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Introduction to weak measurement
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Shift operator
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• Momentum operator is defined as Ƹ𝑝 = −𝑖
𝑑

𝑑𝑥
in quantum mechanics.

• 𝑒−𝑖𝑥0 ො𝑝 works as shift operator for ψ(𝑥): 𝑒−𝑖𝑥0 ො𝑝ψ 𝑥 = ψ 𝑥 − 𝑥0 .

ψ 𝑥 − 𝑥0 = ψ 𝑥 − 𝑥0
𝑑ψ 𝑥

𝑑𝑥
+ 𝑥0

𝑑ψ 𝑥

𝑑𝑥

2
+ ・・・

• If ψ 𝑥 is approximated by Taylor expansion 

up to the first order, 1 − 𝑖𝑥0 Ƹ𝑝 also works as 

shift operator.

= 𝑒−𝑖𝑥0 ො𝑝ψ 𝑥

ψ 𝑥 − 𝑥0 ~ ψ 𝑥 − 𝑥0
𝑑ψ 𝑥

𝑑𝑥
i Ƹ𝑝ψ 𝑥

= 1 − 𝑖𝑥0 Ƹ𝑝 ψ 𝑥



Conventional measurement
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Particle

Detector

Operator： Ƹ𝑝 =
𝑑

𝑑𝑄

Value：𝑄 − 𝐴

Final state

Value：Q

| ۧφ𝑖 | ۧψ(𝑄)

Q𝑔𝐴

g

= | ۧψ(𝑄 − 𝑔𝐴)

| ۧφ𝑖
መ𝐴| ۧφ𝑖

| ۧψ(𝑄) | ۧψ(𝑄 − 𝑔𝐴)

The interaction between a particle (measured object) and detector is 

expressed with Von Neumann formula.

Meter’s shift

መ𝐴 | ۧφ𝑖 = A| ۧφ𝑖

መ𝐴 | ۧφ𝑖 = A| ۧφ𝑖

All final eigenstates (simply, | ۧφ𝑖 now)

Shift operator on Q

= φ𝑖 φ𝑖 𝑒
𝑖𝑔𝐴 ො𝑝 | ۧψ(𝑄)

ۦ |φ𝑖 𝑒
𝑖𝑔 ෠𝐴 ො𝑝 | ۧφ𝑖 | ۧψ(𝑄)

=1

Von Neumann interaction operator



Weak measurement (1)
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Particle

Detector

Final state

Meter：Q

| ۧφ𝑖

| ۧψ(𝑄)

| ۧφ𝑖 | ۧψ(𝑄) φ𝑓|𝑒𝑖𝑔ۦ
෠𝐴 ො𝑝 | ۧφ𝑖 | ۧψ(𝑄)

Let’s calculate conditional measurement with small coupling btw particle 

and detector (Weak Measurement: WM) with Von Neumann formula.

?

| ൿφ𝑓

Condition-2:
g (<< 1)

Operator： Ƹ𝑝 =
𝑑

𝑑𝑄

Condition-1:
መ𝐴 | ۧφ𝑖 ≠ A| ۧφ𝑖

Condition-3:
Selection of the final state 

(Postselection)

g<<1 ~ φ𝑓|(1ۦ − ig መ𝐴 Ƹ𝑝)| ۧφ𝑖 | ۧψ(𝑄)

= |φ𝑓ۦ ۧφ𝑖 1 − 𝑖𝑔
|φ𝑓ۦ መ𝐴| ۧφ𝑖

|φ𝑓ۦ ۧφ𝑖
Ƹ𝑝 | ۧψ(𝑄)

𝐴𝑤

If መ𝐴 | ۧφ𝑖 = A| ۧφ𝑖 , the same as 

conventional measurement 



Weak measurement (2)
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Particle

Detector

Meter：𝑄 − 𝑔𝐴𝑤

Final state

Meter：Q

g

| ۧφ𝑖 | ൿφ𝑓

| ۧψ(𝑄) | ۧψ(𝑄 − 𝑔𝐴𝑤)

| ۧφ𝑖 | ۧψ(𝑄) φ𝑓|𝑒𝑖𝑔ۦ
෠𝐴 ො𝑝 | ۧφ𝑖 | ۧψ(𝑄)

= |φ𝑓ۦ ۧφ𝑖 (1 − ig𝐴𝑤 Ƹ𝑝)| ۧψ(𝑄)

