Vector mesons on the wall

Ryutaro Matsudo

KEK Theory Center

February 24, 2021

In collaboration with Ryuichiro Kitano

Seminar at IPMU

arXiv:2011.14637

Ryutaro Matsudo (KEK)

Vector mesons on the wall

Practice

- At large N_c , $U(1)_A$ is restored and η' is considered as the Goldstone boson.
- Consider a monopole for the baryon number symmetry $U(1)_B$ surrounded by a domain wall for η' .
- An 't Hooft anomaly for $U(1)_A \times U(1)_B$ induces the WZW term

$$\frac{N_f}{8\pi^2 N_c} \eta' (dA_B)^2.$$

- Witten effect implies the object has the baryon charge $B = N_f/N_c$, which is inconsistent with the Dirac quantization condition.
- The puzzle is originated from a mixed 't Hooft anomaly involving θ periodicity and the global symmetry. To solve the puzzle we need something on the wall.

イロト イロト イヨト イヨト

Overview

• We also consider the η' string, that is, the domain wall with a boundary, which is called a pancake. We confirm that the object can be a baryon as proposed in Ref. [Z. Komargodski (2018)]:

= Baryon with spin
$$N_c/2$$

- We find that the vector mesons play an important role on the pancake.
- A new understanding of the duality between the vector mesons and the gluons is obtained.
- The effective theory obtained gives a picture of the chiral phase transitions at finite temperature.

イロト イヨト イヨト

Outline

 $\ \ \, {\rm I\! D} \ \, {\rm The \ effective \ theory \ for \ \ } \eta'$

- 2 The effective theory on the pancake
- 3 Coupling of the vector mesons to the wall

Physical implications

-

・ロト ・日下・ ・ ヨト・

Outline

$\ \ \, {\rm I\! D} \ \, {\rm The \ effective \ theory \ for \ \ } \eta'$

2 The effective theory on the pancake

3 Coupling of the vector mesons to the wall

Physical implications

The effective action for η'

We consider large- N_c QCD coupled with N_f massless fermions,

$$\mathcal{L} = \frac{N_c}{4\lambda^2} |f|^2 + iN_c \bar{\psi} D \psi + i\theta \frac{1}{8\pi^2} \operatorname{tr} f^2.$$

The large- N_c argument implies that the effective Lagrangian for η' is

$$\mathcal{L}_{\eta'}^{\text{eff}} = \frac{N_f f_{\pi}^2}{8} |d\eta'|^2 + \frac{f_{\pi}^2}{8N_f} m_{\eta'}^2 \min_{n \in \mathbb{Z}} (N_f \eta' + \theta + 2\pi n)^2,$$

$$m_{\eta'}^2 = \mathcal{O}(1/N_c), \quad f_{\pi}^2 = \mathcal{O}(N_c),$$

$$n = 0$$

• The potential has a multi-branch structure, which means that some heavier fields change when η' crosses $N_f \eta' + \theta = \pi$.

• η' is 2π -periodic because under $U(1)_L$, $\psi \to e^{i\alpha P_L}\psi$, it changes as $\eta' \to \eta' + \alpha$.

A D > A B > A B > A

Coupling of the background fields

Let us consider how to couple the background fields to η' . We introduce the $SU(N_f)_V$ and $U(1)_V$ background fields A_f , A_V through the covariant derivative

$$D\psi = (d - ia - iA_f - iA_V)\psi.$$

For $U(1)_A$ transformations to compensate constant shifts of the θ , we add the counter term as

$$\mathcal{L} = \frac{1}{2g^2} |f|^2 + i\bar{\psi} D \psi + i\theta \frac{1}{8\pi^2 N_f} (N_f \operatorname{tr} f^2 + N_c \operatorname{tr} F_f^2 + N_c N_f F_V^2).$$

Because the heta dependence is compensated by the shift of η' , there should be the term

$$\mathcal{L}_{\text{topo}}^{\text{eff}} = i(N_f \eta' + \theta) \frac{1}{8\pi^2 N_f} (N_c \operatorname{tr} F_f^2 + N_c N_f F_V^2)$$

However, by considering carefully the effect of the division part of the global symmetry we find that this term has a problem.

