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Disclaimers

What I will be talking about is speculative:

e Both on the physics side

e And on the math side

However, the structures are suggestive enough

that I decided to write up some notes



Underlying Question:
How to Define QFT"



Underlying Question:
How to Define QFT"

(in such a way that it can be coupled to gravity)



Physical Discretization
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Recall...

In quantum mechanics (QM),

and quantum field theory (QFT),
we often calculate using the path integral, e.g.:

¢

QM:  (or|di) ~ q{ [do] exp(i5[¢]/h)

¢7(T)
QFT: (¢ ()|epi(7)) ~ ¢.{?>[d¢] exp(iS[¢] /)
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Recall...

In quantum mechanics and quantum field theory,

we often calculate using the path integral, e.g.:

op

(@rlPi) ~ (;[_ do] exp(iS|e]/h)

“Path Integral”, e.g.
J do(N) [ dp(N —1)... [ dp(2) [ do(1)



Recall...

In quantum mechanics and quantum field theory,

we often calculate using the path integral, e.g.:

op

(@l i) ~ (;[_ [do] exp(iS[¢]/h)

1 =+/—1€C



Recall...

In quantum mechanics and quantum field theory,

we often calculate using the path integral, e.g.:

(@5|9i) ~ [ [do] exp(iS[¢]/h)

“Action” S[¢] = | L[¢] dt
“Lagrangian” L[¢], e.g. %@2 — 1¢?



Recall...

In quantum mechanics and quantum field theory,

we often calculate using the path integral, e.g.:

Py
(@rlpi) ~ [ [do] exp(iS[¢]/h)

Planck Constant A ~ 4.2 x 1071% eV s
High Energy Units Set h =1



The “Paths”

¢ : Ryource = Riarget 18 usually not smooth

HRsource S N
et

IRtarget



Source Discretization

Lattice Approximation of Source, e.g.:

¢ . Zsource — IRta]rgoet

Slg]~ Y e (% (¢(j+12—¢<j>)2 —~ %cb(j)2> —

JEZL
The “...” are often very hard to control!

Also Problematic: Chiral Fermions / Supersymmetry



Target Discretization

Discretization on Target Also Natural

Example 1: Hopping on a Crystal

7”7 A
_‘_‘_‘_‘_> Ztarget

View as q : Reource — Rtarget With strong potential



Target Discretization

Discretization on Target Also Natural
Example 2: Quantum Gravity (?7!)

Continuum QFT breaks down when:

Gmax ~ Mplanck ~ 10" GeV (in 4D)

Discretize Field Values: ¢ = ¢gman X n?
(UV / IR mixing)



Parameter Discretization

In string theory / quantum gravity, physical parameters

also descend from quantum fields (“moduli”).

This suggests they should also be discretized...

Suggestive Arithmetic Structures:
(Moore '98; Kachru Nally Yang '20; Hay Lam ’20)

(see also Candelas de la Ossa Rodriguez-Villegas '00)



Main Physical Question

How much can we discretize”?

MaPS Cb : Zsourc:e — Ztarget?

Parameters?



A First Attempt



A First Attempt
(Which will be Unsatisfactory)



Qb : ZSOU_I'CG — Ztarget

Lattice Approximation of Source, e.g.:

¢ : Zsource — Ztalrgoet

Slol =% %, (@ (6 +1) = 9()* = B6()?) + ..

JEZL

Assume o, 3, N € Z,

l.e. parameters are also “naturallv quantized”.
P



; Path Integral?

Note: ¢*/" is now a character of Z/NZ.



; Operators?

If we want ¢(t) € Z/NZ, more natural to consider:

6—exp( ag) for a € Z/NZ
DEFINE / Compute Correlators via:

(01..0m) = % X exp (%£5[¢]) O,

b:7—7,



Summary So Far...