~ |φ𝑓ۦ ۧφ𝑖 | ۧψ(𝑄 − 𝑔𝐴𝑤)
Meter’s shift

መ𝐴 | ۧφ𝑖 ≠ A| ۧφ𝑖

Q
gAw

gA

Shift operator on Q for the first 

order of approximation



Weak value amplification (1)
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𝐴𝑤 =
|φ𝑓ۦ መ𝐴| ۧφ𝑖

|φ𝑓ۦ ۧφ𝑖

Q
gAw

gA

Weak value: 

➢ Selection of | ۧφ𝑖 /| ൿφ𝑓 is called as preselection/postselection.

• The gain of the weak value amplification and loss of statistics are in the 

trade-off relationship.

• If systematic errors dominate to statistical error, measurement accuracy 

is improved significantly.

➢ At the first order, σstat./𝐴𝑤 does not change by postselection (because 

both 𝐴𝑤 and stat. error depend on 1/√N). 

➢ As syst. error is constant, σsyst./𝐴𝑤 decreases with larger 𝐴𝑤.

• Weak value can be amplified, choosing 

small Reۦφ𝑓| ۧφ𝑖 (weak value amplification)



Weak value amplification (2)
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Quantum Stud.: Math. Found. (2014) 1:65-78

Measurement uncertainty v.s. weak value amplification

Stat. error

Bias extracting A from 𝐴𝑤

Minimum uncertainty
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Existing experiments with weak measurement
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• Measurement of 1 Å displacement in Spin Hall effect of light: Science 

319, 787 (2008)

• Light deflection measurement with 14 fm of linear travel resolution: 

Phys. Rev. Lett. 102, 173601 (2009)

• Light intensity measurement with timing resolution of 5 × 10−4 as: 

Phys. Rev. A 100, 012109 (2019)

• Application for Cheshire cat experiment with neutrons: Nat. Commun. 

5, 4492 EP (2014)

• Measurement of lifetime of two-states system in atoms: Phys. Rev. Lett. 

111, 023604 (2013)

Benefit of WM is already proven by existing experiments using 

“photon and neutron”.

→ However, no proposal for experiments with other particles so far. 



Weak measurement in 𝐵0 decays
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𝐵0- ത𝐵0 mixing
11

The mass eigenstates of neutral B meson (𝐵𝐿, 𝐵𝐻) are expressed by 

mixture of the flavor eigenstates (𝐵0, ത𝐵0):

෡𝐻| ۧ𝐵𝐿 = 𝑚𝐿 −
𝑖

2
Γ𝐿 | ۧ𝐵𝐿

෡𝐻| ۧ𝐵𝐻 = 𝑚𝐻 −
𝑖

2
Γ𝐻 | ۧ𝐵𝐻

| ۧ𝐵𝐿 = 𝑝| ۧ𝐵0 + 𝑞| ۧത𝐵0

| ۧ𝐵𝐻 = 𝑝| ۧ𝐵0 − 𝑞| ۧത𝐵0

Time evolution at t = Δt

| ۧ𝐵0(Δ𝑡) = 𝑒−𝑖Δ𝑡 ෡𝐻| ۧ𝐵0

| ۧ𝐵0 = 
1

2𝑝
| ۧ𝐵𝐿 + | ۧ𝐵𝐻

| ۧത𝐵0 = 
1

2𝑞
| ۧ𝐵𝐿 − | ۧ𝐵𝐻

= 
1

2
𝑒
−𝑖Δ𝑡 𝑚𝐿−

𝑖

2
Γ𝐿 + 𝑒

−𝑖Δ𝑡 𝑚𝐻−
𝑖

2
Γ𝐻 | ۧ𝐵0 + 

𝑞

2𝑝
𝑒
−𝑖Δ𝑡 𝑚𝐿−

𝑖

2
Γ𝐿 − 𝑒

−𝑖Δ𝑡 𝑚𝐻−
𝑖

2
Γ𝐻 | ۧത𝐵0

𝐵0 and ത𝐵0 are mixed during time evolution (𝐵0- ത𝐵0 mixing).



Postselection in B0 decay (1)
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The state at the timing of 𝐵0 decay is selected as ห ൿBdecay = r| ۧ𝐵0 + 

s| ۧത𝐵0 ( 𝑟 2 + 𝑠 2= 1).

