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Galileo Galilei

“The book of Nature is

written in the language of 

Mathematics”



In Theoretical Physics:

� Unified Field Theory — early attempts by Albert Einstein 
to unify General Relativity (gravity) with Electromagnetism

� Standard Model describes 3 out of 4 known forces of 
nature: Electromagnetic, Weak & Strong (spectacular 
experimental success but some questions remain)

� Grand Unified Theory (GUT) — an attempt to merge 
these forces into a single unified force

� Theory of Everything (TOE) — unifying all forces



“The intellect seeking after 
an integrated theory 
cannot rest content with 
the assumption that there 
exist two distinct fields 
totally independent of 
each other by their 
nature.”

(Nobel Lecture, 1923)



Mathematics & Physics
� Physical theories get updated in time.

� Mathematical theories appear to be objective, 
necessary, and timeless.

� Physics describes a Universe. But what does Math 
describe? There are many concepts that we don’t 
currently find in the world around us. In what sense 
do they exist?

� So, what could Unification mean in Mathematics?



Leo Tolstoy “Anna Karenina”



Pythagoras Theorem



Platonic world of
mathematical ideas?

� Pythagoras theorem meant the same thing to 
Pythagoras 2500 years ago as it does to us today, 
and it will mean the same 2500 years from now.

� If Pythagoras had not lived, someone else would 
have come up with exactly the same theorem (and 
many have!).



Do we   discover mathematics

or do we   invent it?



Kurt Gödel

Mathematical ideas “form an

objective reality of their own, which 

we cannot create or change, but 

only perceive and describe.”



If we ever meet aliens, will they

have the same math as us?





Solaris–like intelligence



Would Solaris be able to

discover whole numbers?



Counting



But counting “similar looking” 
objects is not the only way to 

discover whole numbers!



We can discover them through 
winding



Circle wrapping onto itself



� Likewise, a sphere can

wrap onto itself multiple

times — that’s how Solaris

like consciousness can

discover whole numbers

� “Homotopy groups” (topology)



Math as a giant jigsaw puzzle



There are different continents

of Mathematics





Number Theory



Harmonic Analysis



Geometry



Langlands Program — a big project

aimed at finding common patterns in

Number Theory Harmonic Analysis

Geometry



Robert Langlands at his office at the Institute for Advanced Study, 1999
(photo: Jeff Mozzochi)



Langlands Program — building bridges 

between different continents of Mathematics



Langlands Program — building bridges 

between different continents of Mathematics

Unification — finding hidden connections

between areas of Math that seem far apart



Langlands letter to Weil

Cover page of Langlands’ letter to André Weil, 1967

(from the archive of the Institute for Advanced Study) 



We can do arithmetic modulo any number; for example, a 
prime number, such as  2, 3, 5, 7, 11, 13, …

Arithmetic modulo primes



Elliptic Curves mod p
� Cubic equation, such as

� Look for solutions modulo every prime number p

� Count the number of solutions for every prime p
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ficient in front of qm by bm. So we have b1 = 1,b2 = °2,b3 = °1,b4 = 2,b5 = 1,
etc. It is easy to compute them by hand or on a computer.

An astounding insight of Eichler was that for all prime numbers p, the
coefficient bp is equal to ap! In other words, a2 = b2,a3 = b3,a5 = b5,a7 = b7,
and so on.

Let’s check, for example, that this is true for p = 5. In this case, looking at
the generating function we find that the coefficient in front of q5 is b5 = 1. On
the other hand, we have seen that our cubic equation has 4 solutions modulo
p = 5. Therefore a5 = 5°4= 1, so indeed a5 = b5.

We started out with what looked like a problem of infinite complexity:
counting solutions of the cubic equation

y2 + y= x3 ° x2,

modulo p, for all primes p. And yet, all information about the solution to this
problem is contained in a single line:

q(1° q)2(1° q11)2(1° q2)2(1° q22)2(1° q3)2(1° q33)2(1° q4)2...

This one line is a secret code containing all information about the numbers of
solutions of the cubic equation modulo primes.

