constraining M_{ν} with the bispectrum

arXiv:1909.05273 arXiv:1909.11107 arXiv:2012.02200

Feb 17, 2021 — APEC Seminar IPMU

neutrino oscillation experiments established a **lower bound** on the sum of neutrino masses $M_{\nu} \gtrsim 0.06 \text{ eV}$

neutrino oscillation experiments established a **lower bound** on the sum of neutrino masses $M_{\nu} \gtrsim 0.06 \text{ eV}$

but they don't measure M_{ν}

precise M_{ν} reveal physics **beyond the Standard Model** (*e.g.* distinguish between "normal" and "inverted" hierarchies)

upcoming laboratory experiments are not sensitive to M_{ν}

$M_{\nu} > 0$ eV **suppresses the growth of structure** on *small scales* below their free-streaming scale

$M_{\nu} > 0$ eV **suppresses the growth of structure** on *small scales* below their free-streaming scale

$M_{\nu} > 0$ eV **suppresses the growth of structure** on *small scales* below their free-streaming scale

best constraints currently come from cosmology: **CMB + LSS**

 $M_{\nu} < 0.13 \text{ eV}$ (95%, Planck TT+lowE+lensing+BAO)

best constraints currently come from cosmology: **CMB + LSS**

 $M_{\nu} < 0.13$ eV (95%, Planck TT+lowE+lensing+BAO)

KATRIN 1.1eV upper limit (Aker+2019)

CMB measures $A_s e^{-2\tau}$ and thus heavily rely on τ constraints

CMB measures $A_s e^{-2\tau}$ and thus **heavily rely on** τ **constraints**

but upcoming ground-based experiments (*CMB-S4*) will not directly constrain *τ* ... *LiteBIRD?, LiteCOrE?*

imprint of M_v can be measured from **galaxy clustering**

upcoming surveys: DESI, PFS, Euclid, Roman

$M_{\nu} - \sigma_8$ degeneracy is a major limitation for the redshift-space *power spectrum*

information in the *nonlinear regime* cascades from the power spectrum to **higher-order statistics**

these two distributions have the *same power spectrum*

these two distributions have the *same power spectrum*

but very *different higher-order statistics*

higher-order statistics have **higher signal-to-noise** on small scales

introduction to *the bispectrum*

 $\langle \delta(\mathbf{k_1}), \delta(\mathbf{k_2}), \delta(\mathbf{k_3}) \rangle = \delta_D(\mathbf{k_1}, \mathbf{k_2}, \mathbf{k_3}) B(\mathbf{k_1}, \mathbf{k_2}, \mathbf{k_3})$

introduction to the bispectrum

github.com/changhoonhahn/pySpectrum

introduction to *the bispectrum*

 $k_1 \ge k_2 \ge k_3$

github.com/changhoonhahn/pySpectrum

introduction to *the bispectrum*

 $k_1 \ge k_2 \ge k_3$

does the bispectrum improve M_{ν} constraints?

can the bispectrum help break $M_{\nu} - \sigma_8$ degeneracy?

Name	M_{ν}	Ω_m	Ω_b	h	n_s	σ_8^m	σ_8^c	ICs	realizations
Fiducial	0.0	0.3175	0.049	0.6711	0.9624	0.833	0.833	${\rm Zel}$ 'dovich	100
	0.06	0.3175	0.049	0.6711	0.9624	0.819	0.822	Zel'dovich	100
$M_{\nu} > 0 \text{ eV}$	0.10	0.3175	0.049	0.6711	0.9624	0.809	0.815	Zel'dovich	100
	0.15	0.3175	0.049	0.6711	0.9624	0.798	0.806	${\rm Zel}$ 'dovich	100
	0.0	0.3175	0.049	0.6711	0.9624	0.822	0.822	Zel'dovich	100
$M_{\nu} = 0 \text{ eV}$	0.0	0.3175	0.049	0.6711	0.9624	0.818	0.818	Zel'dovich	100
σ_8 matched	0.0	0.3175	0.049	0.6711	0.9624	0.807	0.807	Zel'dovich	100
	0.0	0.3175	0.049	0.6711	0.9624	0.798	0.798	$\operatorname{Zel'dovich}$	100

can the bispectrum help break $M_{\nu} - \sigma_8$ degeneracy?

yes! M_{ν} imprint on the bispectrum is different than σ_8

yes! M_{ν} imprint on the bispectrum is different than σ_8

Hahn+(2020)

does *the bispectrum improve* M_v *constraints*? **YES**

does *the bispectrum improve* M_{ν} *constraints*? YES what's the **total information content** of *the bispectrum*?

