Speculations on Physical Discretization and Arithmetic Geometry

Jonathan J. Heckman

University of Pennsylvania

Based On

hep-th/xxxx.xxxxx

A "working paper" version is available at:

www.jjheckman.com/research

Disclaimers

What I will be talking about is **speculative**:

- Both on the physics side
- And on the math side

However, the structures are suggestive enough that I decided to write up some notes

Underlying Question: How to Define QFT?

Underlying Question: How to Define QFT?

(in such a way that it can be coupled to gravity)

Physical Discretization

In quantum mechanics (QM), and quantum field theory (QFT), we often calculate using the path integral, e.g.:

In quantum mechanics (QM), and quantum field theory (QFT), we often calculate using the path integral, e.g.:

QM:
$$\langle \phi_f | \phi_i \rangle \sim \int_{\phi_i}^{\phi_f} [d\phi] \exp(iS[\phi]/\hbar)$$

In quantum mechanics (QM), and quantum field theory (QFT), we often calculate using the path integral, e.g.:

QM:
$$\langle \phi_f | \phi_i \rangle \sim \int_{\phi_i}^{\phi_f} [d\phi] \exp(iS[\phi]/\hbar)$$

QFT:
$$\langle \phi_f(\overrightarrow{x}) | \phi_i(\overrightarrow{x}) \rangle \sim \int_{\phi_i(\overrightarrow{x})}^{\phi_f(\overrightarrow{x})} [d\phi] \exp(iS[\phi]/\hbar)$$

In quantum mechanics and quantum field theory, we often calculate using the path integral, e.g.:

$$\langle \phi_f | \phi_i \rangle \sim \int_{\phi_i}^{\phi_f} [d\phi] \exp(iS[\phi]/\hbar)$$

"Transition Amplitude"

In quantum mechanics and quantum field theory, we often calculate using the path integral, e.g.:

$$\langle \phi_f | \phi_i \rangle \sim \int_{\phi_i}^{\phi_f} [d\phi] \exp(iS[\phi]/\hbar)$$

"Path Integral", e.g.

$$\int d\phi(N) \int d\phi(N-1) \dots \int d\phi(2) \int d\phi(1)$$

In quantum mechanics and quantum field theory, we often calculate using the path integral, e.g.:

$$\langle \phi_f | \phi_i \rangle \sim \int_{\phi_i}^{\phi_f} [d\phi] \exp(iS[\phi]/\hbar)$$

$$i = \sqrt{-1} \in \mathbb{C}$$

In quantum mechanics and quantum field theory, we often calculate using the path integral, e.g.:

$$\langle \phi_f | \phi_i \rangle \sim \int_{\phi_i}^{\phi_f} [d\phi] \exp(iS[\phi]/\hbar)$$

"Action"
$$S[\phi] = \int L[\phi] dt$$

"Lagrangian"
$$L[\phi]$$
, e.g. $\frac{1}{2}\dot{\phi}^2 - \frac{1}{2}\phi^2$

In quantum mechanics and quantum field theory, we often calculate using the path integral, e.g.:

$$\langle \phi_f | \phi_i \rangle \sim \int_{\phi_i}^{\phi_f} [d\phi] \exp(iS[\phi]/\hbar)$$

Planck Constant $\hbar \sim 4.2 \times 10^{-15} \text{ eV s}$ High Energy Units Set $\hbar = 1$

The "Paths"

 $\phi: \mathbb{R}_{\text{source}} \to \mathbb{R}_{\text{target}}$ is usually not smooth

Source Discretization

Lattice Approximation of Source, e.g.:

 $\phi: \mathbb{Z}_{\text{source}} \to \mathbb{R}_{\text{target}}$

$$S[\phi] \approx \sum_{j \in \mathbb{Z}} \varepsilon \left(\frac{1}{2} \left(\frac{\phi(j+1) - \phi(j)}{\varepsilon} \right)^2 - \frac{1}{2} \phi(j)^2 \right) + \dots$$

The "..." are often very hard to control!

Also Problematic: Chiral Fermions / Supersymmetry

Target Discretization

Discretization on Target Also Natural

Example 1: Hopping on a Crystal

View as $q: \mathbb{R}_{\text{source}} \to \mathbb{R}_{\text{target}}$ with strong potential

Target Discretization

Discretization on Target Also Natural

Example 2: Quantum Gravity (?!)