Let’s calculate probability of 𝐵0(Δ𝑡) decaying into Bdecay

( Bdecay 𝐵
0(Δ𝑡)

2
), using these definitions.

•
𝑝

𝑞
= 𝑒𝑖φ ( 𝑝 = 𝑞 due to 1 − 𝑞 / 𝑝 ~ 10−3)

•
𝑟

𝑠
= 

𝑟

1− 𝑟 2
𝑒𝑖θ

• Γ𝐿= Γ𝐻 = Γ
Γ𝐿−Γ𝐻

Γ
< 0.01

CP phase

Postselection

Relative phase btw 𝐵0/ ത𝐵0 in ห ൿBdecay



Postselection in B0 decay (2)
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Bdecay 𝐵
0(Δ𝑡)

2

=  
𝑒−Γ Δ𝑡

2
1 + 2 𝑟 2 − 1 cos(Δ𝑚Δ𝑡) − 2 𝑟 1 − 𝑟 2 sin(θ − φ) sin(Δ𝑚Δ𝑡)

Here, negative Δt is taken into account with |Δt|.

= 
𝑒−Γ Δ𝑡

2𝑁
1 + 2 𝑟 2 − 1 cos(Δ𝑚Δ𝑡) − 2 𝑟 1 − 𝑟 2 sin(θ − φ) sin(Δ𝑚Δ𝑡)

𝑃 Δ𝑡|𝐵0 → 𝐵decay

Normalization factor

Postselection parameters 

CP phase

Probability density function with postselection



Δt distribution with postselection
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• Selection of CP eigenstate ( 𝑟 = Τ1 2 = 0.7) corresponds to the 

conventional CPV measurement.

• Difference in Δt distributions between 𝐵0 and ത𝐵0 at Δt=0 is caused by 

CP violation with CP phase φ (called as mixing induced CPV).

• The distribution variates, choosing different 𝑟 .

The sensitivity to φ may be improved by selecting optimal 𝑟 .

𝑃
Δ
𝑡|
𝐵
0
→
𝐵
d
e
c
a
y

𝑃
Δ
𝑡|
𝐵
0
→
𝐵
d
e
c
a
y

Conventional CPV meas.



How can postselection be realized?
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• For WM, a fraction of 𝐵0/ ത𝐵0 in the final state ( 𝑟 ) and their relative 

phase (θ) have to be identified.

• γ in 𝐵0
→𝐾0∗γ process seems to be possible tool for postselection:

𝐾0∗γ in the final states have to be consistent with the 

state just before 𝐵0 decay (ห ൿBdecay = r| ۧ𝐵0 + s| ۧത𝐵0 ).

• 𝑟 can be determined by helicity of γ associating 

to 𝐵0 flavor (𝐵0
→𝐾0∗γ𝑅/ ത𝐵0

→𝐾0∗γ𝐿).

➢ In reality, the opposite helicity migrates in a 

fraction of 𝑚𝑠/ 𝑚𝑏 (ignored in this study).

• θ corresponds to phase of γ.

Choosing γ-helicity/phase, 𝑟 and θ may 

be identified.



Validity of postselection with B decays (1)
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෡𝑈| ۧ𝐵0 = 𝑐| ۧ𝐾0∗ | ۧγ𝑅 + [other decay modes]

෡𝑈| ۧത𝐵0 = 𝑐| ۧഥ𝐾0∗ | ۧγ𝐿 + [other decay modes]

෡𝑈 is the unitary operator to connect state of 𝐵0 and decay products:

To realize postselection choosing 𝐵0
→𝐾0∗γ, the final state must satisfy 

consistency condition, i.e., | ۧ𝐾∗0
𝐹 | ۧγ𝐹 ∝ ห ൿBdecay = r| ۧ𝐵0 + s| ۧത𝐵0 . 

