically. S T
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Time measurement & Flavor tag (1)

- Key measurement techniques at Belle 11
- Difference of decay time between B8 and B¢F (At)

* Flavor tagging of B8

Decay time (At) measurement
« B%-BY system from decay of Y(4S) travels with B (= p/E = 3/11).

« Difference of decay time between B8 and B¢F is determined by
measuring distance of their decay position and .

 Vertex resolution is typically 100 um. - Timing resolution ~ 1.2 ps
> T(BO) =15 PS _ pee B°

~ Mixed state of B®/B° §<fCP
B ER ftag

At=0 At=—
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Time measurement & Flavor tag (2)

Flavor tagging

* Flavor for B8 js identified by choosing the decay products sensitive
to the flavor eigenstate (Nucl. Instrum. Meth. A533 (2004) 516-531).

« For example, charge of ¢ in B® = D*#*v is identical to B flavor.
Likeness  ft49 efficiency Wrong tag fraction BO { d d }DO*

b c

l | |
» YT ‘[ W+ £+
[ @1’1&1\ al @ @ Eog ~C

Vo

I 0.000-0.250 0.398 0.458 £ 0.005£0.003 0.003 £ 0.001
2 0.250-0.500 0.146  0.336+0.008 £0.004 0.016 % 0.002
300.500-0.625  0.104  0.228 +0.009109 0031 £ 0.002
4 0.6250.750 0.122 0.160 £ 0.0077993  0.056 = 0.003
S 0.750-0.875  0.094 0.112£0.008 £ 0.004  0.056 == 0.003
6 08751000 0136 0020705002 0.126°000

Flavor tagging performance at Belle
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Postselection with B> K%*y process

|dentification of a fraction of B® and B° (|r|) and their relative phase 0

IS essential for WM.

Postselection parameters
CP phase
P(AtlBO - Bdecay) D

e~ TIAt]|

— {1+ (2I7[? = 1) cos(AmAt) — 2|r|y/1 = [r[2sin(6 — ¢) sin(AmAL)}

(« |7|: y-helicity in B®>K°*y (BO>KO%*y/ B°>K*y,).

\

* 0: phase of y

« K*> K90 has to be selected for consistency condition of
_ states between B4, and the decay product (K %v).

Y,
BY _ | K ©°* Choose
TN BCP i BOOI’ BO \§< KO*eKSOT[O
‘\\-—’/’M !
ptag — i Y Measure
BN ftag 2

At=— helicity/phase

By
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Simulation study: signal yield (1)

5.5 x 10'% B-B pairs at 50 ab1
* BR(Y(4S) = B°B°): 0.49 - BY > K%y: 1.1 x 10°
* BR(B*>K%Yy):42x 107> _
* Flavor tagging efficiency (f*@8): 0.136

> Wrong tagging fraction: 0.02 (ignored in this study)

> Nucl. Instrum. Meth. A533 (2004) 516-531
 Event reconstruction efficiency: 0.021

> BR(K®*>K21Y) is also taken into account here.

> Phys. Rev. Lett. 119, 191802 (2017)

3.3 X 103 events remain after the event selection.
—> Looks enough statistics for postselection.




Simulation study: signal yield (2)
* For simplicity, efficiency of postselection is assumed as 0.5 for || and

1.0 for 0.

> In this study, efficiency of postselection with different || and 6 is not
taken into account to see only effect of variation of || and 0
(inclusion of the efficiency is homework for future study).

- 1.7 x 103 signal events after postselection

* The expected background contamination is 0.9 x 102 from the results
In the Belle experiment.

— Main background sources:
cete™> qq(g=u,d,s,cC)

« ete™> BB: The final states of B are misidentified as signal.
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Simulation study: event generation

 The pseudo-experiment was carried out with custom-made toyMC tool.

« The At distributions are generated, following the probability density
functions of signal (Psig) and background (Pykg) for different || and 6.