Continuum QFT breaks down when:

 $\phi_{\rm max} \sim M_{\rm Planck} \sim 10^{19} \ {\rm GeV} \ ({\rm in} \ 4{\rm D})$

Discretize Field Values: $\phi = \phi_{\text{small}} \times n$? (UV / IR mixing)

Parameter Discretization

In string theory / quantum gravity, physical parameters also descend from quantum fields ("moduli").

This suggests they should also be discretized...

Suggestive Arithmetic Structures:

(Moore '98; Kachru Nally Yang '20; Hay Lam '20)

(see also Candelas de la Ossa Rodriguez-Villegas '00)

Main Physical Question

How much can we discretize?

Maps $\phi : \mathbb{Z}_{\text{source}} \to \mathbb{Z}_{\text{target}}$?

Parameters?

A First Attempt

A First Attempt (Which will be Unsatisfactory)

$$\phi: \mathbb{Z}_{\text{source}} \to \mathbb{Z}_{\text{target}}$$

Lattice Approximation of Source, e.g.:

$$\phi: \mathbb{Z}_{\text{source}} \to \mathbb{Z}_{\text{target}}$$

$$S[\phi] \equiv \frac{2\pi}{N} \sum_{j \in \mathbb{Z}} \left(\alpha \left(\phi(j+1) - \phi(j) \right)^2 - \beta \phi(j)^2 \right) + \dots$$

Assume $\alpha, \beta, N \in \mathbb{Z}$,

i.e. parameters are also "naturally quantized".

¿Path Integral?

$$S[\phi] \equiv \frac{2\pi}{N} \sum_{j \in \mathbb{Z}} \left(\alpha \left(\phi(j+1) - \phi(j) \right)^2 - \beta \phi(j)^2 \right) + \dots$$

$$\langle \phi_f | \phi_i \rangle \sim \sum_{\phi: \mathbb{Z} \to \mathbb{Z}} \exp \left(\frac{2\pi i}{N} \sum_{j \in \mathbb{Z}} \left(\alpha \left(\phi(j+1) - \phi(j) \right)^2 - \beta \phi(j)^2 \right) + \dots \right)$$

Note: $e^{iS/\hbar}$ is now a character of $\mathbb{Z}/N\mathbb{Z}$.

¿Operators?

If we want $\phi(t) \in \mathbb{Z}/N\mathbb{Z}$, more natural to consider:

$$\widehat{\mathcal{O}} = \exp\left(\frac{2\pi i}{N}a\phi\right) \text{ for } a \in \mathbb{Z}/N\mathbb{Z}$$

DEFINE / Compute Correlators via:

$$\langle \widehat{\mathcal{O}}_1 ... \widehat{\mathcal{O}}_m \rangle = \frac{1}{\mathcal{N}} \sum_{\phi : \mathbb{Z} \to \mathbb{Z}} \exp\left(\frac{2\pi i}{N} S[\phi]\right) \mathcal{O}_1 ... \mathcal{O}_m$$

Summary So Far...

Summarizing, we have:

$$\langle \phi_f | \phi_i \rangle \sim \sum_{\phi: \mathbb{Z} \to \mathbb{Z}} \exp\left(\frac{2\pi i}{N} S[\phi]\right)$$

Quick Answer: " $\hbar = \frac{N}{2\pi}$ "

Difficulties

"Lattice Artifacts" still very problematic

Symmetries Explicitly Broken...

Example: SO(3,1)

QFT: $\phi: \mathbb{R}^{3,1} \to \mathbb{R}$ versus $\phi: \mathbb{Z}^4 \to \mathbb{Z}$ (in 4D)

Very hard to incorporate chiral fermions

A Second Attempt: "QFT in Char p"

Reminders on Char p

 \mathbb{R} and $\mathbb{C} = \mathbb{R}(\sqrt{-1})$ are examples of "fields"

{Integers modulo p } = \mathbb{F}_p also a field!

Finite fields \mathbb{F}_q ? Find roots of f(x) = 0 for $f(x) \in \mathbb{F}_p[x]$

Galois Group: $Gal(\mathbb{F}_q/\mathbb{F}_p)$: permutes the roots (turns out it is always cyclic)

Geometry in Char p

Algebraic Geometry Still Makes Sense...

Main Difference: Over \mathbb{F}_q , finite number of points!

Discretization from the start...

ززز "QFT in Char p"???