ห ൿ𝐾𝐹
0∗ = ξ1| ۧ𝐾0∗ + ξ2| ۧഥ𝐾0∗

| ۧγ𝐹 = η1| ۧγ𝑅 + η2| ۧγ𝐿

ξ1
∗η1

ۦ∗ |𝐾∗0 ۦ |γ𝑅 + ξ2
∗η1

∗ൻ |ഥ𝐾∗0 ۦ |γ𝑅 + ξ1
∗η2

∗ ۦ |𝐾∗0 ۦ |γ𝐿 + ξ2
∗η2

∗ ൻ |ഥ𝐾∗0 ۦ |γ𝐿 ෡𝑈 ห ۧ𝐵0 ۦ |𝐵0 + ห ۧത𝐵0 ۦ |ത𝐵0

= 𝑐 ξ2
∗η2

ۦ∗ |𝐵0 + ξ1
∗η1

ۦ∗ |ത𝐵0

Bdecay 𝐵
0(Δ𝑡) = หൻγ𝐹 𝐾0∗

𝐹
෡𝑈 𝐵0(Δ𝑡)



Validity of postselection with B decays (2)
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ξ1η1

ξ2η2
= 
𝑟

𝑠
should be  ൻ หBdecay = 𝑟ۦ |𝐵0 + 𝑠ۦ |ത𝐵0 .

| ۧ𝐾𝐹
∗(→ 𝐾𝑠

0π0) = ξ1| ۧ𝐾∗0 + ξ2| ۧഥ𝐾∗0 =
1

2
| ۧ𝐾∗0 + | ۧഥ𝐾∗0

Experimentally, it is easy to choose CP eigenstate for | ۧ𝐾𝐹
∗

by detecting 𝐾∗0
→ 𝐾𝑠

0π0: 

ξ1 = ξ2 = 
1

2

η1 = 𝑟
η2 = 𝑠 | ۧγ𝐹 = r| ۧγ𝑅 + s| ۧγ𝐿

The postselection is realized by selecting γ-helicity/phase 

in 𝐵0
→𝐾0∗γ(𝐾∗0

→ 𝐾𝑠
0π0).

ൻ |𝐾𝐹
∗ ۦ |γ𝐹 ෡𝑈 = 𝑐 ξ2

∗η2
ۦ∗ |𝐵0 + ξ1

∗η1
ۦ∗ |ത𝐵0

CP eigenstate 



Applicaion of WM to CPV 

measurement in Belle II experiment
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Belle II experiment
19

• The experiment to measure CP violation and 

search for new physics, using SuperKEKB

electron-positron collider.

➢ Electron: 7 GeV, Positron: 4 GeV

• 40 times larger instantaneous luminosity than 

KEKB accelerator: L = 8 × 1035 cm-2s-1

• Aim to collect 50 ab-1 of data until 2031.

➢ 5.5 × 1010 𝐵・ ത𝐵 pairs

• Initial state (Υ(4S)→ 𝐵・ ത𝐵) is fixed.

• Large statistics (5.5 × 1010 𝐵・ ത𝐵 pairs)

Advantage for WM



Status of Belle II experiment
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• Belle II experiment started full physics data-taking on March 2019.

➢ The instantaneous luminosity reached at 2.4× 1034 cm-2s-1.

➢ ~90 fb-1 of integrated luminosity was accumulated.

• 50 ab-1 will be collected until ~2031 upgrading the accelerator.

Integrated luminosity in 2019-2021
Expected integrated luminosity



CPV measurement at Belle II (1)
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𝑒− (7GeV) 𝑒+ (4GeV)
Υ(4S)

𝐵0

10.58 GeV ~ 2𝑚𝐵0

Identify ത𝐵0(or 𝐵0)

2. 𝐵0- ത𝐵0 system from decay of Υ(4S) travels with 

β (= p/E = 3/11).

• 𝐵0/ ത𝐵0 almost stationary at c.m system of Υ(4S) .

• Two 𝐵0’s are defined as 𝐵tag and 𝐵𝐶𝑃.

1. Υ(4S) is generated at 𝑒+𝑒− collision 

with asymmetric energy.

3. Flavor of 𝐵tag at decay time (Δt = 0) 

is identified by using the decay 

products (𝑓tag).

→ Flavor of 𝐵CP is also identified 

due to entanglement.

ത𝐵0

𝐵0 (or ത𝐵0)
𝐵CP

𝐵tag

𝑓tagΔt = 0

β = 3/11



CPV measurement at Belle II (2)
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4. Flavor of 𝐵CP is mixed before the decay at t = Δt (= 
𝑧

βγ
).

Δt = 
𝑧

βγ

𝐵0

ത𝐵0 𝑓tag

Mixed state of 𝐵0/ ത𝐵0𝐵CP

𝐵tag

5. CP eigenstate of 𝐵CP(Δ𝑡) is selected by using decay products. 

Then, Δt is measured for 𝐵tag = 𝐵0and ത𝐵0 separately.

