2021.10.15 IPMU Postdoc Colloquium

(Dust and) Gas content in galaxies at z > 3 revealed with ALMA

Tomoko Suzuki

Collaborators: T. Kodama, M. Onodera, Y. Koyama, K. Tadaki, R. Shimakawa, I. Tanaka I. Smail, E. Daddi, D. Sobral, S. Tacchella K. Glazebrook, and the ZFOURGE team

Image credit; ESO

Today's talk

Gas properties of galaxies at z = 3-4

- Star-forming galaxies (Suzuki et al. 2021, ApJ, 908, 15)
 - Individual dust/gas mass measurements
 - Dependence on gas-phase metallicity

- Quiescent galaxies (Suzuki et al. in prep.)
 - First gas measurements at z > 3.5
 - How massive galaxies stop their star-formation?

Molecular gas: fuel of star-formation in galaxies

- High star-formation activity at high-z is supported by a large amount of gas
- Molecular gas observations with CO lines and/or dust emission reaches up to z ~ 4 or even higher-z (but sample size is still limited)

"Main sequence" of star-forming galaxies

- Tight and positive correlation between M_{star} and SFR
 - : "Main sequence" of star-forming galaxies
- Correlation between $\Delta(MS)$ and gas properties
 - → Galaxies above the MS are more gas-rich and have higher SFE

Importance of gas-phase metallicity?

- Metallicity dependence appears when estimating gas mass
- CO-to-H2 conversion factor
 - : CO line flux —> M_{gas} (e.g., Daddi+10; Genzel+10)
- Gas-to-dust mass ratio
 - : M_{dust} -> M_{gas} (e.g., Santini+10; Bethermin+15)

- Gas mass and metallicity could change by star-formation, gas inflow and outflow
 - → Used to give a constraint on inflow/ outflow rate by combining with the chemical evolution models

1000

Previous works: NIR spectroscopy for SFGs at z = 3-4

- Onodera et al. (2016) & Suzuki et al. (2017)
 - : H+K band spectroscopy with Keck/MOSFIRE
- Metallicity calibration with [OIII], Hβ, and [OII] lines (Curti+17)
 - : Individual measurement of gas-phase metallicity

ALMA Band-6 observation

- Cycle-6 (2018.0.00681.S, PI: T. Suzuki)
- 12 galaxies with log(M_{star}/M_{sun}) > 10 and [OIII] λ 5007, H β , and [OII] >= 3 σ
- Dust continuum emission at ~ 1.1mm
- Beam size: ~ 1.5 arcsec x 1.3 arcsec

Continuum detection and stacking analysis

- 6 galaxies are detected with S/Npeak, IMFIT > 3 (@ Ks-band centroid)
- Staking 5 non-detected sources -> ~5sigma detection
- ID 19129 turns out to be an Chandra-detected X-ray source

→ Type-2 AGN? (Kalfountzou+14)

Star-forming activity and gas-phase metallicity

- SED fitting with MAGPHYS (da Cunha+08,15) inc. ALMA photometry
 - → Re-estimate stellar mass and SFR
- Tight distribution around the main sequence at z~3.3

Dust mass in galaxies at z = 3-4

- Dust mass from MAGPHYS
- $M_{dust}/M_{star} = 1-5 \times 10^{-3}$
- Convert M_{dust} to M_{gas} with the relation between gas-phase metallicity and gas-to-dust mass ratio (Magdis+12)

Gas properties of SFGs at z~3.3

- Tacconi et al. (2018)

Establish a scaling relation between M_{gas} , M_{star} , SFR, and redshift by compiling available observational data

Gas properties of SFGs at z~3.3

- Large scatter of f_{gas} and t_{dep} at a fixed stellar mass
 - : Cannot be explained by the scatter around the main sequence
- → Gas properties have a large variety even when galaxies have similar M_{star} and SFR (e.g., Elbaz+18)