Main Idea (via Example)

Fix N = p an odd prime

Consider
$$\phi(x) \in \mathbb{F}_p[x]$$

evaluation of a polynomial

Action:
$$S[\phi] = \sum_{t \in \mathbb{F}_p} \operatorname{ev}_{x=t}(\alpha \partial_x \phi \partial_x \phi - V(\phi)) \in \mathbb{F}_p$$

Path Integral Phase: $\exp\left(\frac{2\pi i}{p}S[\phi]\right)$ a character $\in \mathbb{C}$

Correlators

$$\widehat{\mathcal{O}}(t) = \exp\left(\frac{2\pi i}{p}a\phi(t)\right) \text{ for } a \in \mathbb{F}_p$$

Compute Correlators via:

$$\langle \widehat{\mathcal{O}}_1 ... \widehat{\mathcal{O}}_m \rangle \equiv \frac{1}{\mathcal{N}} \sum_{\phi \in \mathbb{F}_p[x]} \exp\left(\frac{2\pi i}{p} S[\phi]\right) \mathcal{O}_1 ... \mathcal{O}_m$$

More Geometrically...

Fix X_{source} and Y_{target} varieties / \mathbb{F}_p

Consider $\phi: X \dashrightarrow Y$ rational (allow poles)

$$\langle \widehat{\mathcal{O}}_1 ... \widehat{\mathcal{O}}_m \rangle \equiv \frac{1}{\mathcal{N}} \sum_{\phi: X \to Y} \exp\left(\frac{2\pi i}{p} S[\phi]\right) \mathcal{O}_1 ... \mathcal{O}_m$$

Mode Expansions

Example

Consider $\phi: \mathbb{A}^{\times} \to \mathbb{A}^{\times}$

Local Expansion:
$$\phi = \sum_{m} \phi_m x^m \in \mathbb{F}_p[x, x^{-1}]$$

Action:
$$S[\phi] = \sum_{t \in \mathbb{F}_p^{\times}} \operatorname{ev}_{x=t}(x \partial_x \phi x \partial_x \phi) \in \mathbb{F}_p$$

$$S[\phi] = \sum_{m,n} \widehat{\delta}_{m-n} \phi_m \phi_n$$
 with: $\widehat{\delta}_l = \delta_{l \bmod p-1}$

What About / \mathbb{F}_q ?

Clear interpretation for $Y_{\text{target}}/\mathbb{F}_q$: just adding more fields! $(\text{Gal}(\mathbb{F}_q/\mathbb{F}_p) \text{ a "global symmetry"})$

Example: $\mathbb{F}_q = \mathbb{F}_p(\omega)$ with $q = p^2$.

Locally, $\phi = \phi_1 \omega + \phi_2 \omega^p \in \mathbb{F}_q[x]$

Note: X_{source} can often also be viewed as a target space

Path Integrals / \mathbb{F}_q

Fix X_{source} and Y_{target} varieties / \mathbb{F}_q

Consider $\phi: X \dashrightarrow Y$ rational (allow poles)

Still demand $S[\phi] \in \mathbb{F}_p$ (Unitarity) (Can enforce by adding Frobenius conjugates) $x \mapsto x^p$

$$\langle \widehat{\mathcal{O}}_1 ... \widehat{\mathcal{O}}_m \rangle \equiv \frac{1}{\mathcal{N}} \sum_{\phi: X \to Y} \exp\left(\frac{2\pi i}{p} S[\phi]\right) \mathcal{O}_1 ... \mathcal{O}_m$$

Formal limits available $\mathbb{F}_p \subset \mathbb{F}_{p^2} \subset ... \subset \overline{\mathbb{F}_p}$

Hilbert Space

Subtleties with States

Consider $\phi : \mathbb{A}^1_{\text{time}} \to \mathbb{A}^1_{\text{target}} \text{ (over } \mathbb{F}_q)$

Subtleties with States

Consider $\phi : \mathbb{A}^1_{\text{time}} \to \mathbb{A}^1_{\text{target}} \text{ (over } \mathbb{F}_q)$

We can define $|\phi: \mathbb{A}^1 \to \mathbb{A}^1\rangle \in \mathcal{H}_{\text{big}}$ a Hilbert space / \mathbb{C} "Explicit Time Dependence"

Subtleties with States

Consider $\phi : \mathbb{A}^1_{\text{time}} \to \mathbb{A}^1_{\text{target}} \text{ (over } \mathbb{F}_q)$

