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Motivations

• Inflation: ds2 = −dt2 + a2(t)dx2 with ä > 0

S =

∫
d4x
√−g

[
M2

Pl

2
R + X − V (φ) + . . .

]
X = −(∂φ)2/2. The background eq. for φ0(t) is

φ̈0 + 3Hφ̇0 + V ′(φ0) + . . . = 0

• de-Sitter space: Flat slicing

ds2 =
1

H2η2
(−dη2 + dx2)

Beyond Perturbation Theory in Inflation December 10th, 2021



Motivations

• Quantum Fluctuation ζ, ζ-gauge

δφ = 0 , hij = a2(t)

[
e2ζδij + γij

]
• Free action of ζ

S =

∫
dηd3x

1

2η2Pζ

[
ζ
′2 − (∂iζ)2

]
where Pζ ≡ H2/(2εM2

Pl)

• Quantization as usual: ζk(η) ∼ ζcl
k (η)a†

k
+ ζcl

k (η)∗a−k

⇒ Scale invariant power spectrum

〈ζkζk ′〉′ =
Pζ
k3

, Pζ ∼ 10−8
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Motivations

• Interacting Hamiltonian: In-In formalism (weakly coupling limit)

〈Q(η)〉 = 〈0|T̄ e
i
∫ η
−∞(1−iε)

H I
int(η

′)dη′
Q I (η)Te

−i
∫ η
−∞(1+iε)

H I
int(η

′′)dη′′ |0〉

iε-prescription ⇒ Bunch-Davies vacuum |0〉

• Example: L = 1
2η2Pζ

[
ζ ′2 − (∂iζ)2

]
+ λ

4!P2
ζ
ζ ′4,

〈ζζζ〉
P

3/2
ζ

∼ fNLP
1/2
ζ � 1 ,

〈ζζζζ〉
P2
ζ

∼ gNLPζ ∼ λ� 1

The expansion parameter is just λ
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Motivations

• Tails of the distribution

PPT[ζ] ∼ exp

{
− ζ2

2Pζ
− 〈ζζζ〉

2P3
ζ

ζ3 − 〈ζζζζ〉
2P4

ζ

ζ4 . . .

}
= exp

{
− ζ2

2Pζ

[
1 +
〈ζζζ〉
P2
ζ

ζ +
〈ζζζζ〉
P3
ζ

ζ2 + . . .

]}

? ?

∼ −1/fNL ∼ 1/fNL

P(ζ)

ζ

〈ζζζ〉
P2
ζ
ζ ∼ fNLζ,

〈ζζζζ〉
P3
ζ
ζ2 ∼ gNLζ

2

The expansion parameter now
depends on size of ζ
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Main Idea

Unlikely events at the tails
‖

Semi-classical limit (~→ 0)

The wavefunction of the Universe (WFU) ∼ e iS/~ will be computed
semi-classically

Beyond Perturbation Theory in Inflation December 10th, 2021



Motivations

• Primordial black hole formation: occurs around horizon re-entry

The mass fraction of PBH is

β(M) =

∫ ∞
ζc

P[ζ̂]d ζ̂ , ζ̂(x) =

∫
d3k

(2π)3
W (k)ζ(k)e ik·x

⇒ The formation is sensitive to ζ ∼ 1

⇒ The pert. theory is still valid for fNLζ ∼ fNL � 1

(Single field slow-roll: fNL ∼ O(ε, η), K-Inflation: fNL ∼ (1− 1/c2
s ), |f equilNL | < 80)

⇒ To study PBH formation one needs to go beyond perturbation theory
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Analogy in QM: Compute the wavefunction in the
Semi-classical limit
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Euclidean Path integral

• From Path integral to the wavefunction of the ground state

〈xf |e−H(τf−τi )/~|xi 〉 =
∑
n

e−En(τf−τi )/~Ψn(xf )Ψ∗n(xi )