44.4 de

Slg(At|B - Bdecay) =2 zzlv ! {1 + (2|r|? = 1) cos(AmAt) — 2|r|{/1 — |r|? sin(® — @) sm(AmgAt)}

» CP phase ¢ (= 2¢4) Is set as 44.4 Detector fime Tesponse (Atsim = Airue)

degrees (the world average). g {7 1Y MO simulation h=-018

e F o, =1.43 1

g 10°- N,y =5.13 3

* Puig is empirically determined fromthe  *_ oo

results in the Belle experiment. :
 The detector response (timing ’
scale/resolution) and background e

systematics are taken into account. I I B W

-15 -10 -5 0 5 10 15
At - Aty [PS]

true
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Simulation study: extraction of ¢

* At distributions for B*%9= B%/B were fitted by Ps;; and Ppxg
simultaneously to evaluate sensitivity to o.
At distribution for B**9= B°/B° with (|r|, 8) = (0.5, 0)

> @ Is fit parameter, 1.e. value
to be measured.

 The difference between Bt49=
B and B° shows effect of ¢
(CP violation).

Uncertainty on ¢ in the fit result
was investigated with different

(Ir], 6).

|III|III:]

§350;T0y MC simulation Btdg(At — 0) = BO

o
@ 300
ja-

= 250

200-
150¢
100;
50-

- ¢ =445+ 4.8 [deg] B*(At=0)=5B"

t

/

= IIII|III|III|IIIIIIIII|
~10 -8 —6 —4 -2

(8)
B
|—|m
©
LI
o
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Sensitivity to CP phase

* The measurement precision on ¢ significantly depends on ||, but not

so much on 0.

* The sensitivity to ¢ is maximized at |r|~0.5.

 The statistical error
dominates in this analysis.

> 0p(syst.) =0.22-1.1 deg.
> 0y (stat.) = 4.7-13.2 deg.

WM can improve/adjust
sensitivity to ¢!

6 [degrees]

Measurement precision on ¢ with postselection

180
144
108
72
36

-36
-72

-108
-144
-180

0.1 02 03 04 05 06 0.7 08 0.9

Irl

—_
B

—
N

—
o

[degrees]

4 total
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Why sensitivity Is improved?

 The background distributes in the center of At = 0.

 The signal distribution is shifted with smaller |r|, escaping from At =0
with large background.

—> The measurement precision on ¢ is improved with less background.

« With |r|~0, the precision gets worse due to loss of statistics.

At distribution for BG At distribution for signal (B°->K°%*y)

~ F > SR L L EURLL I B I I BRI B
3 W ; 3 T E
:120: Ba9 (At = 0) = B° o 0'95 _m - (1)2 =
E 100:_ Btag(At = 0)_: BO OT 08; _lrl — 0-2 E
s | : 2 07F —|r|=0.0 =
L 8o . 5 06- 000 >
- + ] £ 05 IR

60 . Q =

B # ] 04:—

40:— — 0.3;—

- ] 0.25

o

r 4 ] 0.1=
V= L S T P I I I .o = Y5V 0% 3
-10-8 -6 -4 -2 0 2 4 6 8 10 -10 -8 6 4 -2 0 2 4 6 8 10
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Postselection with vy

* Realization of postselection for |r| and 0 is m— SN
the biggest technical challenge in WM.

* |r| (a fraction of B%/BY in the final state)
and 0 correspond to helicity and phase of y e~ (C> — s e’
in BY>K%y.

* The helicity/phase of y may be determined | |
by measuring kinematics of e*e~ from the ~ Differential rate v.s. Sum of

i azimuthal angle of lepton pairs

conversion ([ 11 «.0)

]) 0.60

Practically, including variables related
with kinematics of e*e ™ as input for
analysis with machine learning, effect of
WM would be taken into account
automatically.

(0.1,0)

Normalized events
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Future prospect

This study is the first proposal to apply WM to high energy physics and
showed possibility to improve measurement precision.

- Our next target

« Study of sensitivity to direct/indirect CP violation and new physics
In B meson decays with WM

> There are three types of CP violation: Mixing induced (this study),
direct and indirect CP violations.

Indirect CP
_ , Allr|\/1-
P(B°(At) = f) = Ngoe T2 {1+ I I || I +8 } || %cos(Aﬂc‘[At) ﬁ“lﬂl || B sin( ~.—¢) ) sin(AM At) }
Direct CP WX
b djs

 Application of the same method in this study to other e

two-state systems (applicable for any two-state system).

* Investigation of new method of WM for other physics processes.
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Summary & Conclusions

WM Is new method of measurement in Quantum Mechanics.
> Conditional measurement under very weak interaction.