イロン イロン イヨン イヨン

The division part of the global symmetry

The global symmetry is [Y. Tanizaki (2018)]

 $\frac{SU(N_f)_L \times SU(N_f)_R \times U(1)_V}{\mathbb{Z}_{N_c} \times (\mathbb{Z}_{N_f})_V}$

The division part means that the following elements of $SU(N_c) \times SU(N_f)_L \times SU(N_f)_R \times U(1)_V$ acts on the fermion in the same way:

 $(U_c, U_L, U_R, U_V) \sim (e^{-i2\pi/N_c} U_c, e^{-i2\pi/N_f} U_L, e^{-i2\pi/N_f} U_R, e^{i(2\pi/N_c + 2\pi/N_f)} U_V).$

Due to the division part, the background and dynamical gauge fields can have fractional instanton charges.

Fractional instantons

The easiest way to see how the instanton numbers become fractional is as follows:

• Let the space time be $S^2 \times S^2$, and place the monopole "inside" each S^2 .

- The instanton charge is roughly the product of the monopole charges.
- We focus on the subgroup $U(1)_V/\mathbb{Z}_c$. It is convenient to regard $a + A_V \mathbf{1}$ as the $U(N_c) = [SU(N_c) \times U(1)_V]/\mathbb{Z}_{N_c}$ gauge field.
- The minimal monopole with respect to the U(1) subgroup $(e^{i\phi}, 1..., 1)$ of $U(N_c)$ is (θ, φ) : spherical coordinates of S^2)

$$\frac{1}{2\pi}(f+F_V\mathbf{1}) = \operatorname{diag}(1,0,\ldots,0)\frac{\sin\theta d\theta d\varphi}{4\pi}.$$

It can be decomposed into $SU(N_c)$ part and $U(1)_V$ part as

$$\frac{1}{2\pi}f = \operatorname{diag}\left(\frac{N_c - 1}{N_c}, -\frac{1}{N_c}, \dots, -\frac{1}{N_c}\right)\frac{\sin\theta d\theta d\varphi}{4\pi},$$
$$\frac{1}{2\pi}F_V = \frac{1}{N_c}\frac{\sin\theta d\theta d\varphi}{4\pi}.$$

• In addition, we place a monopole inside another S^2 in the same way. Then the fractional instanton is obtained:

$$\frac{1}{8\pi^2} \int \operatorname{tr} f^2 = 1 - \frac{1}{N_c}, \quad \frac{1}{8\pi^2} \int F_V^2 = \frac{1}{N_c^2}. \qquad \underbrace{\left(\begin{array}{c} & & \\ &$$

Note that $\int {\rm tr}(f+F_V {\bf 1})^2/(8\pi^2)$ is an integer.

• Now we compare the θ terms in QCD and \mathcal{L}_{topo}^{eff} in the effective theory:

$$\begin{split} \mathcal{L}_{\theta} &= i\theta \frac{1}{8\pi^2 N_f} (N_f \operatorname{tr} f^2 + N_c \operatorname{tr} F_f^2 + \frac{N_c N_f F_V^2}{N_f F_V^2}), \\ \mathcal{L}_{\text{topo}}^{\text{eff}} &= i (N_f \eta' + \theta) \frac{1}{8\pi^2 N_f} (N_c \operatorname{tr} F_f^2 + N_c N_f F_V^2). \end{split}$$

In QCD, θ is 2π periodic, however, in the effective theory θ is not 2π periodic, because there is not the gluon field.

INCONSISTENT!

• Also, we see that the 2π periodicity of η' is lost. Because η' is introduced as 2π -periodic scalar, any non-renormalized expectation value becomes zero in this case. In other words, we cannot place the monopole in the effective theory. This contradicts with QCD's feature.

イロト イヨト イヨト イヨト

How to cure the pathology

We need to modify the effective action:

- The multi-branch structure of the η' potential can be used.
- The η' potential (including θ) has several branches labeled by n. When θ changes from 0 to 2π , the branch changes from n = 0 to n = -1.

 \bullet For example, if we add $\underline{the \ term}$ to $\mathcal{L}_{\rm topo}^{\rm eff}$

$$i(N_f \eta' + \theta) \frac{1}{8\pi^2 N_f} (N_c \operatorname{tr} F_f^2 + N_c N_f F_V^2) + \underbrace{i2\pi n \frac{N_c}{8\pi^2} F_V^2}_{R_f^2},$$

the periodicity seems to be recovered.