Quijote Simulations:

43,100 full N-body simulations designed to quantify the information content of cosmological observables

Features

- Simulations run with the TreePM code Gadget-III
- More than 35 Million CPU hours
- Boxes of 1 Opc/h. Combined total volume of 43100 (Opc/h)^3
- 17100 simulations for a fiducial Planck cosmology
- Between 500 and 1000 simulations/cosmology for 17 different cosmologies
- 11000 simulations in different latin-hypercubes
- More than 8.5 trillions of particles at a single redshift
- Billions of halos and voids identified
- Full snapshots at redshifts 0, 0.5, 1, 2, 3 and 127 (initial conditions)
- More than 200000 halo catalogues
- More than 200000 void catalogues
- More than 1 million power spectra
- More than 1 million bispectra
- More than 1 million correlation functions
- More than 1 million marked power spectra
- More than 1 million probability distribution functions
- More than 1 Petabyte of data publicly available

all publicly available

github.com/franciscovillaescusa/Quijote-simulations

Villaesucsa-Navarro, CHH+(2019)

Quijote Simulations:

43,100 full N-body simulations designed to quantify the information content of cosmological observables

$$F_{ij} = \frac{1}{2} \operatorname{Tr} \left[\mathbf{C}^{-1} \left(\frac{\partial B^{T}}{\partial \theta_{i}} \frac{\partial B}{\partial \theta_{j}} + \frac{\partial B^{T}}{\partial \theta_{i}} \frac{\partial B}{\partial \theta_{j}} \right) \right]$$

Quijote Simulations:

43,100 full N-body simulations designed to quantify the information content of cosmological observables

$$F_{ij} = \frac{1}{2} \operatorname{Tr} \left[\mathbf{C}^{-1} \left(\frac{\partial B^{T}}{\partial \theta_{i}} \frac{\partial B}{\partial \theta_{j}} + \frac{\partial B^{T}}{\partial \theta_{i}} \frac{\partial B}{\partial \theta_{j}} \right) \right]$$

difficult to accurately estimate the **1898x1898 covariance matrix**

previous work used fewer triangles, PT estimates, ignored non-Gaussian term, etc

C estimated using **15,000** N-body simulations!

$$F_{ij} = \frac{1}{2} \operatorname{Tr} \left[\mathbf{C}^{-1} \left(\frac{\partial B^{T}}{\partial \theta_{i}} \frac{\partial B}{\partial \theta_{j}} + \frac{\partial B^{T}}{\partial \theta_{i}} \frac{\partial B}{\partial \theta_{j}} \right) \right]$$

$$F_{ij} = \frac{1}{2} \operatorname{Tr} \left[\mathbf{C}^{-1} \left(\frac{\partial B^{T}}{\partial \theta_{i}} \frac{\partial B}{\partial \theta_{j}} + \frac{\partial B^{T}}{\partial \theta_{i}} \frac{\partial B}{\partial \theta_{j}} \right) \right]$$

fiducial $M_{\nu} = 0.0 \text{eV}$ $\Omega_m = 0.3175$ $\Omega_b = 0.049$ h = 0.6711 $n_s = 0.9624$ $\sigma_8 = 0.834$

$$F_{ij} = \frac{1}{2} \operatorname{Tr} \left[\mathbf{C}^{-1} \left(\frac{\partial B^{T}}{\partial \theta_{i}} \frac{\partial B}{\partial \theta_{j}} + \frac{\partial B^{T}}{\partial \theta_{i}} \frac{\partial B}{\partial \theta_{j}} \right) \right]$$

