Study of $B^+ \rightarrow \pi^+ \pi^0 \pi^0$ at Belle

Yun-Tsung Lai

yun-tsung.lai@ipmu.jp

Kavli IPMU Postdoc Colloquium

22nd, Oct., 2021

Outline

- Introduction.
- Study with Monte Carlo (MC):
 - Event selection and signal B reconstruction.
 - Background: continuum and $B\overline{B}$.
- Signal extraction and sPlot.
 - Fitter on sWeighted 2D $M_{\pi\pi}$ histogram: sub-decay and localized A_{CP} .
- Physics results.
- Summary

- Charmless three-body B decays are useful to study the properties of the weak interaction in the quark sector.
 - Complicated structure of decay amplitudes, interference in between, and CP asymmetry localized in multi-body phase space.
 - Dalitz plot: search for intermediate resonances and localized A_{CP} in the three-body phase space.
 - Result is helpful to constrain magnitudes and phases of the CKM matrix elements. For instance, $B \rightarrow \rho \pi$ for $\phi_2(\alpha)$ and also $B^+ \rightarrow \chi_{c0} \pi^+$ for $\phi_3(\gamma)$.

PRD 79, 072006 (2009) PRD 101, 012006 (2020)

- Similar measurement on $B^+ \rightarrow \pi^+\pi^-\pi^+$ by BABAR and LHCb.
 - BF = $(15.2 \pm 0.6 \pm 1.2 \pm 0.4) \times 10^{-6}$: Reference for our blinded analysis.
 - Full amplitude analysis.
- Upper limit of $B^+ \rightarrow \pi^+\pi^0\pi^0$ was reported: 8.9 x 10⁻⁴ at 90 C.L. by CLEO.

PLB 241 278-282 (1990)

- $B^+ \rightarrow \rho(770)^+\pi^0$: (10.9 ± 1.4) x 10⁻⁶, by Belle and BABAR. PRL 94 031801 (2005) PRD 75 091103 (2007)
 - Majority of the $B^+ \rightarrow \pi^+\pi^0\pi^0$ decays.

Dalitz plot

- A method to unfold the three-body decay phase space visually.
 - Structure within this decay: amplitudes, spin, and inteference can be clearly seen.
- $\bullet \quad B \ \rightarrow \ 1 \ , \ 2 \ , \ 3.$
 - One of the representation: $m_{12}^2 vs m_{13}^2$.

KEKB collider

- An asymmetric energy e⁺e⁻ collider at KEK.
 - LER(e⁺) 3.5 GeV.
 - HER(e-) 8 GeV.
 - Crossing angle: ±11 mrad.
- Target: $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$ for B physics.

- Blinded analysis: Prestudy with Monte Carlo (MC) samples for signal and backgrounds.
 - Signal: assumed BF (1.5 x 10⁻⁵), reconstruction efficiency by MC \rightarrow Expected number of events in data.
- Event samples categories expected to be seen in data:

Event sample with Monte Carlo (cont'd)

- In the signal reconstruction, there are truly reconstructed candidates ("true") and wrongly reconstructed candidates due to the decay of the other B:
 - Self-crossfeed (SCF).
- B decay backgrounds:

- "Rare": $b \rightarrow u,d,s$. Smaller BF (usually < 10⁻⁵).

Within signal MC,

there would be wrong

Analysis overview

Blinded with Monte Carlo (MC)

Assume BF = $15x10^{-6}$

- Signal $B^+ \rightarrow \pi^+\pi^0\pi^0$ reconstruction:
 - π^+ :Tracking&PID.
 - $\pi^0 \rightarrow \gamma \gamma$: Clusters in ECL (y).
 - Details of signal study in Backup.
- Background study:
 - Continuum $e^+e^- \rightarrow q\overline{q}$. Suppression with multivariate tools.

- В<u>В</u>.

Continuum Background

- Continuum production: e+e-→qq, q=u,d,s,c.
 Dominant background.
 Decay shape difference between BB and qq.
- Fisher discriminant with 17 event topology variables.
- Then combine with 3 more variables with Neuro-Network.

qq qq BB

BB Background

- Backgrounds from BB events.
- Dedicated MC samples with two categories:
 - Generic \overline{BB} : $b \rightarrow c$.
 - Rare BB: b→u,d,s.
- Look for B decay modes causing peaks in ΔE and M_{bc} : reject the mass window (3 σ of the resolution) around the nominal masses.