Summarizing, we have:

(dfldi) ~ > exp (F*S[4))

O:L— 7

Quick Answer: “h = %”



Difficulties

“Lattice Artifacts” still very problematic

Symmetries Explicitly Broken...
Example: SO(3,1)
QFT: ¢ : R*>! — R versus ¢ : Z* — Z (in 4D)

Very hard to incorporate chiral fermions



A Second Attempt:
“QFT in Char p”



Reminders on Char p

R and C = R(y/—1) are examples of “fields”

{Integers modulo p } = F, also a field!
Finite fields F,? Find roots of f(x) =0 for f(x) € F,[x]

Galois Group: Gal(F,/IF,): permutes the roots

(turns out it is always cyclic)



Geometry in Char p

Algebraic Geometry Still Makes Sense...
Main Difference: Over F,, finite number of points!

. . . ‘
Discretization from the start... ‘/ \'./



008 “QFT in Char p” 777



Main Idea (via Example)

Fix N = p an odd prime
Consider ¢(x) € Fp|z] evaluation of a polynomial

Action: S[¢] = ) evy—y(a0,00,¢ — V(9)) € T,

teF,

Path Integral Phase: exp (%S [qﬁ]) a character € C



Correlators

p

6(1&) — exp (27” a,qb(t)) for a € F,

Compute Correlators via:



More Geometrically...

Fix Xsource and Yiarger varieties / I,
Consider ¢ : X --+ Y rational (allow poles)

0,.0, =L T exp (%S[gb]) 0,..0,,

p: X--»Y

z|-



Mode Expansions



Example

Consider ¢ : A* — A~

Local Expansion: ¢ = > ¢,,x™ € Fplz, 271

Action: S|p| = > evy—(x0,0x0,0) € F,

teF,

S[@] — ng—ngbmcbn with: g[ — (5l mod p—1



What About / F,7

Clear interpretation for Yiarget /F,: just adding more fields!
(Gal(F,/F,) a “global symmetry”)

Example: F, = F,(w) with ¢ = p.
Locally, ¢ = ¢p1w + paw? € F ]

Note: Xsource can often also be viewed as a target space



Path Integrals / [,

Fix Xsource and Yiarget varieties / F,

Consider ¢ : X --+ Y rational (allow poles)

Still demand S|¢] € F,, (Unitarity)

(Can enforce by adding Frobenius conjugates)
r — xb

AN

(0;...0,,)

LY exp (%5[@]) O1..0,,

¢p: X-->Y

Formal limits available ¥, C IF,» C ... CIF,



Hilbert Space



Subtleties with States

Consider ¢ : AL — Al

time target (OVGI‘ IFQ)
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Subtleties with States

Consider ¢ : AL~ — Al

time target (over F)

We can define |¢ : A' — A') € Hy;, a Hilbert space / C

“Explicit Time Dependence”

We can also define |¢) € Hsman a Hilbert space / C

“ : . ¢ 9 . 1
Lattice Approximation” projects A* — I,

Focus for now: Small Hilbert space



Qudits

Consider |¢) € Hemall

Qudit Operations:
exp (%TI‘FrCLQE) ’(b) = €XP (%TrFracb) |¢>

exp (4 Tre b7 ) |6) = |6+ b)



Error Operations

Qudit Operations:

exp (%TrFracfg) |¢) = R.|9)

exp (%Trprb%) (®) = Tp|p)

E., = R, = “Quantum Error”



Codes

Consider ¢ : Al x Xspace — Al
|p(x5)) is several qudits in Hgmal

Can define F,;’s acting on Hgman >~ C"

= Implicitly Building a quantum stabilizer code
(Gottesman ’97)



Transmitter |——p | Recelver



Swampland Comments

Vafa ’05; Ooguri Vafa ’06
Consider L = (8¢)* — V(¢) + ...
V(@) truncates: (since z% = x)

Note: 0™ ¢ does not!

Roughly in accord with “bounding the # of EFTSs”
c.f. Heckman Vafa 19



Other Physical Fields?



Other Physical Fields?

e Vector Bosons?