$$\Omega_m^+ = 0.3275$$

fiducial $M_{\nu} = 0.0 \text{eV}$ $\Omega_m = 0.3175$ $\Omega_b = 0.049$ h = 0.6711 $n_s = 0.9624$ $\sigma_8 = 0.834$ $\Omega_m^- = 0.3075$

$$F_{ij} = \frac{1}{2} \operatorname{Tr} \left[\mathbf{C}^{-1} \left(\frac{\partial B}{\partial \theta_i}^T \frac{\partial B}{\partial \theta_j} + \frac{\partial B}{\partial \theta_i}^T \frac{\partial B}{\partial \theta_j} \right) \right]$$

$$\begin{bmatrix} M_{\nu}^{+++} = 0.4 \\ M_{\nu}^{++} = 0.2 \\ \end{bmatrix}$$

$$\begin{bmatrix} M_{\nu}^{+} = 0.1 \\ M_{\nu}^{+} = 0.1 \\ \end{bmatrix} \begin{array}{c} \Omega_m^{+} = 0.3275 \\ \Omega_b^{+} = 0.051 \\ M_{\nu} = 0.6911 \\ \end{bmatrix} \begin{array}{c} n_s^{+} = 0.9824 \\ \sigma_8^{+} = 0.849 \\ \end{bmatrix}$$

$$fiducial \quad M_{\nu} = 0.0eV \quad \Omega_m = 0.3175 \quad \Omega_b = 0.049 \quad h = 0.6711 \quad n_s = 0.9624 \quad \sigma_8 = 0.834 \\ \\ \boxed{\Omega_m^{-} = 0.3075} \\ \boxed{\Omega_b^{-} = 0.047} \\ \hline{h^{-} = 0.6511} \\ \boxed{n_s^{-} = 0.9424} \\ \boxed{\sigma_8^{-} = 0.819} \\ \end{bmatrix}$$

$$\frac{\partial B}{\partial \theta} \approx \frac{B(\theta^+) - B(\theta^-)}{\theta^+ - \theta^-}$$

$$F_{ij} = \frac{1}{2} \operatorname{Tr} \left[\mathbf{C}^{-1} \left(\frac{\partial B}{\partial \theta_i}^T \frac{\partial B}{\partial \theta_j} + \frac{\partial B}{\partial \theta_i}^T \frac{\partial B}{\partial \theta_j} \right) \right]$$

$$\begin{bmatrix} M_{\nu}^{++} = 0.4 \\ M_{\nu}^{++} = 0.2 \\ \end{bmatrix}$$

$$\begin{bmatrix} M_{\nu}^{+} = 0.1 \\ M_{\nu}^{+} = 0.1 \\ M_{\nu} = 0.0 \text{eV} \\ M_{\mu} = 0.0 \text{eV} \\ \Omega_m = 0.3175 \\ \Omega_b = 0.049 \\ h = 0.6711 \\ m_s = 0.9624 \\ \sigma_8 = 0.834 \\ \end{bmatrix}$$

$$\begin{bmatrix} \Omega_m^- = 0.3075 \\ \Omega_b^- = 0.047 \\ m_{\nu}^- = 0.6511 \\ m_s^- = 0.9424 \\ \sigma_8 = 0.819 \\ \end{bmatrix}$$

$$\frac{\partial B}{\partial \theta} \approx \frac{B(\theta^+) - B(\theta^-)}{\theta^+ - \theta^-}$$

each box is a different cosmology with **500 N-body** simulations

information content of P_{ℓ} saturates beyond $k_{\text{max}} > 0.2 h/\text{Mpc}$

and with **Planck priors**

the redshift-space bispectrum breaks parameter degeneracies and *significantly improves* parameter constraints

1.9, 2.6, 3.1, 3.6, 2.6 × tighter than P_{ℓ} for $\Omega_m, \Omega_b, h, n_s, \sigma_8$ 5 × tighter M_{ν} constraints

halo the redshift-space bispectrum breaks parameter degeneracies and *significantly improves* parameter constraints