 Effect of WM was confirmed by many existing experiments with
photon and neutron, but there was no proposal with other particles.

* We developed method of WM applicable for CPV measurement with B
meson decays in high energy physics.

* |t was shown that WM improves sensitivity to CP phase with
postselection on y in B® > K %*y process.

 Our study Is summarized in (submitted to PRD).

* This Is the starting point to consider application of WM for high
energy physics!

-> Looking for new proposals and collaboration members!



36

Backup
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Measurement with Von Neumann formula

In Von Neumann formula, the interaction Hamiltonian for a measured
object and detector is defined as g8(t — ty)Ap.

« A: Operator for a measured object (@ (4)).

* P (: — i%): Momentum operator for meter of the detector (w(Q)).

Time evolution of x(4,Q,t) = @(A4, ) Y(0,t):

l.dx(z;,tQ,t) = g8(t — t)APx(4,Q,1t) N
j> X(4,Q,t) = e!94Px(4,Q,t = 0) J

) Shift operator on Q g4 Q
If Ap(A, t)=Ap(A,t) _— eigAﬁX(A, Q,t = O)

=Xx(4,0—g4At=0)
Meter in the detector Is shifted by gA.
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Conventional measurement 1n mixed state

The interaction between a particle (measured object) and detector is
expressed with Von Neumann formula.

Particle X Final state
A |(pi> - ZaAa |a)<a|(Pi>

|@;) : Al@i) All final eigen states
Detector g
W(Q)) > |[y(Q - gA)

Operator:p = 20

M < N

Value: Q Value:Q — A _
o 94 Q

@)W (Q))! > (@ile'9P @) W(Q))

Shift operator on Q
Alo) =Tadalaalo) = Fal(@;la)]?|e'94e? [Ui(Q))

= Za|((Pi|a>|2 |1|1(@ — gAa)]>Meter’s shift
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Coupling strength for weak measurement

Let’s consider how small the coupling should be for WM.

(@rlei99P | )W (Q))
g<<l  ~(@r|(1 —igAp)|e:) W (Q))
= (sl (1 — igA, D) [V (Q))
= {(¢rl@i) (Il/)(Q)) — 94w d”'(Q)))

aqQ
gA,, should be < oy,

WM has significant effect if shift in the

| meter (gA,,) is within width of the
probability density function (oy,).
NN

gAy Q
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Extension of effective lifetime (1)

H is Hamiltonian to give (my /g, Iy,/g) fOr mass eigenstates (B, By).

Let’s express H = Hy + Am.

R ; Here,
HBL>:(m_Am_EF)|BL> e my, =m— Am
. ; 1°* my =m+4m
HBH):(m+Am—%F)|BH) _-rirLer
(BdecaleO(At)> — (Bdecayle_iAtﬁ|BO>
_ o—3TAt y—iAtm <B e—iAtEﬁl‘BO>
decay

Assuming At is order of lifetime of B meson (1/I"), the condition
of weak measurement Is:

e I ~1—i[— |
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Extension of effective lifetime (2)

(Baecay|Am|B®)
<Bdecay|BO>

- A
WIthTm~ 0 and 4,, =

(Baecay| B (A1) oAt g-idtm Buccay|B?) €18t

[(Baecay| BOBD)|” = € T2 |(Bgecay|[B)|” e22cmidw]

o—(T—2AtIm[Ay])At

(Bdecale())lZ

The postselection effectively shortens/extends

lifetime of BP.
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Extension of effective lifetime (3)

* Am = mg, —mp, = 3.3 x 1071% MeV

e g0 =43 X 1071 MeV (t=1.5 X 1071%5)

Am/T" = 0.77

Since Am/T" is not ~0, the first order calculation is not sufficient.

—> Let’s calculate the lifetime without approximation.
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Extension of effective lifetime (4)

Teff(B0 - Bdecay) = f dAt’ At’P(AtllBO - Bdecay)

A, = ¥
W

7|

{cos(e @) + isin(6 — )}

. 2 —(Am)? /_\m)F
; - Am
(l + |AW| ) T + (l o |Aw| ) FQ—f—(am) -+ 2Im 1 T2 (Am)

The effective lifetime can be
extended 2.6 than 1(B°), selecting

(Ir], sin(6 — ¢)) ~ (0.2, -1).

0.8
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