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•

•

•

Multiple different early-universe dynamics could
result in the same

?

?

? The focus of this talk: 
• What can we learn from 

structure formation?
• To what extent is an 

inversion possible?
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Phase-Space Distribution

7

homogeneity and isotropy

4

For any particle species in the universe, its properties can be described 
through its phase space distribution 𝑓(𝑝, 𝑡)

It also tells us whether a particle species is cold, warm or hot, thermal or nonthermal – especially 
important for DM. Therefore, 𝑓(𝑝, 𝑡) is the central quantity in understanding the properties of DM.

In general, 𝑓(𝑝, 𝑡) could take any reasonable functional form. Its evolution in time is governed by the 
Boltzmann equation: 

𝜕𝑓

𝜕𝑡
= 𝐻𝑝

𝜕𝑓

𝜕𝑝
+ 𝐶 𝑓 𝐻 𝑡 ≡

ሶ𝑎

𝑎
basically, two effects: (1) cosmological redshift and (2) particle interactions



Cosmological redshift in FRW universe:

𝑥 𝑡 = 𝑥 𝑡′
𝑎 𝑡

𝑎 𝑡′
𝑝 𝑡 = 𝑝 𝑡′

𝑎 𝑡′

𝑎 𝑡
If plotting 𝑓 𝑝 vs 𝑝 or 𝑝2𝑓 𝑝 vs 𝑝, the redshift will make the width of the distribution more and more narrow. 
However, notice that

𝑑 log 𝑝

𝑑𝑡
= −𝐻 𝑡

This motivates us to switch from 𝑝 to log 𝑝

𝑛 𝑡 ~ න𝑑3𝑝 𝑓 𝑝, 𝑡 ~ න𝑑𝑝 𝑝2𝑓 𝑝, 𝑡 ~ න𝑑 log 𝑝 𝑝3𝑓 𝑝, 𝑡

𝑁 𝑡 ~ 𝑛 𝑡 𝑎3 ~න𝑑 log 𝑝 (𝑎𝑝)3𝑓 𝑝, 𝑡

7 5

Time evolution
amounts to additive
shifts in log 𝑝

physical number density

comoving number density

If we plot 𝑔(𝑝, 𝑡) against log 𝑝:
• once DM is produced, area under the curve

(comoving number density) is fixed under time
evolution

• time evolution: 𝑔(𝑝, 𝑡) slides rigidly to smaller log 𝑝,
as if carried along a “cosmological conveyor belt”

We therefore define:    𝑔 𝑝, 𝑡 ≡ 𝑎3 𝑡 𝑝3𝑓 𝑝, 𝑡 𝑔 𝑝(𝑡), 𝑡 = 𝑔(𝑝 𝑡′ , 𝑡′)

Δ𝑝~𝑎−1



(log 𝑝)

Similar to dropping groceries on a conveyor belt,
DM production  depositing particles on a conveyor belt 
in the momentum space

8

Example: if deposits occur
at different times during
the cosmological history…

Nontrivial, multi-modal
distribution can result at
present time!

6
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We have seen that separate deposits 
occurring at different moments lead to 
multi-modal distribution.

Is such deposit pattern natural?
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9 7

A non-trivial DM phase-space distribution 
at late times can represent the imprint of 
complex dynamics at earlier points in the 
cosmological history.

We have seen that separate deposits 
occurring at different moments lead to 
multi-modal distribution.

Is such deposit pattern natural?

In fact, such a pattern of deposits 
can naturally arise from decays 
within a multi-state system…



Why is the DM phase-space distribution important?

It turns out that the formation of structure in the 
early universe (clusters, galaxies, etc.) is sensitive 
to the velocity of DM!

Structure formation is suppressed if DM has non-
negligible velocity and therefore deviates from 
what is expected for CDM!

In fact, the cosmic structure carries an imprint of 
the DM velocity distribution.

10 8

e.g., in the linear regime, can be reflected in 
the shape of the matter power spectrum 𝑃(𝑘).

• Studying the relation between DM phase-space distribution and large-scale 
structure enables us to learn about DM from its gravitational interaction only.