1.9, 2.6, 3.1, 3.6, 2.6 × tighter than P_{ℓ} for $\Omega_m, \Omega_b, h, n_s, \sigma_8$ 5 × tighter M_{ν} constraints

marginalizing over $b_1, b_2, \gamma_2, M_{\min}, A_{SN}, B_{SN}$ does not impact the improvement

marginalizing over $b_1, b_2, \gamma_2, M_{\min}, A_{SN}, B_{SN}$ does not impact the improvement but we want to include a **more complete galaxy** bias model

Halo Occupation Distribution (HOD) models populate halos from the *probability of a given halo hosting N galaxies*

 $N_{\text{gal}} \sim P(N \mid M_h)$

Halo Occupation Distribution (HOD) models populate halos from the *probability of a given halo hosting N galaxies*

 $N_{\text{gal}} \sim P(N \mid M_h)$

Halo Occupation Distribution (HOD) models populate halos from the *probability of a given halo hosting N galaxies*

 $N_{\text{gal}} \sim P(N \mid M_h)$

$$\langle N_{\rm gal} \rangle = \langle N_{\rm cen} \rangle + \langle N_{\rm sat} \rangle$$

$$\langle N_{\text{cen}} \rangle = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{\log M_h - \log M_{\min}}{\sigma_{\log M}}\right) \right] \qquad \langle N_{\text{sat}} \rangle = \langle N_{\text{cen}} \rangle \left(\frac{M_h - M_0}{M_1}\right)^{\alpha}$$

fiducial HOD based on best-fit HOD parameters for the *SDSS* $M_r < -21.5$ and $M_r < -22$ samples

changhoonhahn.github.io/molino/

15,000 mocks at fiducial HOD

+ (500 N-body) x (5 HOD) x (24 param)

75,000 galaxy catalogs

75,000 galaxy catalogs to quantify the information content of any galaxy cosmological observable

6 cosmological parameters + **5 HOD parameters**

with *moline*, we can quantify the total information content of *the redshift-space galaxy bispectrum*

joint galaxy $P_{\ell} + B$ constraints on Ω_m , Ω_b , h, n_s , σ_8 are $\geq 3 \times \text{tighter}$ than the galaxy P_{ℓ} alone

joint galaxy $P_{\ell} + B$ constraints on Ω_m , Ω_b , h, n_s , σ_8 are $\geq 3 \times \text{tighter}$ than the galaxy P_{ℓ} alone; M_{ν} constraint is $\geq 5 \times \text{tighter}$

significant **constraining power** on small *nonlinear scales*

$\gtrsim 2 \times$ tighter parameter constraints even *with Planck priors*

the **bispectrum** significant improves parameter constraints over P_{ℓ} — even after marginalizing over HOD parameters

there's *significant constraining power* in the **nonlinear regime** that can be exploited

the bispectrum is *very promising* but there are **some challenges**

 $B(k_1, k_2, k_3 < 0.5 \ h/Mpc)$ is 1898 dimensional theoretical limitations on nonlinear scales systematic effects

we used 15,000 mocks to estimate C but for current analyses $N_{\rm mock} \sim 2000$

if use a **compressed bispectrum** how much constraining power do we retain?

with **PCA** data compression we lose a lot of the constraining power we gain from the bispectrum

we can do better than PCA compression by **maximizing the Fisher information** (KL/MOPED/score)

linear combination of the bispectrum: $cB = \mathbf{b}^T B$

that maximizes
$$F_{ij} = \frac{1}{2} \left(\frac{\mathbf{b}^T \mathbf{C}_{,i} \mathbf{b}}{\mathbf{b}^T \mathbf{C} \mathbf{b}} \right) \left(\frac{\mathbf{b}^T \mathbf{C}_{,j} \mathbf{b}}{\mathbf{b}^T \mathbf{C} \mathbf{b}} \right) + \frac{(\mathbf{b}^T B_{,i})(\mathbf{b}^T B_{,j})}{\mathbf{b}^T \mathbf{C} \mathbf{b}}$$

$$cB = \left(\frac{\partial B}{\partial \theta_i} \mathbf{C}^{-1}\right) B$$

*Tegmark+(1997), Heavens+(2000), Alsing+(2018), Gualdi+(2018, 2019)