We can define $|\phi: \mathbb{A}^1 \to \mathbb{A}^1\rangle \in \mathcal{H}_{\text{big}}$ a Hilbert space / \mathbb{C} "Explicit Time Dependence"

We can also define $|\phi\rangle \in \mathcal{H}_{small}$ a Hilbert space / \mathbb{C} "Lattice Approximation" projects $\mathbb{A}^1 \to \mathbb{F}_q$

Focus for now: Small Hilbert space

Qudits

Consider $|\phi\rangle \in \mathcal{H}_{\text{small}}$

Qudit Operations:

$$\exp\left(\frac{2\pi i}{p}\mathrm{Tr}_{\mathrm{Fr}}a\widehat{\phi}\right)|\phi\rangle = \exp\left(\frac{2\pi i}{p}\mathrm{Tr}_{\mathrm{Fr}}a\phi\right)|\phi\rangle$$

$$\exp\left(\frac{2\pi i}{p} \operatorname{Tr}_{\operatorname{Fr}} b \widehat{\pi}\right) |\phi\rangle = |\phi + b\rangle$$

Error Operations

Qudit Operations:

$$\exp\left(\frac{2\pi i}{p} \operatorname{Tr}_{\operatorname{Fr}} a \widehat{\phi}\right) |\phi\rangle = R_a |\phi\rangle$$

$$\exp\left(\frac{2\pi i}{p} \operatorname{Tr}_{\operatorname{Fr}} b\widehat{\pi}\right) |\phi\rangle = T_b |\phi\rangle$$

$$E_{ab} = R_a T_b =$$
 "Quantum Error"

Codes

Consider $\phi: \mathbb{A}^1 \times X_{\text{space}} \to \mathbb{A}^1$

 $|\phi(x_s)\rangle$ is several qudits in $\mathcal{H}_{\text{small}}$

Can define E_{ab} 's acting on $\mathcal{H}_{\text{small}} \simeq \mathbb{C}^n$

⇒ Implicitly Building a quantum stabilizer code (Gottesman '97)

Swampland Comments

Vafa '05; Ooguri Vafa '06

Consider
$$L = (\partial \phi)^2 - V(\phi) + \dots$$

 $V(\phi)$ truncates: (since $x^q = x$)

Note: $\partial^m \phi$ does not!

Roughly in accord with "bounding the # of EFTs" c.f. Heckman Vafa '19

Other Physical Fields?

Other Physical Fields?

• Vector Bosons?

• Gravitons?

(see also Schmidt '08)

• Fermions? — (focus for today)

Fermions

Returning to \mathbb{F}_p , extend by Grassmann numbers

Define: χ, ψ as \mathbb{F}_p Grassman variables when:

- $\chi\psi = -\psi\chi$
- Extend Frobenius: $F(\chi) = \chi$, $F(\psi) = \psi$, $F(\chi\psi) = \psi\chi$ $x \mapsto x^p$

Fermionic Action (Example)

Example Action:
$$S[\chi, \psi] = \sum_{t \in \mathbb{F}_p} \operatorname{ev}_{x=t} \widehat{i} \chi \partial_x \psi + \dots$$

Need Field Extension with $\hat{i} \in \mathbb{F}_q$ and $F(\hat{i}) = -\hat{i}$

Grassmann path integral no different than char 0

Supersymmetry & Cohomology

A Supersymmetric Theory

Introduce $W(\phi)$ a "superpotential" (poly in ϕ)

$$L = \frac{1}{2}(\partial_t \phi)^2 + \widehat{i}\chi \partial_t \psi - \frac{\widehat{i}^2}{2}f^2 + W'f + \widehat{i}W''\chi\psi$$

 $\delta_{\text{SUSY}}L = \text{exact differential}$

$$Q_{+} = \widehat{i}\psi\left(\frac{\partial}{\partial\phi} + \widehat{i}^{-1}\frac{\partial W}{\partial\phi}\right) = -\left(\partial_{t}\phi + \widehat{i}^{-1}\frac{\partial W}{\partial\phi}\right)\frac{\partial}{\partial\chi}$$

$$Q_{-} = \widehat{i}\chi \left(\frac{\partial}{\partial \phi} - \widehat{i}^{-1}\frac{\partial W}{\partial \phi}\right) = -\left(\partial_{t}\phi - \widehat{i}^{-1}\frac{\partial W}{\partial \phi}\right)\frac{\partial}{\partial \psi}$$

A Cohomology Theory (I)

 $Q^2 = 0 \Rightarrow$ cohomology theory

Question: Is H_Q^{\bullet} related to known H^{\bullet} 's?

