

EXPLORING THE UNIVERSE WITH GRAVITATIONAL WAVES

VALERI VARDANYAN

SEPTEMBER 03, 2021, KAVLI IPMU

Masses in the Stellar Graveyard in Solar Masses LIGO-Virgo Black Holes **EM Black Holes EM Neutron Stars** LIGO-Virgo Neutron Stars GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

IN THIS TALK

Part 1: Clustering of black hole binaries.

Part 2: Astrophysical gravitational wave background.

Part 3: Are stellar mass black holes of primordial origin?

Part 4: What can GWs teach us about the early universe?

Part 1: Resolved GW sources

Tomographic cross-corrs: what are they good for?

Tomographic cross-corrs: what are they good for?

Observational strategy

Part 2: Astrophysical GW background

Based on: Cross-correlation of the AGWB with galaxy clustering, arXiv:1910.08353

$$\Omega_{\rm GW}(f,\theta) = \frac{f}{\rho_c H_0} \int_0^{z_{\rm max}} dz \frac{R_m(z;\theta) dE_{\rm GW}(f_s;\theta)/df_s}{(1+z)E(\Omega_M,\Omega_\Lambda,z)}.$$

LIGO/VIRGO Collaboration: "GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences"

Multitude of sources

Sensitivity on non-linearities

What to expect?

The anisotropies will first be detected via the cross-correlation

Sensitive to the features in the astrophysical kernel $\mathscr{K}(z)$

 \blacktriangleright Useful for cosmology if $\mathcal{\ell}_{\rm max} \sim 100$ is detected

The shot-noise issue

Cross-corr variance can be huge due to contamination from the auto-corr

Part 3: PBH mergers

PBH-Neutron star binaries?

KAGRA GW200105 GW200115 First observation of neutron star-black hole (NSBH) binaries		
All parameter ranges correspond to 90% credible bounds. Quoted values are for high spin (<0.99) neutron-star priors		
	GW200105	GW200115
observed by	LIGO Livingston and Virgo	LIGO Livingston & Hanford and Virgo
date, time	5 Jan 2020, 16:24:26 UTC	15 Jan 2020, 04:23:10 UTC
likely distance	170 to 390 Mpc	200 to 450 Mpc
source redshift	0.04 to 0.08	0.05 to 0.10
signal-to-noise ratio	13.9	11.6
false alarm rate	< 1 in 2.8 yr	< 1 in 100,000 yr
Source masses (M $_{\odot}$)		
total mass	9.7 to 12.0	5.7 to 8.6
primary (BH)	7.4 to 10.1	3.6 to 7.5
secondary (NS)	1.7 to 2.2	1.2 to 2.2
mass ratio	0.18 to 0.30	0.16 to 0.61
BH spin	0.00 to 0.30	0.04 to 0.81
effective inspiral spin	-0.16 to 0.10	-0.54 to 0.04
effective precession spin	0.02 to 0.23	0.04 to 0.51

FACT SHEET

Inferred merger rate density of NSBH systems^{*}: 12 to 120 yr⁻¹ Gpc⁻³ * Assuming GW 200105 and GW 200115 are representative of the NSBH population

(EIGO)

PBH-NS binary

18

PBH-Neutron star binaries?

- DM halo properties from simulations
- Stellar mass halo mass connection for estimating the number of NS **number of NS Capture cross section** $\sigma = 2\pi \left(\frac{85\pi}{6\sqrt{2}}\right)^{2/7} G_N^2 M^{12/7} \mu^{2/7} c^{-10/7} v_{rel}^{-18/7}$

Part 4: Primordial GWs

Inducing GWs during inflation

Parametric resonance $u(\tau)'' + [P - 2Q\cos(2\tau)]u(\tau) = 0$

Exponential enhancement if in the resonance band

Sources inflation

Inducing GWs during inflation

Mode functions

Non-linear source

Harmonic oscillations

Enhanced tensor modes

Detectability

Summary

I. Astrophysical black hole clustering and correlations with galaxy distribution: how to use redshift-unknown sources for cosmology?

2. AGWB: a complementary probe. Important for interpreting possible future detection. Can probe highredshift populations.

3. The origin of LIGO-Virgo-KAGRA black holes: PBH-PBH is likely, PBH-NS — not that much.

4. How to enhance primordial GWs: parametric resonance during inflation and induced gravitational waves.