Soft- π^0 Background

- A structure in the ΔE v.s. $M_{\pi\pi}$ scattering plot due to soft- π^{0} .
 - Found in the self-crossfeed (SCF) and other background samples.
 - ΔE v.s. $M_{\pi\pi}$ correlation: Distorts the sWeighted $M_{\pi\pi}$ histogram.
- π^{0} momentum > 0.5 GeV/c is required.
 - ~50% of the SCF is reduced.
 - Non-uniform efficiency over Dalitz plot.

Signal extraction: Extended unbinned likelihood fit

- MC study: Understand the behavior of signal and backgrounds, and their expected numbers in data.
- Signal extraction: Extended unbinned likelihood fit.
 - Number of signal yield \rightarrow Inclusive BF.
 - A_{CP}: signal yields of B⁺ and B⁻.
- 3D Fitter on ΔE , M_{bc} , C'_{NN} :
 - The most distinctive variables.

- Define each PDF based on MC distribution.

Yun-Tsung Lai @ Kavli IPMU Postdoc Colloquium

Signal extraction: Signal isolation by sPlot

- By the 3D unbinned fitter, we can obtain the number of signal yield.
 - To study the Dalitz plot, we need to further isolate signal within data:
 sPlot technique. M. Pivk and F.R. Le Diberder, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 356 (2005)
 - Each event is assigned with a weight (**sWeight**) based on the likelihood.
 - Sum of sWeight = Fitted signal yield.
 - Sum of sWeight within other variables' binning:
 Signal-isolated histogram (sWeighted histogram).
- We use the sPlot to get the signal-isolated histogram of $M_{\pi\pi}$, Dalitz plot ($M^2_{\pi\pi}$ vs $M^2_{\pi\pi}$), helicity angles, etc.

Signal extraction: Signal isolation by sPlot (cont'd)

Signal extraction: 2D binned fit on signal-isolated $M_{\pi\pi}$

- After getting the signal-isolated histogram of $M_{\pi\pi}$ (Dalitz plot):
 - We perform a **2D binned fit** on it.
 - To get the signal decay structure: Fraction of each modes.
 - PDF: using MC samples as template.
 - Fitting on charge-separted histograms:
 Obtain localized A_{CP}.

Example:

```
Decay modes considered
in the 2D fit:
```


PHSP (nonresonant) $\rho(770)^{-}\pi^{0}$ $\rho(1450)^{-}\pi^{0}$ $f_{0}(980)^{0}\pi^{-}$ $f_{2}(1270)^{0}\pi^{-}$ $f_{0}(600)^{0}\pi^{-}$ $f_{0}(1370)^{0}\pi^{-}$ $\chi_{c0}\pi^{-}$ $\chi_{c2}\pi^{-}$

3D fit result on data

Nsig = 1062.8 +86.8 -85.4.
 A_{CP} = 0.092 +0.068 -0.068.

Preliminary

2D fit on sWeighted $M_{\pi\pi}$ histogram

- Measured signal model: incoherent sum of 6 modes' PDF.
 - Interference is not considered in this study. (Different from the full amplitude analysis.)
 - $B^+ \rightarrow \rho(770)^+ \pi^0$ with expected size and distribution.
 - Small contribution from non-resonant.
 - New structure found at low $M_{\pi0\pi0}$ region. Contribution from multiple resonances.
 - $f_0(1370)^0\pi^+$, $\chi_{c0}\pi^+$, $\chi_{c2}\pi^+$ not seen.

 9.2σ confirmed by 3D fit within selected region.

Preliminary

sWeighted Dalitz plot

Localized A_{CP}

- 2D fit on the charge-separated $M_{\pi\pi}$ histograms.
- An asymmetry is found at $M_{\pi 0\pi 0} \sim 1.4 \text{ GeV/c}^2$.
 - Corresponding to $f_2(1270)^{\circ}\pi^+$.
 - Also seen in $B^+ \rightarrow \pi^+\pi^-\pi^+$ by Babar and LHCb.

Preliminary

 3.2σ confirmed by 3D fit

within selected region.

Summary of measurement results

- Total BF: Efficiency is determined by the signal model from the last iteration
- $BF(B^+ \rightarrow \rho(770)^+\pi^0)$: We consider the interference effect with $B^+ \rightarrow \rho(1450)^+\pi^0$.
- BF of the $\pi^0\pi^0$ structure can't be reported separated due to lack of information: highly overlapping PDFs, large variations of masses and widths, interference.