Ψ0(xf )Ψ∗0(xi )e
−E0T/~ = lim

T→∞

∫ x(τf )=xf

x(τi )=xi

Dx(τ)e−SE [x(τ)]/~

• Expand x(τ) = xcl(τ) + y(τ)

Ψ0(xf ) = N e−SE [xcl ]/~
∫ y(τf )=0

y(τi )=0
Dy(τ)e

− 1
~

(
1
2
δ2S
δx2 y

2+ 1
3!
δ3S
δx3 y

3+...
)

Ψ0(xf ) ' I[xf ] e−SE [xcl ]/~
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Anharmonic oscillator

• V (x) = ~ω
[

1
2 ( x

d )2 + λ( x
d )4
]
, d ≡

√
~/mω

⇒ The PT breaks down when λx2
f /d

2 ≡ x̄2/2 ∼ 1

• In Euclidean space,
L = 1

2mẋ2 + V (x)

• Real path connecting x(τi ) = xi
and x(τf ) = xf

• For T = τf − τi →∞ ⇒ E = 0

⇒ The real path with infinite
amount of times is the one with
zero energy x(τ) = − d√

2λ sinh(ωτ)
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Anharmonic oscillator: Scaling argument

• Recall the wavefunction Ψ0(xf ) ' I[xf ]e−SE [xcl]/~

• The Euclidean action is

SE [x(τ)] =

∫ τf

τi

dτ

{
1

2
mẋ2 + ~ω

[
1

2

(
x

d

)2

+ λ

(
x

d

)4]}

Rescaling x → (
√

~/λ)x , then

SE [xcl(τ)]

~
∼ 1

λ
F (λx2

f /d
2)

• The prefactor of I[xf ] goes as λ0G (λx2
f /d

2) ⇔ 1-loop diagrams

• Neglect the higher-order in λ ⇔ higher-loop diagrams
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Anharmonic oscillator: Ground-state wavefunction

• The on-shell action with zero energy

SE [xcl(τ)]

~
=

1

~

∫ τf

τi

dτ mẋ2

=
1

6λ

[
(1 + x̄2)3/2 − 1

]
I(xf ) = N

√
m

2πi~vi vf
∫ xf

0
dx′

v3(x′)

, x̄2 ≡ 2λx2
f /d

2

x(τ) = − d√
2λ sinh(ωτ)

Ψ0(xf ) = N
exp

{
− 1

6λ

[(
1 + x̄2

)3/2 − 1
]}

(1 + x̄2)1/4 (1 +
√

1 + x̄2)1/2

(
1 +O(λ)f (x̄)

)
This is valid for arbitrary x̄ .
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Free theory

• The wavefunction of the Universe Ψ[ζ0(x)] =
∫ ζ0(x)
BD Dζ e iS[ζ]/~

• The free saddle point is (Maldacena 02)

ζclk (η) = ζ0
k

(1− ikη)e ikη

(1− ikηf )e ikηf

⇒ iε-prescrip. selects the correct BC at early times

iS [ζcl ] = i

∫
k

1

2Pζη
2
f

ζcl−k∂ηζ
cl
k

∣∣∣∣
η=ηf

=

∫
k

1

2Pζ

(
ik2

ηf
− k3 + . . .

)
ζ0
−kζ

0
k

∫
k

=
∫
d3k/(2π)3

⇒ The WFU is a Gaussian distribution
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Interacting theory

• In perturbation theory, the WFU can be expanded as

Ψ = exp

[
1

2

∫
d3xd3y〈O(x)O(y)〉ζ(x)ζ(y)

+
1

6

∫
d3xd3yd3z〈O(x)O(y)O(z)〉ζ(x)ζ(y)ζ(z) + . . .