we can do better than PCA compression by **maximizing the Fisher information** (KL/MOPED/score)

linear combination of the bispectrum: $cB = \mathbf{b}^T B$

that maximizes
$$F_{ij} = \frac{1}{2} \left(\frac{\mathbf{b}^T \mathbf{C}_{,i} \mathbf{b}}{\mathbf{b}^T \mathbf{C} \mathbf{b}} \right) \left(\frac{\mathbf{b}^T \mathbf{C}_{,j} \mathbf{b}}{\mathbf{b}^T \mathbf{C} \mathbf{b}} \right) + \frac{(\mathbf{b}^T B_{,i})(\mathbf{b}^T B_{,j})}{\mathbf{b}^T \mathbf{C} \mathbf{b}}$$

$$cB = \left(\frac{\partial B}{\partial \theta_i} \mathbf{C}^{-1}\right) B$$

1898 dimensions
$$\longrightarrow$$
 6 dimensions
(# of θ_{cosmo})

*Tegmark+(1997), Heavens+(2000), Alsing+(2018), Gualdi+(2018, 2019)

we can do better than PCA compression by **maximizing the Fisher information** (KL/MOPED/score)

even with N_{mock} < 4000 we can extract *most* of the constraining power of the bispectrum with KL compression

 $B(k_1, k_2, k_3 < 0.5 \ h/Mpc)$ is 1898 dimensional theoretical limitations on nonlinear scales systematic effects we can dramatically reduce the dimensionality of *B* while exploiting most of its constraining power with *clever data compression*

 $B(k_1, k_2, k_3 < 0.5 h/Mpc)$ is 1898 dimensional

theoretical limitations on nonlinear scales

systematic effects

in standard cosmological parameter inference, we infer the posteriors — probability of θ_{cosmo} given some measurement x

 $p(\theta \mid x) \propto p(x \mid \theta) p(\theta)$

in standard cosmological parameter inference, we infer the posteriors — probability of θ_{cosmo} given some measurement x

 $p(\theta \mid x) \propto p(x \mid \theta) p(\theta)$ likelihood

in standard cosmological parameter inference, we infer the posteriors — probability of θ_{cosmo} given some measurement x

$$p(\theta \mid x) \propto p(x \mid \theta) p(\theta)$$

$$p(x|\theta) = \frac{1}{(2\pi)^{d/2}\sqrt{\det \mathbf{C}}} \exp\left[\frac{1}{2}(x - \operatorname{model}(\theta))^T \mathbf{C}^{-1}(x - \operatorname{model}(\theta))\right]$$

which we sample using some analytic likelihood with Monte Carlo method

standard cosmological parameter inference **assumes**:

$$p(x \mid \theta) = \frac{1}{(2\pi)^{d/2} \sqrt{\det \mathbf{C}}} \exp \left[\frac{1}{2} (x - \operatorname{model}(\theta))^T \mathbf{C}^{-1} (x - \operatorname{model}(\theta)) \right]$$

a Gaussian likelihood

standard cosmological parameter inference **assumes**:

$$p(x \mid \theta) = \frac{1}{(2\pi)^{d/2} \sqrt{\det \mathbf{C}}} \exp \left[\frac{1}{2} (x - \operatorname{model}(\theta))^T \mathbf{C}^{-1} (x - \operatorname{model}(\theta)) \right]$$

a Gaussian likelihood, *some perturbation theory model*

standard cosmological parameter inference **assumes**:

$$p(x \mid \theta) = \frac{1}{(2\pi)^{d/2} \sqrt{\det \mathbf{C}}} \exp \left[\frac{1}{2} (x - \operatorname{model}(\theta))^T \mathbf{C}^{-1} (x - \operatorname{model}(\theta))\right]$$

a Gaussian likelihood, some perturbation theory model, *systematics corrected in the measurement*

Gaussian assumption relies on **central limit theorem** — breaks down on low S/N regimes

Scoccimarro (2000)

are limited to the *linear regime*

Chudaykin & Ivanov (2019)

are limited to the *linear regime* — can't exploit the *constraining power on nonlinear regimes*