Decay mode	Mass	Width	$\epsilon~(\%)$	Fitted yield	$\mathcal{B}~(10^{-6})$	$\mathcal{A}_{CP}~(\%)$
$\pi^+\pi^0\pi^0$ (total)			8.1	$1062.8^{+86.2}_{-85.4}$	$19.0 \pm 1.5 \pm 1.4$	$9.2\pm6.8\pm0.5$
Non-resonant			12.5	2.5 ± 13.5	$0.03 \pm 0.16^{+0.12}_{-0.15} \ (< 0.6)$	-
$ \rho(770)^+\pi^0, \ \rho(770)^+ \to \pi^+\pi^0 $	775.5	150.3	8.5	636.5 ± 65.0	$11.2 \pm 1.1 \pm 0.9 \pm 1.4$	$8.0 \pm 15.0^{+2.2}_{-7.5}$
$ \rho(1450)^+ \pi^0, \ \rho(1450)^+ \to \pi^+ \pi^0 $	1465	400	9.9	79.7 ± 51.1	$1.2 \pm 0.6 \pm 0.2 \ (< 2.5)$	-
$f_0(980)^0\pi^+, f_0(980)^0 \to \pi^0\pi^0$	980	50	10.2	102.1 ± 30.0	-	$-27.0 \pm 30.0^{+44.8}_{-56.3}$
$f_2(1270)^0 \pi^+, f_2(1270)^0 \to \pi^0 \pi^0$	1275.4	185.1	6.6	119.3 ± 32.0	-	$57.0 \pm 23.0^{+11.4}_{-25.9}$
$f_0(600)^0 \pi^+, f_0(600)^0 \to \pi^0 \pi^0$	600	400	8.3	123.4 ± 37.4	-	$10 \pm 34^{+12.9}_{-22.6}$
$X\pi^+, X \to \pi^0 \pi^0$	-	-	8.0	344.8 ± 47.5	$6.4\pm0.9\pm0.6$	-
$f_0(1370)^0 \pi^+, f_0(1370)^0 \to \pi^0 \pi^0$	1400	300	10.4	< 75.4	< 1.1	-
$\chi_{c0}\pi^+,\chi_{c0}\to\pi^0\pi^0$	3415.2	10.2	13.3	< 38.7	< 0.5	-
$\chi_{c2}\pi^+,\chi_{c2}\to\pi^0\pi^0$	3556.3	2.0	13.6	< 63.4	< 0.7	_

1st uncertainty: statistical.

2nd uncertainty: systematic.

3rd uncertainty (if any): interference effect.

Preliminary

- We perform the first measurement on the branching fraction and A_{CP} of the $B^+ \rightarrow \pi^+\pi^0\pi^0$ decay modes using the full data sample of 711 fb⁻¹ collected by the Belle detector at the KEKB at Y(4S) resonance.
 - Inclusive BF = $(1.90 \pm 1.5 \pm 1.4) \times 10^{-6}$.
- By using the sPlot technique, we study the structure in Dalitz plot, and measure the fraction and localized A_{CP} of sub-decay modes.
 - $BF(B^+ \rightarrow \rho(770)^+\pi^0) = (11.2 \pm 1.2 \pm 0.9 \pm 1.4) \times 10^{-6}$.
 - New structure at low $M_{\pi 0\pi 0}$ region: BF(B⁺ $\rightarrow X\pi^{+}$) = (6.4 ± 0.9 ± 0.6)x10⁻⁶.
 - An obvious asymmetry at $M_{\pi 0\pi 0} \sim 1.4 \text{ GeV/c}^2$.
- Journal article is under preparation and will be published soon.
- In near future, larger data set from Belle2 with full amplitude analysis is helpful to further understand this decay.

Backup

2021/10/22

Event selection and signal B reconstruction

- MC sample for signal study:
 - 3-body PHSP, ρ(770)+π⁰, ρ(1450)+π⁰,
 f₀(980)⁰π⁺, f₂(1270)⁰π⁺, f₀(600)⁰π⁺, etc.
- **π**⁺ track:
 - Tracking: SVD, CDC.
 - Impact parameter:
 |dr| < 0.3 cm, |dz| < 5cm.
 - $L(\pi)/(L(\pi) + L(K)) > 0.6.$

• Mass-constrain on B candidate:

- Correct pion momenta for $M_{\pi\pi}$.

- $\pi^0 \to \gamma \gamma$
 - Cluster on ECL crystal.
 - γ energy > 50 (100) MeV
 in barrel (endcap).
 - Mass-constrained fit on IP.
 - 115 < M_{γγ} < 152 MeV/c² (3σ)
 - Momentum > 0.5 GeV/c: Soft-π⁰ background.
- Multiple candidates in an event:
 - Different π_0 : smaller sum of χ_2 .
 - Else: smaller |dr|.