• This provides a way to learn about the dark sector even if the dark sector does 
not interact with the SM at all, except through gravity!
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• Studying the relation between DM phase-space distribution and large-scale 
structure enables us to learn about DM from its gravitational interaction only.

• This provides a way to learn about the dark sector even if the dark sector does 
not interact with the SM at all, except through gravity!
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e.g., in the non-linear regime, can be reflected in 
the shape of the halo mass function 𝑑𝑛/𝑑 log𝑀.

Why is the DM phase-space distribution important?

It turns out that the formation of structure in the 
early universe (clusters, galaxies, etc.) is sensitive 
to the velocity of DM!

Structure formation is suppressed if DM has non-
negligible velocity and therefore deviates from 
what is expected for CDM!

In fact, the cosmic structure carries an imprint of 
the DM velocity distribution.



To study the impact of non-negligible 
velocities on P(k), a standard approach 
is to define a single “free-streaming 
horizon” as a benchmark scale below 
which structure is suppressed

9

Relies on averaging, not suitable for non-trivial or multi-modal 
distributions – average velocity might NOT be able to capture 
all the features in the distribution.
In some cases, the distribution might not even contain any DM 
particle with velocity 𝑣 !

𝑘FSH ≡ න
𝑡prod

𝑡now

𝑑𝑡
𝑣 𝑡

𝑎 𝑡

−1

Let us study the linear matter power spectrum P(k) first …



We begin by considering momentum slices through our dark-matter packet, relating each slice of 
momentum p to a corresponding value 𝑘hor(𝑝).

𝑘hor 𝑝 ≡ 𝜉 න
𝑡prod

𝑡now

𝑑𝑡
𝑣(𝑡)

𝑎 𝑡

−1

Normally, 𝑘hor would be interpreted as defining the minimum value of 𝑘 which can be affected by dark 
matter in that momentum slice.

However, we shall instead take the defining relation for 𝑘hor(𝑝) as defining a mapping between the 𝑝-
variable of 𝑔(𝑝) and the 𝑘-variable of 𝑃(𝑘). 
In other words, we shall identify 𝑘hor 𝑝 with 𝑘 and thereby consider 𝑔(𝑝) as having a corresponding 
profile in 𝑘-space:

෤𝑔 𝑘 ≡ 𝑔 𝑘hor
−1 𝑘

𝑑 log 𝑝

𝑑 log 𝑘

10
Inverse of 𝑘hor 𝑝

Our approach



It then follows

𝑁 𝑡 ~ න𝑑 log 𝑝 𝑔(𝑝) = න𝑑 log 𝑘 ෤𝑔(𝑘)

Thus ෤𝑔(𝑘) describes a dark-matter distribution in 𝑘-space! 

Moreover, because this ෤𝑔(𝑘) lives in the same space as 𝑃(𝑘), these two functions can 
even be plotted together along the same axis!

Now it makes sense to ask:
Can we discover/conjecture any relation between
these two functions?

11



• No power suppression until we approach where ෤𝑔(𝑘) is concentrated
• Main observation: Larger packet Stronger suppression and steeper slope

11 12

Vary height/area with width fixed
(a complementary CDM component is added to get the total DM abundance)

Examine the relations

log-normal
distributio
n



• The amount of suppression differs, but the slope at large 𝑘 is essentially unaffected by widths!
This suggests the accumulative abundance is correlated with the slope, NOT with the net
suppression.

12 13

Vary width with average/area fixed
(a complementary CDM component is added to get the total DM abundance)



13 14

Vary relative sizes of two packets 
(two packets together carry the total DM abundance)

Does this behavior survive for more complex 𝑔(𝑝)?

As we sweep from left to right in the 𝑘-space,
• within a peak: accumulative abundance increases slope increases! 
• between peaks: no change in accumulation of abundance slope approximately constant! 