Answer (1): In char 0, we would say de Rham cohomology

Question: What about in char p?

A Cohomology Theory (II)

Note: Our construction also makes sense over $\mathbb{Z}/p^n\mathbb{Z}$

(Berthelot '86; Kedlaya '06;...)

 $\Rightarrow H_Q^{\bullet}$ computed via inverse limit

Proposal: $H_Q^{\bullet} \simeq H_{\text{cris}}^{\bullet}$ (in smooth case)

(Grothendieck '66; Berthelot '74;...)

Proposal: $H_Q^{\bullet} \simeq H_{\text{rig}}^{\bullet}$ (more generally)

An Index

Witten Index $\operatorname{Tr}(-1)^{\mathbf{F}} = \operatorname{Tr}_{\operatorname{Fr}}(\operatorname{dimker} Q - \operatorname{dimcoker} Q)$ (Witten '82)

Same setup as Hasse-Weil Zeta Function:

$$\log Z_{V,\mathbb{F}_q}(z) = \sum_n \# V(\mathbb{F}_{q^n}) \frac{z^n}{n} = \sum_n \operatorname{Tr}_n(-1)^{\mathbf{F}} \frac{z^n}{n}$$

(can use étale ℓ -adic or rigid cohomology)

(see Kedlaya '06)

Geometric Engineering (Characteristic p Case)

Philosophical Idea

Much of what we can reliably compute in string compactification involves algebraic geometry $/ \mathbb{C}$:

Philosophical Idea

Much of what we can reliably compute in string compactification involves algebraic geometry $/ \mathbb{C}$:

"Metric is superfluous"

Philosophical Idea

Much of what we can reliably compute in string compactification involves algebraic geometry $/ \mathbb{C}$:

"Metric is superfluous"

Algebraic geometry also makes sense over \mathbb{F}_p , \mathbb{Q}_p , ...

A Correspondence (over \mathbb{C})

Fix Σ a genus g curve (smooth, proj...)

Non-trivial correspondence between:

Curve of ADE Singularities
(assume 3-fold is Calabi-Yau)

e.g.
$$y^2 = x^2 + z^N + f_{N-2}(z)$$

Intermediate Jacobian

ADE Hitchin System

$$\det(z\mathbb{I} - \Phi) = 0 \text{ in } K_{\Sigma}$$

$$\widetilde{\Sigma} \xrightarrow{\pi} \Sigma$$
 $\widetilde{\mathcal{L}} \xrightarrow{\pi_*} \mathcal{E}$

Katz Vafa '96; Donagi Markman '95; Diaconescu Donagi Pantev '05;...

A Correspondence (over \mathbb{C})

Purely Algebraic!

Curve of ADE Singularities
(assume 3-fold is Calabi-Yau)

e.g.
$$y^2 = x^2 + z^N + f_{N-2}(z)$$

Intermediate Jacobian

ADE Hitchin System

$$\det(z\mathbb{I} - \Phi) = 0 \text{ in } K_{\Sigma}$$

$$\widetilde{\Sigma} \xrightarrow{\pi} \Sigma$$
 $\widetilde{\mathcal{L}} \xrightarrow{\pi_*} \mathcal{E}$

Katz Vafa '96; Donagi Markman '95; Diaconescu Donagi Pantev '05;...

A Correspondence (over $\overline{\mathbb{F}_p}$)

Fix Σ a genus g curve (smooth, proj...)

Non-trivial correspondence between:

Curve of ADE Singularities
(assume 3-fold is Calabi-Yau)

e.g.
$$y^2 = x^2 + z^N + f_{N-2}(z)$$

Intermediate Jacobian

Characteristic pADE Hitchin System (Simpson '92,...)

$$\det(z\mathbb{I} - \Phi) = 0 \text{ in } K_{\Sigma}$$

$$\widetilde{\Sigma} \xrightarrow{\pi} \Sigma$$
 $\widetilde{\mathcal{L}} \xrightarrow{\pi_*} \mathcal{E}$

More Generally, (over \mathbb{C})

Fix S a dim n variety (smooth, proj...)