𝐵0

ത𝐵0 𝑓tag

𝑓CP: 
1

2
| ۧ𝐵0 ± | ۧത𝐵0𝐵CP

𝐵tag

Δt = 
𝑧

βγ

Δt = 0

Δt = 0

Mixed state of 𝐵0/ ത𝐵0



CPV measurement at Belle II (3)
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6. If difference exists in Δt distribution between 𝐵ta𝑔 = 𝐵0 and ത𝐵0, 

this is evidence for CPV.

Δt

𝐵ta𝑔 = 𝐵0 𝐵ta𝑔 = ത𝐵0

Δ𝐭 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧𝐬 𝐟𝐨𝐫 𝑩𝐂𝐏 → 𝝅+𝝅−@Belle

(Phys. Rev. Lett. 93 021601 (2004))

𝐵ta𝑔 = 𝐵0

𝐵ta𝑔 = ത𝐵0
Conventional measurement corresponds 

to WM, selecting ( 𝑟 , θ) ~ ( Τ1 2, 0).

• ห ൿBdecay = 
1

2
| ۧ𝐵0 ± | ۧത𝐵0

In this study, sensitivity to CPV is 

investigated, selecting ( 𝑟 , θ) dynamically.

𝑁+ −𝑁−
𝑁+ + 𝑁−

𝑁+ − 𝑁−
𝑁+ + 𝑁−



Time measurement & Flavor tag (1)
24

• Difference of decay time between 𝐵tag and 𝐵𝐶𝑃 (Δt)

• Flavor tagging of 𝐵tag

Key measurement techniques at Belle II 

Decay time (Δt) measurement

• 𝐵0- ത𝐵0 system from decay of Υ(4S) travels with β (= p/E = 3/11).

• Difference of decay time between 𝐵tag and 𝐵𝐶𝑃 is determined by 

measuring distance of their decay position and β.

• Vertex resolution is typically 100 um. → Timing resolution ~ 1.2 ps

➢ τ(𝐵0) = 1.5 ps



Time measurement & Flavor tag (2)
25

Flavor tagging

• Flavor for 𝐵tag is identified by choosing the decay products sensitive 

to the flavor eigenstate (Nucl. Instrum. Meth. A533 (2004) 516-531).

• For example, charge of ℓ in 𝐵0
→ 𝐷∗ℓ+ν is identical to 𝐵0 flavor.

𝒇𝒕𝒂𝒈 efficiency Wrong tag fraction

Flavor tagging performance at Belle

Likeness



Postselection with 𝐵0
→𝐾0∗γ process

26

Identification of a fraction of 𝐵0 and ത𝐵0 ( 𝑟 ) and their relative phase θ 

is essential for WM.

Δt=
𝑧

βγ

𝐵0

ത𝐵0 𝑓tag

𝐵0or ത𝐵0𝐵CP

𝐵tag

𝐾0∗

γ Measure 

helicity/phase

• 𝑟 : γ-helicity in 𝐵0
→𝐾0∗γ (𝐵0

→𝐾0∗γ𝑅/ ത𝐵0
→𝐾0∗γ𝐿).

• θ: phase of γ

• 𝐾0∗
→𝐾𝑠

0π0 has to be selected for consistency condition of 

states between 𝐵𝑑𝑒𝑐𝑎𝑦 and the decay product (𝐾0∗γ).

𝑃 Δ𝑡|𝐵0 → 𝐵decay

= 
𝑒−Γ Δ𝑡

2𝑁
1 + 2 𝑟 2 − 1 cos(Δ𝑚Δ𝑡) − 2 𝑟 1 − 𝑟 2 sin(θ − φ) sin(Δ𝑚Δ𝑡)

Postselection parameters 
CP phase

Choose 

𝐾0∗
→𝐾𝑠

0π0



Simulation study: signal yield (1)
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• 5.5 × 1010 𝐵・ ത𝐵 pairs at 50 ab-1

• BR(Υ(4S) → 𝐵0 ത𝐵0): 0.49

• BR(𝐵0
→𝐾0∗γ): 4.2 × 10−5

• Flavor tagging efficiency (𝑓tag): 0.136

➢ Wrong tagging fraction: 0.02 (ignored in this study)

➢ Nucl. Instrum. Meth. A533 (2004) 516-531

• Event reconstruction efficiency: 0.021 

➢ BR(𝐾0∗
→𝐾𝑠

0π0) is also taken into account here.