A useful analogy would be to think of the cubic equation like a sophisticated
biological organism, and its solutions as various traits of this organism. We
know that all of these traits are encoded in the DNA molecule. Likewise, all the
complexity of our cubic equation turns out to be encoded in a simple generating
function, which is like the DNA of this equation.

What’s even more fascinating is that if q is a number, whose absolute value
is less than 1, then the above infinite sum converges. We obtain a function in
q, which turns out to have a very special property, similar to the periodicity of
the familiar trigonometric functions, sine and cosine. Indeed, we know that the
sine function sin(x) is periodic with the period 2º, that is to say, sin(x+2º) =
sin(x). But then also sin(x+ 4º) = sin(x), and more generally sin(x+ 2ºn) =
sin(x) for any integer n. Think about it this way: each integer n gives rise to a
symmetry of the line: every point x on the line is shifted to x+2ºn. Therefore,
the group of all integers is realized as a group of symmetries of the line. The
periodicity of the sine function means that this function is invariant under this
group.

Likewise, the Eichler generating function of the variable q written above



Example
� Let p=5. What are the solutions?

X = 0, Y = 0   (both sides = 0)

X = 1, Y = 0   (both sides = 0)

X = 0, Y = 4   (LHS = 20, RHS = 0)

X = 1, Y = 4    (LHS = 20, RHS = 0)

� So we have 4 solutions modulo 5
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Counting Problem

prime p

2

3

5

7

11

13

number of 
solutions

4

4

4

9

10

9

a(p)=p−#

−2

−1

1

−2

1

4
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Miracle
� These numbers a(p) can be described all at once in 

the language of Harmonic Analysis!

� Namely, they are coefficients in the infinite series
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other terms, such as q(q+ q2)3, will only contain powers of q greater than 3.)
The first of these three summands does not contain q3, and each of the other
two contains q3 once. Their sum yields 2q3. We obtain in a similar way other
terms of the above series.

Analyzing the first terms of this series, we find that for n between 1 and 7,
the coefficient in front of qn is the nth Fibonacci number Fn; for example, we
have the term 13q7 and F7 = 13. It turns out that this is true for all n. For this
reason mathematicians call this infinite series the generating function of the
Fibonacci numbers.

This remarkable function can be used to give an effective formula for cal-
culating the nth Fibonacci number without any reference to the preceding Fi-
bonacci numbers.11 But even putting the computational aspects aside, we can
appreciate the value added by this generating function: Instead of giving a self-
referential recursive procedure, the generating function beholds all Fibonacci
numbers at once.

Let’s go back to the numbers ap counting the solutions of the cubic equation
modulo primes. Think of them as analogues of the Fibonacci numbers (let’s ig-
nore the fact that the numbers ap are labeled by the prime numbers p, whereas
the Fibonacci numbers Fn are labeled by all natural numbers n).

It seems nearly unbelievable that there would be a rule generating these
numbers. And yet, German mathematician Martin Eichler discovered one in
1954.12 Namely, consider the following generating function:

q(1° q)2(1° q11)2(1° q2)2(1° q22)2(1° q3)2(1° q33)2(1° q4)2(1° q44)2...

In words, this is q times the product of factors of the form (1°qa)2, with a going
over the list of numbers of the form n and 11n, where n = 1,2,3, .... Let’s open
the brackets, using the standard rules:

(1° q)2 = 1°2q+ q2, (1° q11)2 = 1°2q11 + q22, etc.,

and then multiply all the factors. Collecting the terms, we obtain an infinite
sum, which begins like this:

q°2q2 ° q3 +2q4 + q5 +2q6 °2q7 °2q9 °2q10 + q11 °2q12 +4q13 + ...

and the ellipses stand for the terms with the powers of q greater than 13.
Though this series is infinite, each coefficient is well-defined, because it is de-
termined by finitely many factors in the above product. Let us denote the coef-

=



Finding order in seeming chaos

� Denote by b(p) the coefficient in front of 
the p-th power of q in this series:

� Then     a(p) = b(p) for all primes p.
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Colossal compression of information:

Just one line of code gives us a simple rule for 
solving the counting problem, and for all primes at 
once!