Chudaykin & Ivanov (2019)

e.g. fiber collisions were difficult to correct in BOSS P_{ℓ}

Hahn+(2017)

e.g. fiber collisions were difficult to correct in BOSS P_{ℓ} — even **harder** for the bispectrum

Hahn+(2017)

likelihood-free inference provides an alternative parameter inference framework that

makes no assumptions on the likelihood

extends to nonlinear regimes

systematics can be included in the forward model

consider the joint distribution $p(\text{data}, \theta)$ for 1D data and 1D θ

from $p(\text{data}, \theta)$ we can get both the posterior and likelihood:

from $p(\text{data}, \theta)$ we can get both the posterior and likelihood: $p(\text{data}, \theta)$ conditioned on $\theta' =$ **likelihood**

from $p(\text{data}, \theta)$ we can get both the posterior and likelihood: $p(\text{data}, \theta)$ conditioned on data' = posterior

likelihood-free inference are methods that use *forward modeled simulations* to estimate the posterior

sample θ' from the prior $p(\theta)$ and run the simulation on every θ'

sample θ' from the prior $p(\theta)$ and run the simulation on every θ'

only keep simulations *close* to the observations

only keep simulations *close* to the observations

the posterior can be approximated from these simulations

more efficiently ABC using **summary statistics** (*e.g.* ξ , w_p , P_{ℓ} , B) and better sampling (*e.g. population monte carlo*)

Hahn+(2017) — HOD analysis using **ABC-PMC** with 2PCF and *group multiplicity function*

ABC throws out most of the simulations

each simulation is *a sample drawn from* $p(data, \theta)$

each simulation is *a sample drawn from* $p(\text{data}, \theta)$, estimating $p(\text{data}, \theta)$ is a **density estimation** problem

e.g. kernel density estimation, Gaussian mixture models, normalizing flows

Hahn (2019b) — can we solve the density estimation problem *using simulations for estimating the covariance matrix?*

Hahn (2019b) — can we solve the density estimation problem *using simulations for estimating the covariance matrix?*

Beutler+(2017) RSD analysis using BOSS DR12 $P_{\ell}(k)$ — 4000 mocks

Sinha+(2017) HOD analysis using SDSS DR7 $\zeta(N)$ — 20,000 mocks
in both analyses we have **1000s** $p(\text{data}, \theta)$ **samples** at θ_{fid}

in both analyses we have **1000s** $p(\text{data}, \theta)$ **samples** at θ_{fid} so we can use the mocks to directly estimate the $p(\text{data} | \theta)$ distribution

in Sinha+(2017) we have 20,000 mocks for an 8D $\zeta(N)$ likelihood distribution — *Gaussian Mixture Model*

$$p(\zeta \mid \theta) = \sum_{i=1}^{k} \pi_i \mathcal{N}(x; \theta_i)$$

in Beutler+(2017) we have 4,000 mocks for an 37D $P_{\ell}(k)$ likelihood distribution — *independent component analysis*

$$p(P_{\ell} \mid \theta) = \prod_{n=1}^{37} p_{x_n^{\text{IC}}}(x)$$

37D distribution
$$\longrightarrow$$
 37 independent
1D distributions

density estimation $\zeta(N)$ and $P_{\ell}(k)$ likelihoods are **more accurate** than the standard likelihoods

Hahn+(2019b)

non-Gaussianity of the $P_{\ell}(k)$ likelihood impacts the Beutler+(2017) posteriors — 0.44 σ shift in $f\sigma_8$ constraints

likelihood-free inference is possible with ~1000s of simulations!

Hahn+(2019b)

still only the *tip of the LFI iceberg!*

DELFI with NDE (Alsing+2019) ABC with Conditional Density Estimation (Izbicki+2018) Sequential Neural Posterior Estimation (Lueckmann+2019) Bayesian Optimization LFI (Gutmann & Corannder 2016) Inference Aware Neural Optimization (de Castro & Dorigo 2018)

. . .