• However, there arises another problem for other background monopoles.

A D > A B > A B > A

Consider other background monopoles:

$$\frac{1}{2\pi}F_V = \frac{1}{N_c}\frac{\sin\theta_1d\theta_1d\varphi_1}{4\pi} + \frac{1}{N_f}\frac{\sin\theta_2d\theta_2d\varphi_2}{4\pi}, \quad f = \dots, \quad F_f = \dots,$$
$$\Rightarrow \quad \frac{1}{8\pi^2}\int \operatorname{tr} f^2 = 0, \quad \frac{1}{8\pi^2}\int \operatorname{tr} F_f^2 = 0, \quad \frac{1}{8\pi^2}\int F_V^2 = \frac{1}{N_cN_f}.$$

In QCD, the 2π -periodicity of θ is violated,

$$i\theta \frac{1}{8\pi^2 N_f} (N_f \operatorname{tr} f^2 + N_c \operatorname{tr} F_f^2 + \frac{N_c N_f F_V^2}{N_f F_V}).$$

However in the effective theory, if one adds the term, the periodicity is NOT violated:

$$i(N_f \eta' + \theta) \frac{1}{8\pi^2 N_f} (N_c \operatorname{tr} F_f^2 + N_c N_f F_V^2) + \underbrace{i2\pi n \frac{N_c}{8\pi^2} F_V^2}_{0 \text{ does not change under } (\theta, n) \to (\theta + 2\pi, n - 1).$$

$$\underbrace{\text{INCONSISTENT!}}_{0 \text{ for } \pi - 2\pi} \underbrace{N_f \eta' + \theta}_{0$$

does not

• • • • • • • • • • • •

 In order for the effective theory to be consistent with QCD for both cases by adding the term

$$\mathcal{L}_{\theta} = i\theta \frac{1}{8\pi^{2}N_{f}} (N_{f} \operatorname{tr} f^{2} + N_{c} \operatorname{tr} F_{f}^{2} + N_{c} N_{f} F_{V}^{2}),$$

$$\mathcal{L}_{\text{topo}}^{\text{eff}+} = i(N_{f} \eta' + \theta) \frac{1}{8\pi^{2}N_{f}} (N_{c} \operatorname{tr} F_{f}^{2} + N_{c} N_{f} F_{V}^{2}) + \underbrace{2\pi i n \frac{N_{c} l}{8\pi^{2}} F_{V}^{2}}_{8\pi^{2}},$$

it has to be satisfied that

$$1 - l/N_c = R, \quad l/N_f = J,$$

$$\Rightarrow N_c R - N_f J = 1 \quad \text{for } R, J \in \mathbb{Z}.$$

It can be satisfied only if $gcd(N_c, N_f) = 1$.

 For any choice of the counter θ terms, the θ periodicity is violated at least one of the two cases if gcd(N_c, N_f) ≠ 1 (an anomaly involving θ-periodicity and G_{sub}
 [C. Cordova, et al. (2020)]). The above result is a consequence of the anomaly.

For $gcd(N_c, N_f) \neq 1$, we need to introduce two-form $\mathbb{Z}_{N_{c,f}}$ background gauge fields.

イロン イロン イヨン イヨン

Two-form \mathbb{Z}_N gauge fields

The two-form $\mathbb{Z}_{N_{c,f}}$ background gauge fields are defined as a pair $(B_{c,f}^{(2)}, \widehat{A}_c)$ of U(1) two-form and one-form gauge fields that satisfy constraints,

$$N_c B_{c,f}^{(2)} = d\widehat{A}_{c,f},$$

where the normalization is given as

$$\int d\widehat{A}_{c,f} \in 2\pi\mathbb{Z}.$$

A one-form gauge transformation acts as

$$B_{c,f}^{(2)} \to B_{c,f}^{(2)} + d\lambda_{c,f}^{(1)}, \quad \widehat{A}_{c,f} \to \widehat{A}_{c,f} + N_{c,f}\lambda_{c,f}^{(1)}$$

We decompose A_V using these as

$$A_V = \tilde{A}_V + \frac{1}{N_c}\hat{A}_c + \frac{1}{N_f}\hat{A}_f, \quad \int d\tilde{A}_V \in 2\pi\mathbb{Z}.$$