➢ Phys. Rev. Lett. 119, 191802 (2017)

3.3 × 103 events remain after the event selection.

→ Looks enough statistics for postselection.

𝐵0
→ 𝐾0∗γ: 1.1 × 106



Simulation study: signal yield (2)
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• 𝑒+𝑒−→ 𝑞ത𝑞 (𝑞 = u, d, s, c)

• 𝑒+𝑒−→ 𝐵 ത𝐵: The final states of 𝐵 are misidentified as signal. 

• For simplicity, efficiency of postselection is assumed as 0.5 for 𝑟 and 

1.0 for θ.

➢ In this study, efficiency of postselection with different 𝑟 and θ is not 

taken into account to see only effect of variation of 𝑟 and θ 

(inclusion of the efficiency is homework for future study).

→ 1.7 × 103 signal events after postselection

Main background sources: 

• The expected background contamination is 0.9 × 103 from the results 

in the Belle experiment.



Simulation study: event generation
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• The pseudo-experiment was carried out with custom-made toyMC tool.

• The Δt distributions are generated, following the probability density 

functions of signal (𝑃sig) and background (𝑃bkg) for different 𝑟 and θ.

𝑃𝑠𝑖𝑔 Δ𝑡|𝐵0 → 𝐵decay = 
𝑒−Γ Δ𝑡

2𝑁
1 + 2 𝑟 2 − 1 cos(Δ𝑚Δ𝑡) − 2 𝑟 1 − 𝑟 2 sin(θ − φ) sin(Δ𝑚Δ𝑡)

• 𝑃bkg is empirically determined from the 

results in the Belle experiment.

• The detector response (timing 

scale/resolution) and background 

systematics are taken into account.

➢ CP phase φ (= 2φ1) is set as 44.4 

degrees (the world average).  

Detector time response (𝜟𝒕𝐬𝐢𝐦 − 𝜟𝒕𝐭𝐫𝐮𝐞)

44.4 deg.



Simulation study: extraction of φ
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• Δt distributions for 𝐵𝑡𝑎𝑔= 𝐵0/ ത𝐵0 were fitted by 𝑃𝑠𝑖𝑔 and 𝑃bkg
simultaneously to evaluate sensitivity to φ.

Δt distribution for 𝑩𝒕𝒂𝒈= 𝑩𝟎/ഥ𝑩𝟎 with ( 𝒓 , θ) = (0.5, 0) 
➢ φ is fit parameter, i.e. value 

to be measured.

• The difference between 𝐵𝑡𝑎𝑔= 

𝐵0 and ത𝐵0 shows effect of φ 

(CP violation).

Uncertainty on φ in the fit result 

was investigated with different 

( 𝑟 , θ).

𝐵𝑡𝑎𝑔 Δ𝑡 = 0 = 𝐵0

𝐵𝑡𝑎𝑔 Δ𝑡 = 0 = ത𝐵0



Sensitivity to CP phase
31

• The measurement precision on φ significantly depends on 𝑟 , but not 

so much on θ.

• The sensitivity to φ is maximized at 𝑟 ~0.5.

• The statistical error 

dominates in this analysis.

➢ σφ(syst.) = 0.22–1.1 deg.

➢ σφ(stat.) = 4.7–13.2 deg. 

Measurement precision on φ with postselection

WM can improve/adjust 

sensitivity to φ!



Why sensitivity is improved?
32

• The background distributes in the center of Δt = 0.

• The signal distribution is shifted with smaller 𝑟 , escaping from Δt = 0 

with large background. 

→The measurement precision on φ is improved with less background.

• With 𝑟 ~0, the precision gets worse due to loss of statistics.  

Δt distribution for signal (𝑩𝟎
→𝑲𝟎∗𝜸)Δt distribution for BG

𝐵𝑡𝑎𝑔 Δ𝑡 = 0 = 𝐵0

𝐵𝑡𝑎𝑔 Δ𝑡 = 0 = ത𝐵0



Postselection with γ
33

Practically, including variables related 

with kinematics of 𝑒+𝑒− as input for 

analysis with machine learning, effect of 

WM would be taken into account 

automatically.

• Realization of postselection for 𝑟 and θ is 

the biggest technical challenge in WM.