Gas mass fraction versus metallicity

- No clear correlation between gas mass fraction and metallicity

Comparison with galaxies at lower redshifts

Star-forming galaxies at z > 2 have lower gas-phase metallicities than local galaxies at a fixed gas mass fraction

-

Gas regulator model: Peng & Maiolino (2014)

Analytic formula to track the evolution of galaxies

- Input parameters

: Inflow rate (Φ), star formation efficiency (ϵ), mass-loading factor(λ), return mass fraction (R)

$$f_{\text{gas}}(t) = \frac{1}{1 + \varepsilon (1 - R) \left(\frac{t}{1 - e^{-\frac{t}{\tau_{\text{eq}}}}} - \tau_{\text{eq}}\right)}$$
$$Z_{\text{gas}}(t) = [Z_0 + y\tau_{\text{eq}}\varepsilon (1 - e^{-\frac{t}{\tau_{\text{eq}}}})][1 - e^{-\frac{t}{\tau_{\text{eq}}(1 - e^{-t/\tau_{\text{eq}}})}}]$$

Equilibrium timescale
$$\tau_{\rm eq} = \frac{1}{\varepsilon(1-R+\lambda)}$$

y: average yield Z0: Metallicity of inflowing gas

Assumptions

-

- \cdot Gas accretion scales with the growth rate of DM halo
- Outflow rate is proportional to SFR
- Input parameters are constant with time or change slowly with time

Higher mass-loading factors for high-z galaxies

- The offset can be explained with the model tracks with higher mass-loading factor $\lambda \sim 2-2.5$
 - —> Redshift evolution of mass-loading factor

(e.g., Barai+14; Hayward & Hopkins 2017; Sugahara+17)

Part 1 - Summary

We conducted ALMA Band-6 observations of star-forming galaxies at z~3.3 with individual gas-phase metallicity measurements

- A large scatter of f_{gas} and t_{dep} in contrast to the tight distribution about the main sequence at $z \sim 3.3$

-> Large variety of gas properties of galaxies with similar M_{star} and SFR

- Lower metallicities of star-forming galaxies at z ~ 3.3 at a given f_{gas} can be explained with model tracks assuming higher mass-loading factors
 - —> Star-forming galaxies at higher redshifts seem to have more powerful outflow with higher mass-loading factors

Today's talk

Gas properties of galaxies at z = 3-4

- Star-forming galaxies (Suzuki et al. 2021, ApJ, 908, 15)
 - Individual dust/gas mass measurements
 - Dependence on gas-phase metallicity

- Quiescent galaxies (Suzuki et al. in prep.)
 - First gas measurements at z > 3.5
 - How massive galaxies stop their star-formation?

How massive galaxies stop their star-formation?

Different quenching mechanisms

→ Different gas properties of quiescent galaxies

e.g., Sargent+15; Gobat+18; Spilker+18; Belli+21; Magdis+21; Williams+21; Whitaker+21...

Our targets: quiescent galaxies from ZFOURGE

- Four quiescent galaxies at z = 3.5-4 from the ZFOURGE survey (Glazebrook+17; Schreiber+18b)
- ALMA Band-3 observations to observe [CI] line in Cycle 7
- All the targets are not detected with [CI] \rightarrow 3 σ upper limit

Low gas mass fractions in QGs at z > 3.5

[CI] line flux \rightarrow M_{gas}

- Bothwell+17
- Assume line width of 400 km/s

Stacking result of the four QGs

- Low gas fraction of < 20 % (<~ 10% from the stacking analysis)
- Massive galaxies at z > 3.5 stop star-formation by consuming or expelling all the gas rather than reducing star-formation efficiency

Part 2 - Summary

We analyzed the ALMA Band-3 data of massive quiescent galaxies at z > 3.5 found from the ZFOURGE survey