Still find accumulative abundance slope! 
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Based on our observation, our claim is that the slope of the transfer function at a
particular scale 𝑘 is related to the amount of DM particles that is able to freestream
a distance larger than ~1/𝑘,

Motivated by this observation, we define the hot-fraction function,
i.e., the fraction of DM particles that is effectively “hot” at the scale 𝒌
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Our claim can then be formulated as

Taking derivative of both sides

DM phase-space
distribution first derivative

of T2

second derivative
of T2

Once 𝜼 is known, we will be able to
resurrect the phase-space distribution!

16

some as-yet 
unknown function

logarithmic slope of 
transfer function



relation holds to very high precision!

Our final conjecture:

This allows us to “resurrect” ෤𝑔(𝑘) from the transfer function
𝑇2(𝑘)! 17
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Let's now see how these ideas play out 
in practice!

As an example, we study a model in 
which the dark sector contains many
components with many different masses 
and thus many possible decay chains.

Moreover, we assume decays within the 
dark sector are the dominant processes

How robust are our observations?



mass difference 
between products

Toy Model: Parametrization

mass difference between 
parent and products

15

In our 
analysis we 
considered 

N=9
(10 states)

Positive 𝒓  Decays with more kinetic energy
Negative 𝒓  Decays more marginal (less phase space)

Positive 𝒔  Decay products tend to have similar masses
Negative 𝒔  Decay products tend to have different masses

19

Dark ensemble consists of N+1 real scalars 𝜙𝑗 with 𝑗 = 0,1, …𝑁, and a mass spectrum:

𝑚𝑗 = 𝑚0 + 𝑗𝛿Δ𝑚

Lagrangian:

ℒ =෍

ℓ=0

𝑁
1

2
𝜕𝜇𝜙ℓ𝜕

𝜇𝜙ℓ −
1

2
𝑚ℓ
2𝜙ℓ

2 −෍

𝑖=0

ℓ

෍

𝑗=0

𝑖

𝑐ℓ𝑖𝑗 𝜙ℓ𝜙𝑖𝜙𝑗 +⋯

The trilinear coupling:

𝑐ℓ𝑖𝑗 = 𝜇𝑅ℓ𝑖𝑗
𝑚ℓ −𝑚𝑖 −𝑚𝑗

Δ𝑚

𝑟

1 +
𝑚𝑖 −𝑚𝑗

Δ𝑚

−𝑠

Θ 𝑚ℓ −𝑚𝑖 −𝑚𝑗



Tend to produce 
the lightest states
e.g., 𝜙9 → 𝜙0 + 𝜙0

Tend to produce 
light states but 
favor asymmetry
e.g., 𝜙9 → 𝜙4 + 𝜙0

Tend to 
minimize kinetic 
energy and 
symmetry
e.g., 𝜙9 → 𝜙8 + 𝜙0

Tend to minimize 
kinetic energy but 
favor symmetry
e.g. 𝜙9 → 𝜙4 + 𝜙4

38

Given the explicit Lagrangian we 
can calculate the decay widths 
from a given parent state to a 
given pair of daughter states:

𝜙ℓ → 𝜙𝑖 + 𝜙𝑗
For ℓ = 9, we have…

Increasing s

In
cr

ea
si
n
g

r

20

Toy Model: Parametrization



Deposits to the
ground state tend
to occur around
the same time

Deposits to the
ground state tend
to occur at
different times

16

The figure shows how decays 
proceed step by step from a heavy 
state to the ground state. Only 
major decay chains are shown. 

• Color of each segment measures
how fast a state is being produced,
warmer color faster production

• Timescales of a decay chain can be
inferred by inverting the “slowest
color”

Many different patterns of decay 
chains could emerge!

21

Toy Model: Decay Chains
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unimodal
distributions

multi-modal
distributions

As expected!

• Cases in which decay chains land
on the ground state at similar
timescales tend to produce
unimodal distributions

• Multi-modal distributions could
result if timescales of different
decay chains differ significantly

A rich variety of distributions
emerges!