Non-trivial correspondence between:

S fibered by ADE Singularities (assume (n+2)-fold is CY)

e.g.
$$y^2 = x^2 + z^N + f_{N-2}(z)$$

Deligne Cohomology

Partial Twist (n,0)-form Higgs Bundle

$$\det(z\mathbb{I} - \Phi) = 0 \text{ in } K_S$$

$$\widetilde{S} \xrightarrow{\pi} S$$
 $\widetilde{\mathcal{L}} \xrightarrow{\pi_*} \mathcal{E}$

JJH et al. '08,'16; many more

More Generally, (over \mathbb{F}_p)

Fix S a dim n variety (smooth, proj...)

Non-trivial correspondence between:

S fibered by ADE Singularities (assume (n+2)-fold is CY)

e.g.
$$y^2 = x^2 + z^N + f_{N-2}(z)$$

Syntomic Cohomology

Characteristic p
n-form Higgs Bundle

$$\det(z\mathbb{I} - \Phi) = 0 \text{ in } K_S$$

$$\widetilde{S} \xrightarrow{\pi} S$$
 $\widetilde{\mathcal{L}} \xrightarrow{\pi_*} \mathcal{E}$

How About $\hbar = \frac{p^a}{2\pi}$?

Path Integrals?

Phase Factor: $\exp\left(\frac{2\pi i}{p^a}S\right)$

$$S = S_0 + S_1 p^1 + \dots + S_{a-1} p^{a-1} + \dots$$

View
$$S \in \mathbb{Z}_p \subset \mathbb{Q}_p \subset \overline{\mathbb{Q}}_p \subset \mathbb{C}_p$$

 $\phi: X \dashrightarrow Y \text{ (viewed as } \mathbb{Z}_p \text{ schemes)}$

(Recall
$$|p|_p = p^{-1}$$
, $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \text{ s.t. } |x|_p \le 1\}$)

Order of Limits

Consider
$$\hbar = \frac{p^a}{2\pi}$$
, as $a \to \infty$

"Convergence of action": Demand $S = S_0 + ... + S_{a-1}p^{a-1}$ Converges in \mathbb{C}_p

"Convergence of phase": Demand $\limsup \left(\frac{2\pi i}{p^a}S\right)$ Converges in $\mathbb C$ Convergence of Action:

$$\phi: X(\mathbb{C}_p) \to Y(\mathbb{C}_p)$$

Convergence of Action

Consider the family of actions:

Action:
$$S[\phi] = \sum_{t \in \mathbb{Z}/p^a\mathbb{Z}} \operatorname{ev}_{x=t}(\alpha \partial_x \phi \partial_x \phi - V(\phi)) \in \mathbb{Z}_p$$

Assume $a \to \infty$ limit makes sense

⇒ Classical Equations of Motion Makes Sense!

$$\partial_t^2 \phi = -V'(\phi)$$

Classical Solutions

p-adic Differential Equations Still Make Sense

Example:
$$\partial_t^2 \phi = -\Omega^2 \phi$$
 for $\Omega \in \mathbb{Q}_p$

Power Series:
$$\exp(\sqrt{-1}\Omega t) \equiv \sum_{n\geq 0} \frac{(\sqrt{-1}\Omega t)^n}{n!}$$

Radius of Convergence: $|\Omega t|_p < p^{-1/(p-1)}$

Quantum Version

Recall: Our states are $|\phi: X \dashrightarrow Y\rangle \in \mathcal{H}^{\mathrm{big}}_{\mathbb{C}}$

"p-adic Operators"
$$\widehat{O}: \mathbb{C}_p[[x]] \to \mathbb{C}_p[[x]]$$

Note:
$$\exp\left(\frac{2\pi i}{p^a}\{\widehat{O}\}\right): \mathcal{H}^{\mathrm{big}}_{\mathbb{C}} \to \mathcal{H}^{\mathrm{big}}_{\mathbb{C}}$$

Example:
$$\widehat{H} = -\frac{1}{2} \frac{\partial^2}{\partial x^2} + \frac{1}{2} x^2$$

Time Evolution

Practical Definition:
$$U(T) = \exp\left(\frac{2\pi i}{p^a}T\hat{H}\right)$$

(assume
$$\widehat{H} = \operatorname{diag}(E_1, ...,)$$
)

Minimal Timestep: $t_{\min} = \frac{2\pi}{p^a} \in \mathbb{R}$

Convergence of Phase:

$$\phi: X(\mathbb{C}_p) \to Y(\mathbb{C})$$

"p-adic Physics"

Standard Case: $\phi: \mathbb{Q}_p \to \mathbb{R}$

p-adic string, p-adic AdS/CFT, ...