• 𝑟 (a fraction of 𝐵0/ ത𝐵0 in the final state) 

and θ correspond to  helicity and phase of γ 

in 𝐵0
→𝐾0∗γ.

• The helicity/phase of γ may be determined 

by measuring kinematics of 𝑒+𝑒− from the 

conversion ([Phys. Rev. 114, 887 (1959)], [J. High 

Energ. Phys. 09, 013]).
(r, θ)

Differential rate v.s. Sum of 

azimuthal angle of lepton pairs



Future prospect
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This study is the first proposal to apply WM to high energy physics and 

showed possibility to improve measurement precision.

• Study of sensitivity to direct/indirect CP violation and new physics 

in B meson decays with WM

➢ There are three types of CP violation: Mixing induced (this study), 

direct and indirect CP violations.

Direct CP

• Investigation of new method of WM for other physics processes.

• Application of the same method in this study to other 

two-state systems (applicable for any two-state system).

Our next target 

Indirect CP



Summary & Conclusions
35

• WM is new method of measurement in Quantum Mechanics.

➢ Conditional measurement under very weak interaction.

• Effect of WM was confirmed by many existing experiments with 

photon and neutron, but there was no proposal with other particles.

• We developed method of WM applicable for CPV measurement with B 

meson decays in high energy physics.

• It was shown that WM improves sensitivity to CP phase with 

postselection on γ in 𝐵0
→𝐾0∗γ process.

• Our study is summarized in arXiv:2011.07560 (submitted to PRD).

• This is the starting point to consider application of WM for high 

energy physics! 

→Looking for new proposals and collaboration members!



Backup

36



Measurement with Von Neumann formula
37

Time evolution of χ 𝐴, 𝑄, 𝑡 = φ(𝐴, 𝑡)ψ 𝑄, 𝑡 :

𝑖
𝑑χ(𝐴,𝑄,𝑡)

𝑑𝑡
= 𝑔δ(𝑡 − 𝑡0) መ𝐴 Ƹ𝑝χ(𝐴, 𝑄, 𝑡)

χ 𝐴, 𝑄, 𝑡 = 𝑒𝑖𝑔 ෠𝐴 ො𝑝χ(𝐴, 𝑄, 𝑡 = 0)

In Von Neumann formula, the interaction Hamiltonian for a measured 

object and detector is defined as gδ 𝑡 − 𝑡0 መ𝐴 Ƹ𝑝.

• መ𝐴: Operator for a measured object (φ(𝐴)).

• Ƹ𝑝 = − 𝑖
𝑑

𝑑𝑄
: Momentum operator for meter of the detector (ψ(Q)).

= 𝑒𝑖𝑔𝐴 ො𝑝χ(𝐴, 𝑄, 𝑡 = 0)

= χ(𝐴, 𝑄 − 𝑔𝐴, 𝑡 = 0)

If መ𝐴𝜑(𝐴, 𝑡)= 𝐴𝜑(𝐴, 𝑡)

Meter in the detector is shifted by gA.

Q𝑔𝐴Shift operator on Q



Conventional measurement in mixed state
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Particle

Detector

Operator： Ƹ𝑝 =
𝑑

𝑑𝑄

Value：𝑄 − 𝐴

Final state

Value：Q

| ۧφ𝑖 | ۧψ(𝑄)
Q𝑔𝐴

g

| ۧφ𝑖
መ𝐴| ۧφ𝑖

| ۧψ(𝑄) | ۧψ(𝑄 − 𝑔𝐴)

The interaction between a particle (measured object) and detector is 

expressed with Von Neumann formula.

All final eigen states

Shift operator on Q

ۦ |φ𝑖 𝑒
𝑖𝑔 ෠𝐴 ො𝑝 | ۧφ𝑖 | ۧψ(𝑄)

Meter’s shift

= σ𝑎 φ𝑖 𝑎
2 𝑒𝑖𝑔𝐴𝑎 ො𝑝 | ۧψ(𝑄)መ𝐴 | ۧφ𝑖 = σ𝑎 𝐴𝑎 | ۧ𝑎 𝑎 φ𝑖

= σ𝑎 φ𝑖 𝑎
2 | ۧψ(𝑄 − 𝑔𝐴𝑎)

መ𝐴 | ۧφ𝑖 = σ𝑎 𝐴𝑎 | ۧ𝑎 𝑎 φ𝑖



Coupling strength for weak measurement
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g<<1

φ𝑓|𝑒𝑖𝑔ۦ
෠𝐴 ො𝑝 | ۧφ𝑖 | ۧψ(𝑄)

Q𝑔𝐴𝑤

~ φ𝑓|(1ۦ − ig መ𝐴 Ƹ𝑝)| ۧφ𝑖 | ۧψ(𝑄)

σψ

WM has significant effect if shift in the 

meter (𝑔𝐴𝑤) is within width of the 

probability density function (σψ).