𝑔(𝑝) is phase-space distribution w.r.t. log 𝑝

22

Toy Model: Final Phase-Space Distribution 

Numerically solve the Boltzmann 
equation assuming only the heaviest 
state is populated initially.
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Matter power spectrum 𝑃 𝑘 obtained by
feeding 𝑔 𝑝 to CLASS code

Plot the squared transfer function
𝑇2 𝑘 ≡ 𝑃(𝑘)/𝑃CDM(𝑘)

to show relative suppression

Map 𝑔 𝑝 to ෤𝑔(𝑘) by mapping 𝑝 to 𝑘hor

Rainbow colors correspond to hot-fraction
function 𝐹(𝑘): fraction of DM particles with

𝑘hor < 𝑘

The Slope of 𝑇2 𝑘 indeed
appears to correlate with 𝐹(𝑘)

23

𝑇2(𝑘)

෤𝑔(𝑘)

Linear regime: 𝑔 𝑝 → 𝑃(𝑘)



To what extent can we “resurrect” the DM phase-
space distribution from the transfer function?

Recall our conjecture…

24

Linear regime: Reconstruction Conjecture



To what extent can we “resurrect” the DM phase-
space distribution from the transfer function?

Recall our conjecture…

Blue: original DM distribution in k-space
Red: reconstruction directly from 𝑇2(𝑘)

Archaeological reconstruction is
surprisingly accurate for a variety of
possible DM distributions.
Able to resurrect the salient features of
the original distribution!

24

Linear regime: Reconstruction Conjecture
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We study the non-linear regime using the halo mass function 𝑑𝑛/𝑑 log𝑀

The halo mass function can be calculated using the Press-Schechter formalism:
 Spherical collapse model: linearly extrapolate density perturbation 𝛿( Ԧ𝑥, 𝑡), regions have collapsed

and formed DM haloes by time 𝑡 if
𝛿 Ԧ𝑥, 𝑡 > 𝛿𝑐 ≈ 1.686

 Probability that a random point 𝒙 is inside a matter clump whose 𝒎 > 𝑴 is proportional to
probability that the density fluctuation averaged on a mass scale 𝑴 is larger than 𝜹𝒄:

𝒫 𝑚 > 𝑀, 𝑡 = 2𝒫 𝛿𝑀 > 𝛿𝑐 , 𝑡, 𝑀
 Gaussian:

𝒫 𝛿𝑀 > 𝛿𝑐 , 𝑡, 𝑀 = න
𝛿𝑐

∞

𝑑𝛿𝑀
1

2𝜋𝜎2(𝑡,𝑀)
exp −

𝛿𝑀
2

2𝜎2(𝑡,𝑀)

25

Non-Linear regime: 𝑔 𝑝 → 𝑑𝑛/𝑑 log𝑀

Halo mass function can be related to the linear matter power spectrum

𝑑𝑛

𝑑log𝑀
=

ҧ𝜌

12𝜋2𝑀
𝜈 𝑀 𝜂 𝑀

𝑃 1/𝑅 𝑀

𝛿𝑐
2𝑅3(𝑀)

where 𝑀 = ҧ𝜌 ×
4𝜋

3
𝑐𝑊𝑅

3is the mass of the spherical region that collapses to 

form a halo, and 𝑘 = 1/𝑅.

Details:
relation between 𝑀 and 𝑅 depends on
window function with which the density
field is smoothed.
𝑐𝑊 ≈ 2.5, for top-hat in 𝑘-space.
𝜈 𝑀 = 𝛿𝑐

2𝜎2(𝑡𝑛𝑜𝑤, 𝑀), 

𝜂 𝑀 =
2𝜈 𝑀

𝜋
𝐴 1 − 𝜈−𝛼 𝑀 𝑒−𝜈(𝑀)/2

for a more realistic ellipsoidal collapse

i.e., number density of haloes
in [log𝑀, log𝑀 + 𝑑 log𝑀]



Following the same logic, we would like to plot the phase space distribution in the 𝑀-space. 
Recall that 

𝑘hor 𝑝 ≡ 𝜉 න
𝑡prod

𝑡now

𝑑𝑡
𝑣(𝑡)

𝑎 𝑡

−1

provides a functional map between 𝑝 and 𝑘.