- All the quiescent galaxies at z > 3.5 are confirmed to have low gas fraction of f_{gas} < 20 %
- Massive galaxies at z > 3.5 stop star-formation by consuming or expelling all the gas rather than reducing star-formation efficiency

Summary of this talk

We investigate the gas properties (gas mass fraction and depletion timescale) of different galaxy populations at z > 3 with ALMA

• Star-forming galaxies

- Large variety of f_{gas} and t_{dep} in contrast to tight distribution around the main sequence
- Suggested to have more powerful outflows with higher mass loading factors

Quiescent galaxies

- Low gas mass fractions of < 20%
- Stop their star-formation by consuming/expelling all the gas rather than by reducing star-formation efficiency

SED fitting with MAGPHYS (da Cunha+15)

Optical-NIR photometric catalog (COSMOS2015) + ALMA Band-6

Similar M_{dust}/M_{star} as lower-z SFGs

- Similar M_{dust}/M_{star} with star-forming galaxies at $z \sim 1.5-3$

: Mild (or flat) evolution of dust content in galaxies since z ~ 1.4 to z ~ 3.3? (Bethermin+15)

Dependence on gas-phase metallicity?

Dust-to-stellar mass ratio vs metallicity

- No clear correlation between M_{dust}/M_{star} and metallicity (Positive correlation would have been expected)
- Need a larger sample covering a wider stellar mass range...

No clear correlation between f_{gas} and 12 + log(O/H)

- No clear correlation between gas mass fraction and metallicity

- → Reflect stochastic star-formation histories of star-forming galaxies at high redshifts? (e.g., Guo+16; Tacchella+20)
 - = More difficult to identify a global trend between the physical quantities

Quiescent galaxies confirmed at z > 3

- Increasing the number of spectroscopically confirmed quiescent galaxies at z > 3
 - : Glazebrook+17; Schreiber+18b; Tanaka+19; Valentino+20; Kubo+21...
- Closer to the epoch of quenching
 - → Stronger constraint on the quenching mechanisms

Gas properties and quenching processes

Gas mass fraction and star-formation efficiency

: Change depending on quenching processes

Our targets: quiescent galaxies from ZFOURGE

- Four quiescent galaxies at z = 3.5-4 from the ZFOURGE survey (Glazebrook+17; Schreiber+18b)
 - + **Hyde** (Schreiber+18c,21)
 - : A massive optical-dark galaxy at z ~ 3.71 (~0.4" away from Jekyll)

Possibly in transition to quiescence

Quiescent galaxies at z > 3.5

Schreiber+18b

Our targets: quiescent galaxies from ZFOURGE

- Four quiescent galaxies at z = 3.5-4 from the ZFOURGE survey (Glazebrook+17; Schreiber+18b)
- Band-7 (870µm continuum) and Band-3 ([CI]) data taken in Cycle 7 & 6
- Continuum emission is detected from one galaxy (~5σ)
- All the targets are not detected with [CI] \rightarrow 3 σ upper limit

Low dust-obscured SF activity

- Confirm the low star-formation activity of the targets

: >~ 5 times below the main sequence of star-forming galaxies

Low dust-obscured SF activity

870µm continuum flux → L_{IR} - IR SED Library of Schreiber+18a - Assume T_{dust} = 20 K and 40 K

 $L_{IR} \rightarrow SFR_{IR}$

- Kennicutt (1998) relation

- Confirm the low star-formation activity of the targets

: >~ 5 times below the main sequence of star-forming galaxies

Low gas mass fractions in QGs at z > 3.5

Stacking result for all the five targets

[CI] line flux \rightarrow M_{gas}

- Bothwell+17
- Assume line width of 400 km/s except for Hyde with 800 km/s

- Low gas fraction of < 20 % (< 10 % from the stacking result)
- Gas depletion timescale (Mgas/SFR) of Hyde
 - $->t_{dep}<0.32$ Gyr (cf. 0.4-0.6 Gyr for SFGs at z ~ 3-4)