 $ilde{A}_V$ transforms under one-form gauge transformation as

$$\tilde{A}_V \to \tilde{A}_V - \lambda_c^{(1)} - \lambda_f^{(1)}$$

イロト イヨト イヨト

The fractional part is carried by $(B_c^{(2)}, \widehat{A}_c)$ and $(B_f^{(2)}, \widehat{A}_f)$. Thus

$$\frac{N_c}{8\pi^2} \int (B_c^{(2)})^2 = -\frac{1}{8\pi^2} \int \operatorname{tr}(f^2) \mod 1.$$

Note that the left hand side is only determined up to addition by an integer due to the one-form gauge transformation. The effective theory becomes consistent with QCD in the both cases by adding <u>the term</u>:

$$\mathcal{L}_{\text{topo+}}^{\text{eff}} = i(N_f \eta' + \theta) \frac{1}{8\pi^2 N_f} (N_c \operatorname{tr} F_f^2 + N_c N_f F_V^2) - \frac{2\pi i n \frac{N_c}{8\pi^2} (B_c^{(2)})^2}{8\pi^2}.$$

The term plays the role in the gluon contribution in the θ term of QCD:

$$\mathcal{L}_{\theta} = i\theta \frac{1}{8\pi^2 N_f} (N_f \operatorname{tr} f^2 + N_c \operatorname{tr} F_f^2 + N_c N_f F_V^2).$$

It seems OK, but...

イロト イヨト イヨト

The necessity of a dynamical field on the wall

If one considers a domain wall, there appears a problem:

$$\begin{array}{c} \eta' = 2\pi k/N_f \\ n = -k \\ X_4 \end{array} \quad n = 0$$

The term is not one-form-gauge invariant:

$$2\pi i \frac{kN_c}{8\pi^2} \int_{X_4} (B_c^{(2)})^2 \to \ldots + 2\pi i \frac{k}{8\pi^2} \int_{\partial X_4} (2\lambda_c^{(1)} d\hat{A}_c + N_c \lambda_c^{(1)} d\lambda_c^{(1)}).$$

We need a theory with a \mathbb{Z}_{N_c} one-form symmetry that has an anomaly on the domain wall. A candidate is a $U(k)_{-N_c}$ CS theory,

$$\begin{split} &i\frac{1}{4\pi}\int_{\partial X_4}(-N_c\operatorname{tr}(cdc-i\frac{2}{3}c^3)+2\operatorname{tr}(c)d\widehat{A}_c), \quad c\in\mathfrak{u}(k),\\ &c\to c-\lambda^{(1)}\mathbf{1}, \quad \widehat{A}_c\to\widehat{A}_c+N_c\lambda^{(1)}. \end{split}$$

Ryutaro Matsudo (KEK)

\boldsymbol{c} as a dual gluon

Final answer: Add the term

$$\mathcal{L}_{\text{topo+}}^{\text{eff}} = i(N_f \eta' + \theta) \frac{1}{8\pi^2 N_f} (N_c \operatorname{tr} F_f^2 + N_c N_f F_V^2) - \frac{2\pi i n \frac{N_c}{8\pi^2} (B_c^{(2)})^2}{8\pi^2}$$

and put the CS theory on the domain wall corresponding to $\eta':2\pi k/N_f\rightarrow 0:$

$$i\frac{1}{4\pi}\int_{\partial X_4}(-N_c\operatorname{tr}(cdc-i\frac{2}{3}c^3)+2\operatorname{tr}(c)d\widehat{A}_c),\quad c\in\mathfrak{u}(k).$$

Roughly speaking, the situation can be explained as follows:

- The η' domain wall corresponds to the interface of θ from $2\pi k$ to 0.
- In the UV theory, there is a $SU(N_c)_k$ CS theory on the interface of θ :

$$-i\frac{1}{8\pi^2}\int d\theta \operatorname{tr}(ada-i\frac{2}{3}a^3).$$

- If we assume that the confinement in the four-dimensional bulk does not affect the theory on the wall, the gluons remain on the wall forming the CS theory at low energy.
- $U(k)_{-N_c}$ is the level-rank dual of $SU(N_c)_k$, and thus c can be regarded as a dual gluon field.