Volovich et al. '80's; Gubser et al. '16 $+ \dots$

$$M = \sum_{i} \omega_i p^i$$

p-adic expansion \simeq tensor networks

Gubser et al. '16;

Swingle '09

Heydeman et al. '16

"p-adic Physics"

Standard Case: $\phi: \mathbb{Q}_p \to \mathbb{R}$

p-adic string, p-adic AdS/CFT, ...

Volovich et al. '80's; Gubser et al. '16 $+ \dots$

Awkward Features: \mathbb{Q}_p and \mathbb{C}_p have coarse topology:

Not Path Connected!

Example: No obvious $T_{\mu\nu}$...

Operator Algebras

Proposal: to make sense of limits of $\langle O(t_1)...O(t_m)\rangle$

have to add "additional points" to \mathbb{C}_p

Minimally: "Rigid Analytic Geometry"

Tate '71

Less Minimally: "Berkovich Space": Berk(\mathbb{C}_p)

Berkovich '90; Huber '93

Berkovich Space

Berkovich Space

- Path Connected
- • \exists diff ops. d' and d'' such that: $d'd''\log\ell(x,y) = \delta(x,y)$ Chambert-Loir Ducros '12
- Free Scalar Action:

$$\phi: \operatorname{Berk}(\mathbb{C}_p) \to \mathbb{R}$$

$$S = \int -\phi d' d'' \phi$$

- Stress Tensor Makes Sense!
 - ⇒ Berkovich Strings!

How About $hbar{\pi} = \frac{p_1^{a_1} \dots p_m^{a_m}}{2\pi}?$

Fibration Over Spec Z

$$X \to \widetilde{X}$$
 \downarrow
 $\operatorname{Spec} \mathbb{Z}$

$$2\pi\hbar : \operatorname{Spec} \mathbb{Z} \to \operatorname{Spec} \mathbb{Z}$$
$$x \mapsto x^n$$

Phase:
$$\prod_{n \in \mathbb{N}} \prod_{p} \prod_{x \in X_p} e^{\left(\frac{2\pi i}{p^n} S_x\right)}$$

Geometric Engineering (Arithmetic Case)

Engineering $\mathcal{N} = 4$ SYM

Working over \mathbb{C}

Consider Type II / $\mathbb{R}^{3,1} \times T^2 \times \mathbb{C}^2/\Gamma_{ADE}$

This engineers $\mathcal{N}=4$ SYM on $\mathbb{R}^{3,1}$

Engineering $\mathcal{N} = 4$ SYM

Working over $K = \mathbb{C}$,

Consider $S \times \mathbb{E} \times M_{ADE}$

This engineers $\mathcal{N} = 4$ SYM on S

Arithmetic Version

Working over $K = \mathbb{Q}$,

Consider $S \times \mathbb{E} \times M_{ADE}$

 $S \to \operatorname{Spec} \mathbb{Z}$ arithmetic surface

 $S_p = \text{mod p reduction of curve}$

Arithmetic Version

Working over K a number field

Consider $S \times \mathbb{E} \times M_{ADE}$

 $S \to \mathcal{O}_K$ arithmetic surface

 $S_{\mathfrak{p}} = \text{mod } \mathfrak{p} \text{ reduction of curve}$

S-duality?

Working over $K \hookrightarrow \mathbb{C}$ a number field

Consider $S \times \mathbb{E} \times M_{ADE}$

 $S \to \mathcal{O}_K$ arithmetic surface

 $S_{\mathfrak{p}} = \text{mod } \mathfrak{p} \text{ reduction of curve}$

 $\tau \to -1/\tau$ still makes sense...

Summary

Conclusions (I/II)

• Proposal for physics in char p

- Proposal $H_Q^{\bullet} = H_{\mathrm{rig}}^{\bullet}$
- Geometric Engineering in char p
- Lift to p-adic analytic and arithmetic setting

Future (II / II)

• Explicit Computations?

• Gauge theory on arithmetic surfaces and S-duality / Langlands?

• Berkovich Strings?

• Numerical Simulations?