Finding order in seeming chaos



Colossal compression of information:

Just one line of code gives us a simple rule for 
solving the counting problem, and for all primes at 
once!      That’s what I meant by “finding hidden 
connections.”

Finding order in seeming chaos



There is more…
So, these numbers a(p) of solutions of the 
cubic equation mod p appear as coefficients of 
the infinite series:
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=



� This infinite series actually converges if |q| < 1.

i.e. on the complex unit disc

� We get a function on the unit disc, which is called a 

modular form

� It has special transformation properties under 

the group PSL(2,Z) of symmetries of the unit disc



Symmetries of the Unit Disc



Harmonic Analysis on the circle
� Basic harmonics:   sin(nx), cos(nx),    n integer

� What they have in common: they are invariant under 
shifts

x      —>    x + 2π

� Group of symmetries is Z (integers w.r.t addition):

x      —>    x + 2πM,     M arbitrary integer

and the fundamental domain: interval [0, 2π]



Shimura-Taniyama-Weil Conjecture
� This correspondence between a cubic equation and a 

modular form has a vast generalization:

� A correspondence between elliptic curves over Q and 
modular forms (of weight 2).

� The first version of the conjecture was formulated by 
Yutaka Taniyama in 1955 at the historic Tokyo-Nikkō
Int’l Symposium on Algebraic Number Theory.

� Proved in 1995 by A. Wiles & R. Taylor (stable case).



Tokyo–Nikkō symposium, 1955



� The Shimura−Taniyama−Weil Conjecture implies

Fermat’s Last Theorem, which took 350 years to prove:

(Ken Ribet, 1986)

The equation

Xn + Yn = Zn n=3,4,5,…

has no positive integer solutions X, Y, Z

� And it’s only a tiny special case of the general Langlands
Conjectures!



Langlands Program

Difficult questions of Number Theory (such as 

counting numbers of solutions of algebraic 

equations) may be reformulated in terms of more

easily tractable questions of Harmonic Analysis.



Langlands Correspondence

Shimura-Taniyama-Weil Conjecture



A twist: Langlands dual group

On the side of Number Theory we have a Lie group G

But on the side of Harmonic Analysis another Lie group 
appears:

The Langlands dual group LG

This is still a Big Mystery!



Dynkin Diagrams



Rosetta Stone of Math
� Andre Weil: letter to his sister, Simone Weil, written 

from prison in 1940.

� The role of analogy in mathematics. Specifically, 
between these 3 areas:

� Number Theory

� Curves over finite fields

� Riemann surfaces



Riemann Surfaces



Rosetta Stone

Number 
Theory

Curves over 
finite fields

Riemann  
surfaces



Andre Weil: “My work consists in deciphering a trilingual 
text; of each of the three columns I have only disparate 
fragments; I have some ideas about each of the three 
languages: but I also know that there are great differences in 
meaning from one column to another... In the several years I 
have worked at it, I have found little pieces of the 
dictionary.”



� It turns out that the Langlands Program patterns can be 
observed throughout the 3 columns of the Rosetta stone.

� Translating them between different columns of the Rosetta 
stone helps us to better understand their meaning.

� Moreover, the same patterns also appear in quantum physics 
(specifically, in the study of the electromagnetic duality) − so 
Quantum Physics appears as the 4th column!



� It turns out that the Langlands Program patterns can be 
observed throughout the 3 columns of the Rosetta stone.

� Translating them between different columns of the Rosetta 
stone helps us to better understand their meaning.

� Moreover, the same patterns also appear in quantum physics 
(specifically, in the study of the electromagnetic duality) − so 
Quantum Physics appears as the 4th column!

� Recently, with Pavel Etingof & David Kazhdan, we found a new 
“flavor” of the Langlands Program:

� Analytic Langlands Correspondence for Riemann surfaces



I will talk about this new work at the IPMU Conference

Number Theory, Strings, and Quantum Physics

May 31—June 5, 2021

Please tune in! J