 $D(k_1, k_2, k_3 < 0.5 h/Mpc)$ is 1000 dimensional

theoretical limitations on nonlinear scales systematic effects

systematic effects

LFI is *fully simulation-based* so we can **probe nonlinear scales with N body simulations**

LFI is *fully simulation-based* so we can probe nonlinear scales with *N* body simulations and **forward model systematics**

next: *B* BOSS reanalysis with *data* compression and *likelihood*free inference to constrain M_{ν} next: *B* BOSS reanalysis with *data compression* and *likelihood*free inference to constrain M_{ν} then to DESI and PFS

all the forecasts were for a 1 $h^{-3}Gpc^3$ volume

Hahn+(2021)

DESI forecasts

BGS — $V_{BGS} = 3.44 \ (h^{-1}\text{Gpc})^3$	$\sigma_{M_{ u}}$
$P_{\ell} \ [k_{\rm max} = 0.5]$	0.18 eV
$P_{\ell} + B_0 \ [k_{\rm max} = 0.5]$	0.038 eV
$P_{\ell} + B_0 [k_{\text{max}} = 0.5] + Planck$	0.029 eV

$DESI - V_{DESI} \sim 50 \ (h^{-1} \mathrm{Gpc})^3$	
$P_{\ell} [k_{\max} = 0.5]$	0.047 eV
$P_{\ell} + B_0 \ [k_{\max} = 0.5]$	0.010 eV
$P_{\ell} + B_0 [k_{\text{max}} = 0.5] + Planck$	0.0095 eV

**Planck* + DESI $\sim 0.02 \,\text{eV}$

DESI forecasts

BGS — $V_{BGS} = 3.44 \ (h^{-1}\text{Gpc})^3$	$\sigma_{M_{ u}}$
$P_{\ell} [k_{\max} = 0.5]$	0.18 eV
$P_{\ell} + B_0 \ [k_{\rm max} = 0.5]$	0.038 eV
$P_{\ell} + B_0 [k_{\text{max}} = 0.5] + Planck$	0.029 eV

DESI —
$$V_{\text{DESI}} \sim 50 \ (h^{-1}\text{Gpc})^3$$
 $P_{\ell} \ [k_{\text{max}} = 0.5]$ $0.047 \,\text{eV}$ $P_{\ell} + B_0 \ [k_{\text{max}} = 0.5]$ $0.010 \,\text{eV}$ $P_{\ell} + B_0 \ [k_{\text{max}} = 0.5] + Planck$ $0.0095 \,\text{eV}$

*Planck + DESI

 $\sim 0.02 \,\mathrm{eV}$

 $> 4\sigma$ distinction between normal (0.057 eV) or inverted (0.097 eV) hierarchies

DESI forecasts

BGS — $V_{BGS} = 3.44 \ (h^{-1}\text{Gpc})^3$	$\sigma_{M_{ u}}$
$P_{\ell} [k_{\max} = 0.5]$	0.18 eV
$P_{\ell} + B_0 \ [k_{\rm max} = 0.5]$	0.038 eV
$P_{\ell} + B_0 [k_{\text{max}} = 0.5] + Planck$	0.029 eV

DESI —
$$V_{\text{DESI}} \sim 50 \ (h^{-1}\text{Gpc})^3$$
 $P_{\ell} \ [k_{\text{max}} = 0.5]$ $0.047 \, \text{eV}$ $P_{\ell} + B_0 \ [k_{\text{max}} = 0.5]$ $0.010 \, \text{eV}$ $P_{\ell} + B_0 \ [k_{\text{max}} = 0.5] + Planck$ $0.0095 \, \text{eV}$ *Planck + DESI

DESI will have much *higher number densities* than our forecast

the **Molino Suite** — *75,000 publicly available* galaxy mocks to quantify information content of any observable!

the *galaxy bispectrum* significantly improves parameter constraints $\gtrsim 3 \times tighter \Omega_m, \Omega_b, h, n_s, \sigma_8 ; \gtrsim 5 \times tighter M_{\nu}$

there's significant constraining power in the nonlinear regime

with **likelihood-free inference** we can exploit the *full constraining* power of the bispectrum to constrain M_{ν}