Resolution of the puzzle

On the domain wall,

$$\frac{1}{4\pi}\int (-N_c\operatorname{tr}(cdc-i\frac{2}{3}c^3)-2\operatorname{tr}(c)d\widehat{A}_c).$$

• The Gauss law constraint gives

$$dc - ic^2 = \frac{1}{N_c} d\hat{A}_c \mathbf{1}$$

- Due to the monopole inside the wall, it is satisfied that $\int d\hat{A}_c = 2\pi.$
- The constraint cannot be satisfied because $\int d \operatorname{tr} c \in 2\pi \mathbb{Z}$.
- Any non-normalized expectation value is zero.
- The object disappears (and the domain wall and the monopole exist separately.)

Outline

1) The effective theory for η'

2 The effective theory on the pancake

3 Coupling of the vector mesons to the wall

Physical implications

イロト イヨト イヨト イヨト

Domain walls bounded by strings

- We consider domain walls corresponding to a jump from $\eta' = 0$ to 2π .
- This type of domain walls could be bounded by a string while the pion fields are kept fixed, because $\eta' = 0 \sim 2\pi$.
- η' winds around the string, and η' is ill-defined at the core of the string. In the full theory, it is expected that this singularity is regulated by restoring the chiral symmetry at the core.
- Note that the bulk term disappears for the domain wall with $k = N_f$,

$$2\pi i \frac{1}{8\pi^2} \int_{X_4} (-N_c (B_c^{(2)})^2 + N_c \operatorname{tr} F_f^2 + N_c N_f F_V^2) \in 2\pi i \mathbb{Z},$$

Thus it can have a boundary.

= Baryon with spin
$$N_c/2$$

イロト イヨト イヨト

Coupling between the backgrounds and the wall

The term

$$\mathcal{L}_{\text{topo}}^{\text{eff}} = i(N_f \eta' + \theta) \frac{1}{8\pi^2 N_f} (N_c \operatorname{tr} F_f^2 + N_c N_f F_V^2).$$

gives the CS term for the background on the wall as

$$\frac{1}{4\pi} \int_{M_3} \left(-N_c \operatorname{tr}(cdc - i\frac{2}{3}c^3) + N_c \operatorname{tr}(\mathcal{A}_f d\mathcal{A}_f - i\frac{2}{3}\mathcal{A}_f^3) \right),$$

$$c \in \mathfrak{u}(N_f), \quad \mathcal{A}_f = A_V \mathbf{1} + A_f \in \mathfrak{u}(N_f).$$

However, the second term violate the gauge symmetry for \mathcal{A}_f because of the boundary. This is recovered by

adding the term at the boundary

$$\frac{N_c}{4\pi}\int_{\partial M_3} \operatorname{tr}(\mathcal{A}_f c), \text{ and,}$$

(2) imposing the boundary condition for c as (t: a specific component)

$$c_t - \mathcal{A}_t^f = 0.$$

To maintain this condition c transforms as $U(N_f)_V$ gauge field on the boundary

Ryutaro Matsudo (KEK)

イロン イロン イヨン イヨン

Chiral version of WZW model and baryons

- By integrating out c_t, we obtain the gauss law constraint, *f̃_c* = 0, the solution of which is *c̃* = *iW d̃W*⁻¹, *W* ∈ *U*(N_f), where tilde denotes the other components.
- Then the action on the wall reduces to

$$\begin{split} &\frac{N_c}{4\pi} \int_{\partial M_3} \operatorname{tr} \left(W \partial_y W^{-1} W \partial_t W^{-1} - 2iW \partial_y W^{-1} \mathcal{A}_t^f + \mathcal{A}_y^f \mathcal{A}_t^f \right) dy dt \\ &+ \frac{N_c}{4\pi} \int_{M_3} \operatorname{tr} \left(\frac{1}{3} (W dW^{-1})^3 - \mathcal{A}_f d\mathcal{A}_f + i \frac{2}{3} \mathcal{A}_f^3 \right). \end{split}$$

- W transforms under $U(N_f)_V$ as $W \to g_f W$ at the boundary.
- The baryon charge is $(Y_2: a \text{ time slice of } M_3)$

$$B = \frac{1}{2\pi} \int_{\partial Y_2} \operatorname{tr}(\mathcal{A}_f - \mathbf{i}W dW^{-1}) - \frac{1}{2\pi} \int_{Y_2} \operatorname{tr}(\mathcal{F}_f),$$

The contributions from the background cancels (in the gauge without Dirac strings). \Rightarrow baryon number = winding number

• The baryon creation operator: $\rho_{\text{Sym}^{N_c}(\Box)}(W)$ [Z. Komargodski (2018)]. The baryon charge: 1, The flavour representation: $\text{Sym}^{N_c}(\Box)$.