Moreover, 𝑀 = ҧ𝜌 ×
4𝜋

3
𝑐𝑊𝑅

3 and 𝑘 = 1/𝑅 defines a functional map between 𝑘 and 𝑀.

Together, we obtain a functional map between 𝑝 and 𝑀:

𝑀 𝑝 ≡
4𝜋 ҧ𝜌𝑐𝑊

3

3𝜉3
න
𝑡prod

𝑡now

𝑑𝑡
𝑣(𝑡)

𝑎 𝑡

3

26

Non-Linear regime: 𝑔 𝑝 → 𝑔𝑀(𝑀)



With this functional map, we have

𝑔𝑀 𝑀 = 𝑔 𝑝
𝑑 log 𝑝

𝑑 log𝑀

and we can also similarly define the hot-fraction function in the M-space:

𝐹 𝑀 ≡
log׬ 𝑀
∞

𝑑 log𝑀′ 𝑔𝑀(𝑀′)

∞−׬
∞
𝑑 log𝑀′ 𝑔𝑀(𝑀′)

the fraction of DM particles that is capable of free-streaming out of a region that would 
collapse into a halo of mass 𝑀,

in other words, the fraction of DM particles that is effectively “hot” at the mass scale 𝑴

27

Non-Linear regime: 𝑔 𝑝 → 𝑔𝑀(𝑀)



Following a similar procedure, we define the
structure-suppression function

𝑆 𝑀 ≡
𝑑𝑛/𝑑 log𝑀

𝑑𝑛/𝑑 log𝑀 𝐶𝐷𝑀

and investigate the relation between 𝑔𝑀 𝑀
and 𝑆 𝑀 .

We find that

𝑔𝑀(𝑀)

𝒩
≈

5

14

𝑑 log 𝑆2 𝑀

𝑑 log𝑀

−
1
2 𝑑2 log 𝑆2 𝑀

𝑑 log𝑀 2

28

Non-linear regime: Reconstruction Conjecture
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We find that

𝑔𝑀(𝑀)

𝒩
≈

5

14

𝑑 log 𝑆2 𝑀

𝑑 log𝑀

−
1
2 𝑑2 log 𝑆2 𝑀

𝑑 log𝑀 2

Blue: original DM distribution in M-space
Green: reconstruction directly from 𝑆2(𝑀)

28

Non-linear regime: Reconstruction Conjecture

Once again, able to resurrect the salient
features of the original distribution!



Conclusions

• Early-universe processes leave identifiable patterns in the phase-space distribution 𝑔(𝑝) of dark 
matter.

• In particular, non-minimal dark sectors naturally give rise to non-trivial DM phase-space
distributions which are then imprinted on the cosmic structure.

• The DM phase-space distribution 𝑔(𝑝) is correlated with the observables in both the linear and
non-linear regimes such as the matter power spectrum 𝑃(𝑘) and the halo mass function
𝑑𝑛/𝑑log𝑀 through the hot-fraction function.

• We proposed two reconstruction conjectures (one for each regime) which allow us to reproduce
𝑔(𝑝). These reconstruction conjectures are simple and allow us to resurrect the salient features
of the phase-space distribution directly from 𝑃 𝑘 and 𝑑𝑛/𝑑log𝑀.

• Such approaches allow us to learn about dark-sector dynamics even if the dark sector has only 
gravitational couplings to the SM.

• The dark sectors of string theory generically include unstable Kaluza-Klein towers, thus could 
potentially lead to multi-modal distributions and non-trivial 𝑃(𝑘) and 𝑑𝑛/𝑑log𝑀. This provides 
motivation to measure/bound those observables with increased precision.

29



• A systematic study of different production mechanisms which can give rise to 
nonthermal, multi-modal distributions.

• Incorporate effects that might come from couplings to SM. These effects could 
potentially affect evolution of phase-space distributions in additional subtle ways.

• Incorporation of observational bounds (Lyman 𝛼, etc.), in progress.

• Refine reconstruction conjecture for greater accuracy.

• Conjectures for other observables.

Future Directions

30