:l (see also Schmidt ’08)

e (Gravitons?

e Fermions? = (focus for today)



Fermions

Returning to F,, extend by Grassmann numbers

Define: x, v as F,, Grassman variables when:

® XY = —1x

e Extend Frobenius: F(x) = x, F(v) =, F(x¥) = ¥x
r+— xP



Fermionic Action (Example)

Example Action: S|y, ¥ = ) eVt iXOp + ...

teF,

AN

Need Field Extension with 7 € F, and F (1) = —i

Grassmann path integral no different than char 0



Supersymmetry &
Cohomology



A Supersymmetric Theory

Introduce W (¢) a “superpotential” (poly in ¢)
_ 1 2 |7 2 2 / BT vl
L= 3(0i0)2 + X0t — 5 f2 + W'f + Wy

dsusy L = exact differential




A Cohomology Theory (I)

(QQ? = 0 = cohomology theory

Question: Is Hp) related to known H®’s?

Answer (1): In char 0, we would say de Rham cohomology

Question: What about in char p?



A Cohomology Theory (IT)

Note: Our construction also makes sense over Z/p"Z

= H¢) computed via inverse limit

Proposal: HY ~ H?. (in smooth case)

(Grothendieck ’66; Berthelot ’74;...)

Proposal: H¢) ~ Hf, (more generally)

(Berthelot '86; Kedlaya ’06;...)



An Index

Witten Index Tr(—1)¥ = Trg, (dimker) — dimcokerQ)

(Witten '82)

Same setup as Hasse-Weil Zeta Function:
log ZvF,(2) = Z #HV (Fgn) 2 = 3T, (—1)F 22

(can use étale f-adic or rigid cohomology)
(see Kedlaya '06)



Geometric Engineering
(Characteristic p Case)



Philosophical 1dea

Much of what we can reliably compute

in string compactification involves

algebraic geometry / C:
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Philosophical 1dea

Much of what we can reliably compute
in string compactification involves

algebraic geometry / C:

“Metric is superfluous”

Algebraic geometry also makes sense over F),, Q,, ...



A Correspondence (over C)

Fix ¥ a genus g curve (smooth, proj...)

Non-trivial correspondence between:

Curve of ADE Singularities

ADE Hitchin System
(assume 3-fold is Calabi-Yau)

e.g. y? =22+ 2V + fy_2(2) det(zl — ®) =0 in Ky,

~ ~

Intermediate Jacobian 4% L

Katz Vafa '96; Donagi Markman ’95; Diaconescu Donagi Pantev ’05:...



A Correspondence (over C)

Purely Algebraic!

Curve of ADE Singularities

ADE Hitchin System
(assume 3-fold is Calabi-Yau)

e.g. y? =22+ 2V + fy_2(2) det(zl — ®) =0 in Ky,

~ ~

Intermediate Jacobian 4% L

Katz Vafa '96; Donagi Markman ’95; Diaconescu Donagi Pantev ’05:...



A Correspondence (over IF))

Fix ¥ a genus g curve (smooth, proj...)

Non-trivial correspondence between:

Curve of ADE Singularities
(assume 3-fold is Calabi-Yau)

Characteristic p
ADE Hitchin System

(Simpson ’92,...)

e.g. y? =22+ 2V + fy_2(2) det(zl — ®) =0 in Ky,

~ ~

Intermediate Jacobian 4% L



More Generally, (over C)

Fix S a dim n variety (smooth, proj...)

Non-trivial correspondence between:

S fibered by ADE Singularities
(assume (n+2)-fold is CY)

Partial Twist
(n,0)-form Higgs Bundle

e.g. y? =22+ 2V + fy_2(2) det(zI — ®) =0 in Kg

A~ ~

Deligne Cohomology S5 S L% ¢

JJH et al. ’08,’16; many more



More Generally, (over F,)

Fix S a dim n variety (smooth, proj...)

Non-trivial correspondence between:

S fibered by ADE Singularities
(assume (n+2)-fold is CY)

Characteristic p
n-form Higgs Bundle

e.g. y? =22+ 2V + fy_2(2) det(zI — ®) =0 in Kg

~ ~

Syntomic Cohomology (SN e



How About i = 2.7



Path Integrals?