イロン イヨン イヨン イヨン 三日

Outline

1) The effective theory for η'

2 The effective theory on the pancake

3 Coupling of the vector mesons to the wall

Physical implications

イロト イヨト イヨト イヨ

What happens when we introduce A_L, A_R ?

Let us consider how the $SU(N_f)_{L,R}$ background fields $A_{L,R}$ couple to the domain wall. At large N_c , the global symmetry is $U(N_f)_L \times U(N_f)_R$. An 't Hooft anomaly implies the coupling between η' and $A_{L,R}$ as

$$\frac{N_c}{8\pi^2}\eta'(F_L^2 + F_R^2)/2.$$

Thus on the wall there appears

$$\frac{N_c}{4\pi} \int_Y [\operatorname{tr}(A_L dA_L - i\frac{2}{3}A_L^3) + \operatorname{tr}(A_R dA_R - i\frac{2}{3}A_R^3)]/2$$

- When the domain wall has the boundary, how to restore the gauge invariance for A_L and A_R is not trivial.
- Naively, it seems that we can do it by using U. However, U is not well-defined at the boundary, and we cannot use it.
- This problem can be solved by introducing the vector mesons as the gauge field for the hidden local symmetry.

The hidden local symmetry

• Let U be the $U(N_f)$ -valued field that involves the pion field and η' so that

$$\det U = \exp(i\eta').$$

• We divide U into two parts,

$$U = \xi_L^{\dagger} \xi_R,$$

and regard $\xi_{L,R} \to h \xi_{L,R}$, $h \in U(N_f)$ as the gauge symmetry.

• We introduce the gauge field v for this symmetry and its kinetic term. The covariant derivative is given as

$$D\xi_{L,R} := d\xi_{L,R} - iv\xi_{L,R} + i\xi_{L,R}\mathcal{A}_{L,R}.$$

The lowest derivative terms give the mass term for v, which is minimized when

$$\begin{aligned} v &= \frac{1}{2} (\mathcal{A}_{L}^{\xi_{L}} + \mathcal{A}_{R}^{\xi_{R}}), \\ \mathcal{A}_{L,R}^{\xi_{L,R}} &:= \xi_{L,R} \mathcal{A}_{L,R} \xi_{L,R}^{-1} + i \xi_{L,R} d \xi_{L,R}^{-1}. \end{aligned}$$

• Thanks to the mass term, v can be treated as \mathcal{A}_f roughly.

イロン イロン イヨン イヨン

Coupling to the vector mesons

Let $v\in\mathfrak{u}(N_f)$ be the vector meson field as the gauge field for the hidden local symmetry. We propose that the theory on the wall is

$$\frac{1}{4\pi}\int_{M_3}\left[N_c\operatorname{tr}\left(cdc-i\frac{2}{3}c^3\right)-N_c\operatorname{tr}\left(vdv-i\frac{2}{3}v^3\right)\right]+\frac{N_c}{4\pi}\int_{\partial M_3}\operatorname{tr}(vc),$$

which is gauge invariant in the same way.

• The coupling of v to the wall comes from the topological term,

$$\frac{N_c}{8\pi^2} \int \eta' \operatorname{tr}(f_v^2).$$

- By minimizing the mass term for v, this reproduces the previous term if we neglect the irrelevant term to $U(1)_A$ breaking.
- To maintain the symmetry under $\eta' \rightarrow \eta' + 2\pi/N_f$, the instanton charge for the vector meson field has to be a multiple of N_f when there are no background fields.