Signal extraction: Example with a MC cocktail sample

1. 3D (ΔE ,M_{bc},C'_{NN}) extended unbinned maximum likelihood fit:

- Signal model compositon matters for efficiency, SCF rate, PDF shape. It affects the measurement results.
- Iterate the procedure until converging.
 - The final model is close to the real one.

Default model:	Signal modes to be considered:						
27% PHSP + 73% ρ(770) ⁺ π ⁰ 400 + 700 events expected.		eff.(all)	eff.(true)	$\mathcal{F}_{SCF} \equiv \frac{N_{SCF}}{N_{True} + N_{SCF}} \left(\frac{N_{SCF}}{N_{True}} \right)$			
Signal PDF	Model	(%)	(%)	(%)			
¥	PHSP	12.5	11.6	7.4(8.0)			
3D data fit:	$ ho(770)^{-}\pi^{0}$	8.4	6.2	25.9(34.9)			
sPlot	$ ho(1450)^{-}\pi^{0}$	9.7	7.3	24.6(32.6)			
New model	$f_0(980)^0\pi^-$	4.5	4.1	10.2(11.3)			
sPlot M _{ππ}	$f_2(1270)^0\pi^-$	6.4	5.8	10.0(11.1)			
2D fit	$f_0(600)^0\pi^-$	8.3	7.4	11.5(13.0)			
	$f_0(1370)^0\pi^-$	10.6	9.5	10.1(11.3)			
fraction	$\chi_{c0}\pi^-$	13.3	12.8	3.4(3.5)			
Until converge	$\chi_{c2}\pi^-$	13.7	12.3	3.2(3.3)			
Final model — Fotal BF	Mixed (default)	9.5	7.7	19.2(23.8)			

Work flow:

2021/10/22

Systematic uncertainty

*: Calculated as 10⁻⁶.

BF, common for all modes

BF, depends on modes

Sources common to all decay modes	%						
	1.4	Decay mode	Fit bias	$_{s}\mathcal{P}lot$ bias	Resonance Shape	Dalitz model	Total
Tracking	0.35	$\pi^+\pi^0\pi^0$ (total)	0.2	-	-	1.6	7.8
π^+ identification	0.00	Non-resonant	$^{+0.0}_{-0.13}$ *	2.6	+0.12* -0.08	-	$8.1 \stackrel{+0.12}{_{-0.15}} *$
π^0 identification	1.9	$ ho(770)^+\pi^0$	1.6	2.6	$+0.7 \\ -0.9$	-	8.3 ± 12.6
	4.0	$ ho(1450)^{+}\pi^{0}$	5.6	2.6	$+10.9 \\ -11.9$	-	$^{+14.7}_{-15.4}$
Continuum suppression	1.4	$X\pi^+$	-	2.6	-	2.9	8.6
Limited MC statistics	0.02	$f_0(1370)^0\pi^+$	$^{+0.0}_{-0.14}$ *	2.6	+0.28* -0.42	-	$8.1, +0.28 \times -0.44$
Signal PDF	4.8	$\chi_{c0}\pi^+$	$+0.0^{+}*$	2.6	+0.003 * -0.04	-	8.1, +0.003 *
Background PDF	2.7	$\chi_{c2}\pi^+$	+0.0 *	2.6	+0.01 *	-	8.1, +0.01 *
Iteration procedure	0.7		-0.08				/0.09

Total A_{cp}

CP	
Source for total \mathcal{A}_{CP}	%
Detector bias	0.3
Signal PDF	0.2
Background PDF	0.4
Total	0.5

Sub-decay A_{CP}

Source for sub-decays	mode	%
Resonance shape	$\rho(770)^{+}\pi^{0}$	$+2.2 \\ -7.5$
Resonance shape	$f_0(980)^0\pi^+$	$+44.8 \\ -56.3$
Resonance shape	$f_2(1270)^0\pi^+$	$^{+11.4}_{-25.9}$
Resonance shape	$f_0(600)^0\pi^+$	$+12.9 \\ -22.6$

- Resonance shape of each sub-decay: Large variation of mass and width from $\rho(1450)^+$, $f_0(980)^0$, $f_0(600)^0$.
- Fit bias: Using ensemble test with Toy MC samples. Separeted for 3D fit (total) and 2D fit (sub-decay).
- Interference between $\rho(770)^+\pi$ and $\rho(1450)^+\pi$: First time considered in BF of $\rho(770)^+\pi$ mode.

2021/10/22