Let’s consider how small the coupling should be for WM.

= |φ𝑓ۦ ۧφ𝑖 (1 − ig𝐴𝑤 Ƹ𝑝)| ۧψ(𝑄)

= |φ𝑓ۦ ۧφ𝑖 | ۧ𝜓 𝑄 − 𝑔𝐴𝑤
𝑑| ۧψ(𝑄)

𝑑𝑄

𝑔𝐴𝑤 should be ≪ σψ



Extension of effective lifetime (1)
40

𝐵decay 𝐵
0(Δ𝑡) = 𝐵deca𝑦 𝑒−𝑖Δ𝑡 ෡𝐻 𝐵0

Assuming Δt is order of lifetime of B meson (1/Γ), the condition 

of weak measurement is:

෡𝐻 is Hamiltonian to give (𝑚𝐿/𝐻, Γ𝐿/𝐻) for mass eigenstates (𝐵𝐿, 𝐵𝐻).

Let’s express ෡𝐻 = ෢𝐻0 + ෢Δ𝑚. 

෡𝐻| ۧ𝐵𝐿 = 𝑚 − Δ𝑚 −
𝑖

2
Γ | ۧ𝐵𝐿

෡𝐻| ۧ𝐵𝐻 = 𝑚 + Δ𝑚 −
𝑖

2
Γ | ۧ𝐵𝐻

Here, 

• 𝑚𝐿 = m − Δm

• 𝑚𝐻 = m+ Δm

• Γ = Γ𝐿 = Γ𝐻

= 𝑒−
1

2
ΓΔ𝑡𝑒−𝑖Δ𝑡𝑚 𝐵deca𝑦 𝑒−𝑖Δ𝑡

෢Δ𝑚 𝐵0

𝑒−𝑖
෢Δ𝑚

Γ ~ 1 − 𝑖
෢Δ𝑚

Γ

Δ𝑚

Γ
~ 0



Extension of effective lifetime (2)
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𝐵decay 𝐵
0(Δ𝑡)

2
= 𝑒−ΓΔ𝑡 𝐵deca𝑦 𝐵0 2

𝑒2Δ𝑡Im[𝐴w]

𝐵decay 𝐵
0(Δ𝑡) =𝑒−

1

2
ΓΔ𝑡𝑒−𝑖Δ𝑡𝑚 𝐵deca𝑦 𝐵0 𝑒−𝑖Δ𝑡𝐴w

With
Δ𝑚

Γ
~ 0  and 𝐴w =

𝐵deca𝑦 Δ𝑚 𝐵0

𝐵deca𝑦 𝐵
0

= 𝑒−(Γ−2Δ𝑡Im[𝐴w])Δ𝑡 𝐵deca𝑦 𝐵0 2

The postselection effectively shortens/extends 

lifetime of 𝐵0. 



Extension of effective lifetime (3)
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• Δ𝑚 = 𝑚𝐵𝐻 − 𝑚𝐵𝐿 = 3.3 × 10−10 MeV

• Γ𝐵0 = 4.3 × 10−10 MeV (τ = 1.5 × 10−12 s)

Δm/Γ = 0.77

Since Δm/Γ is not ~0, the first order calculation is not sufficient.

→ Let’s calculate the lifetime without approximation.



Extension of effective lifetime (4)
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τeff(𝐵
0 → 𝐵decay) = 0׬

∞
𝑑Δ𝑡′ Δ𝑡′𝑃(Δ𝑡′|𝐵0 → 𝐵decay)

𝐴w =
1− 𝑟 2

𝑟
cos(θ − φ) + 𝑖 sin(θ − φ)

The effective lifetime can be 

extended 2.6 than τ(𝐵0), selecting 

( 𝑟 , sin(θ − φ)) ~ (0.2, -1).