Relation to the generalized WZW term

• The possible topological terms including v is already discussed. (c.f. [M. Harada, K. Yamawaki (2003)])

$$\begin{split} \Gamma_{v} &:= -i \frac{N_{c}}{16\pi^{2}} \int_{M^{4}} \sum_{i=1}^{4} c_{i} \mathcal{L}_{i}, \\ \mathcal{L}_{1} &= \mathrm{tr}(\widehat{\alpha}_{L}^{3} \widehat{\alpha}_{R} - \widehat{\alpha}_{R}^{3} \widehat{\alpha}_{L}), \quad \mathcal{L}_{2} &= \mathrm{tr}(\widehat{\alpha}_{L} \widehat{\alpha}_{R} \widehat{\alpha}_{L} \widehat{\alpha}_{R}), \quad \mathcal{L}_{3} &= \mathrm{tr}(f_{v}(\widehat{\alpha}_{L} \widehat{\alpha}_{R} - \widehat{\alpha}_{R} \widehat{\alpha}_{L})), \\ \mathcal{L}_{4} &= \frac{1}{2} \operatorname{tr}\left(\widehat{\mathcal{F}}_{L}(\widehat{\alpha}_{L} \widehat{\alpha}_{R} - \widehat{\alpha}_{R} \widehat{\alpha}_{L}) - \widehat{\mathcal{F}}_{R}(\widehat{\alpha}_{R} \widehat{\alpha}_{L} - \widehat{\alpha}_{L} \widehat{\alpha}_{R})\right), \\ \widehat{\mathcal{F}}_{L,R} &:= \xi_{L,R} \mathcal{F}_{L,R} \xi_{L,R}^{-1}, \quad \widehat{\alpha}_{L,R} &:= \mathcal{A}_{L,R}^{\xi_{L,R}} - v \end{split}$$

- The proposed term is reproduced for $c_1 = 2/3$, $c_2 = -1/3$, $c_3 = 1$, $c_4 = 1$.
- The values are consistent with the experiments. [A. Karasik (2020)]
- The phenomenology seems to prefer the vector meson dominance for $\pi^0 \rightarrow 2\gamma$ but not to prefer that for $\gamma \rightarrow 3\pi$:
 - $\pi^0 \rightarrow \rho^0 + \omega^0 \rightarrow 2\gamma$ when $c_4 = 1$, $c_3 = c_4$
 - $\gamma \rightarrow \omega \rightarrow 3\pi$ when $c_1 c_2 + c_4 = 4/3$, $c_3 = c_4$
- $\omega \to \pi \rho \to 3\pi$ when $c_1 c_2 c_3 = 0$.
- Our consideration could explain the values of c_i .

イロト イヨト イヨト

Outline

1) The effective theory for η'

2 The effective theory on the pancake

3 Coupling of the vector mesons to the wall

Physical implications

イロト イヨト イヨト イヨト

Physical implication to the duality and the chiral phase transition

- At the edge of the pancake, c transforms in the same way as v.
- \Rightarrow This suggests that at the point where the chiral symmetry is restored, v could be regarded as the dual of the gluons because c is the level-rank dual of the gluon.
- At high temperature, η' crosses the cusp of the potential more easily and frequently. In this situation, c can propagate in the four dimensional space by creating the pancakes, and it mixed with v on the η' string. If this is correct, the pancakes can play an important role near the chiral phase transition.
- It is also interesting to consider θ winds around S^1 direction N_f times. We expect as follows:

For a small radius, θ rapidly changes and η' cannot follow.

 \Rightarrow The effective theory is a $U(N_f)_{-N_c}$ CS theory for c.

For a large radius, η' follow the change of θ .

 \Rightarrow The effective theory on the interface is a CS Higgs theory for v.

The transition can be smooth due to the creation of the pancakes. (cf. [N. Kan et al. (2019)])

Summary

- We consider large N_c QCD with N_f massless fermions.
- We show that we need a $U(N_f)_{-N_c}$ CS theory on the η' domain wall to match the anomaly involving θ periodicity and the global symmetry.
- We confirm that the η' domain wall bounded by the string can be regarded as a baryon with spin $N_c/2.$
- For the gauge invariance of the background fields at the boundary of the wall, it is concluded that the vector mesons should couple to the wall.
- At the boundary of the wall, the vector mesons should couple to the gauge field of $U(N_f)$ CS theory.

Future Works

- The effective theory we obtained can be used at the finite density, in strong magnetic field, ... The chiral soliton lattice, the quark-hadron continuity, ...
- In general, what happens on a singular object of a Goldstone boson field when there is some anomaly?