Phase Factor: exp (27”3 S)

pa

S=8Sy+Sipt+ ...+ S,_1p¥ 1+ ...
View S € Z, CQ, CQ, C C,

¢: X --+Y (viewed as Z, schemes)

(Recall [p|, = p~', Z, = {z € Q, s.t. |z], < 1})



Order of Limits

Consider h = =, as a — o0

“Convergence of action”: Demand S = Sy + ... + Sg_1p® 1

Converges in C,

“Convergence of phase”: Demand lim exp (2;? S )

Converges in C



Convergence of Action:

¢ : X(Cp) = Y(Cp)



Convergence of Action

Consider the family of actions:

Action: S|¢p| = ). evy=t(a0,00,0 — V(9)) € Z,,

teEZ/pZ

Assume a — oo limit makes sense

= (lassical Equations of Motion Makes Sense!

02 = —V'(6)



Classical Solutions

p-adic Differential Equations Still Make Sense

Example: 07¢ = —Q?¢ for Q € Q,

Power Series: exp(yv/—10Qt) = ) (\/_Qt)”

n>0

Radius of Convergence: |Qt|, < p~ 1/ (P=1)



Quantum Version

Recall: Our states are |¢p: X --+ Y) € Hgig

Py

“p-adic Operators” O : C,||z]] = C,||z]]
[ ) bi bi
Note: exp (zp—a{O}) ; %Cg N ”Hcg

Example: H = —1.2° ¢

1
2 0x2 2



Time Evolution

Practical Definition: U(T) = exp (WTIEI)

pCL

(assume ﬁ — diag(Eb ey ))

Minimal Timestep: tin = 12)—2 e R



Convergence of Phase:

¢ X(Cp) = Y(C)



“p-adic Physics”

Standard Case: ¢ : Q, — R

p-adic string, p-adic AdS/CFT, ...

Volovich et al. '80’s; Gubser et al. 16 + ...

_ 7
M => w;p
7
p-adic expansion ~ tensor networks

Gubser et al. ’16 ; Swingle 09
Heydeman et al. ’16




“p-adic Physics”

Standard Case: ¢ : Q, — R

p-adic string, p-adic AdS/CFT, ...

Volovich et al. '80’s; Gubser et al. 16 + ...

Awkward Features: Q, and C, have coarse topology:

Not Path Connected!

Example: No obvious 7}, ...



Operator Algebras

Proposal: to make sense of limits of (O(t1)...0(t,,))

have to add “additional points” to C,

Minimally: “Rigid Analytic Geometry”
Tate '71

Less Minimally: “Berkovich Space”: Berk(C,)
Berkovich '90; Huber 93



Berkovich Space
WA,
>N ﬂwﬁ

NN



Berkovich Space

e Path Connected

o diff ops. d’ and d” such that: A

d'd"logl(z,y) = (z,y) S

Chambert-Loir Ducros ’12

e Free Scalar Action:
¢ : Berk(C,) — R
S=[—¢dd ¢

e Stress Tensor Makes Sense!

= Berkovich Strings!



a1 am,

How About i = “—5+=-7




Fibration Over Spec Z

2mh : SpecZ — Spec Z

1

SpeCZ Phase: ] 1] ]I e( 57 52)

neNp reX,



Geometric Engineering
(Arithmetic Case)



Engineering N' =4 SYM

Working over C
Consider Type I / R3! x T? x C?/T'spg

This engineers N' =4 SYM on R>!



Engineering N' =4 SYM

Working over K = C,
Consider S X E x Mapg

This engineers N =4 SYM on S



Arithmetic Version

Working over K = Q,

Consider S x E x MADE
S — Spec Z arithmetic surface

S, = mod p reduction of curve



Arithmetic Version

Working over K a number field
Consider S x E x MADE

S — Oy arithmetic surface

Sy = mod p reduction of curve



S-duality?

Working over K — C a number field

Consider S X E X Mapg
S — Oy arithmetic surface

Sy = mod p reduction of curve

T — —1/7 still makes sense...



Summary



Conclusions ( I / IT )

e Proposal for physics in char p

e Proposal H)), = HJj,

e Geometric Engineering in char p

e Lift to p-adic analytic and arithmetic setting



Future ( II / IT )

e Explicit Computations?

e Gauge theory on arithmetic surfaces

and S-duality / Langlands?
e Berkovich Strings?

e Numerical Simulations?