]
⇒ The on-shell action amounts to computing tree-level Witten diagrams

ψ3

ψ4

Cosmological correlators:

〈ζkζ−k〉′ =
−1

2Re〈OkO−k〉′

〈ζk1
ζk2
ζk3
〉′ =

2Re〈Ok1
Ok2
Ok3
〉′

Πi (−2Re〈Ok i
O−k i

〉′)
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Non-linear WFU

• Boundary conditions: BD at early times and ζ0 at late times

• Find the non-linear classical solution to the EoM

• Compute the WFU in the semi-classical limit

Ψ[ζ0(x)] ∼ e iS[ζcl ]/~

• The derivative coupling e.g. ζ ′4

⇒ Deep inside horizon: free theory

⇒ Outside horizon: non-linear term
is switched off
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EFT of Inflation

• The single coupling ζ ′4 can be justified in EFT of Inflation for large
quartic operator (Senatore & Zaldarriaga 11)

LEFT = −M2
PlḢ

(
π̇2 − (∂iπ)2

a2

)
+ M4

4 (16π̇4 − 32π̇3(∂µπ)2 + . . .)

The coeff. of cubic operators can be set to zero: M4
2 (δg00)2, M4

3 (δg00)3

• π → πc , O(πN>4
c ) are suppressed by gNL ∼ M4

4/(|Ḣ|M2
Pl) . 106

iS = i

∫
d3xdη

{
1

2η2Pζ

[
ζ ′2 − (∂iζ)2

]
+

λ

4!P2
ζ

ζ ′4
}
, ζ = −Hπc/φ̇0

The Euclidean EoM reads

−ζ ′′ + 2

τ
ζ ′ − ∂2

i ζ −
λ

2Pζ
τ2ζ ′2ζ ′′ = 0
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Scaling argument of S [ζcl]

• Recall the WFU: Ψ[ζ0(x)] ∼ e−SE [ζcl]

• The Euclidean action (η = −iτ)

SE ≡ −
∫

d3xdτ

{
1

2τ2Pζ

[
ζ ′2 + (∂iζ)2

]
+

λ

4!P2
ζ

ζ ′4
}

• Rescaling ζ → ζ/
√
λ, then

SE [ζcl] =
1

λ
F
(
λζ2

0/Pζ
)

• The relevant expansion parameter is λζ2
0/Pζ

• Neglect the prefactor, λ0G (λζ2
0/Pζ), and the higher orders in λ
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Witten diagrams

• Tree-level graphs, captured by semiclassical method:

F (λζ2
0 )

λ
∼ ζ2

0 + λζ4
0 + λ2ζ6

0 + λ3ζ8
0 + . . .

• 1-loop graphs, would be captured by the prefactor:

λ0G (λζ2
0 ) ∼ λζ2

0 + λ2ζ4
0 + λ3ζ6

0 + . . .
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Approximation using ODE

• The derivative coupling only affects the modes of similar wavelength

−ζ ′′ + 2

η
ζ ′ + H2ζ − λ

2Pζ
η2ζ ′2ζ ′′ = 0 , λ̃ = λζ2

0/Pζ

ζ → ζ0ζ τ → λ̃1/2τ
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Approximation using ODE

• The rescaling in τ gives the behaviour for large λ

∆SODE = − ζ
2
0

Pζ

∫ τf

τi

dτ

{
1

2τ2

[
ζ ′2 + H2(ζ2 − 1)

]
+
λ̃

4!
ζ ′4

}
=

1

λ
F (λ̃)

λ̃ = λζ2
0/Pζ

∆SODE ∼
1

λ
λ̃3/4

⇓

Ψ[ζ0] ∼ exp

[
− ζ

3/2
0

λ1/4P
3/4
ζ

]
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Approximation using ODE

• ΨG ∼ exp(−ζ2
0/2), Ψ ∼ exp(−ζ3/2

0 /2): Ψ is heavier than ΨG

Ψ(ζ0)

ζ0
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PDE with Gaussian profile

• The Gaussian profile at ηc : ζ(r) ∼ ζ0e
−r2

small λ large λ

• For small λ, it reduces to perturbative result
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PDE with Gaussian profile

• The on-shell action

∆SPDE ∼ 1
λ λ̃

3/4 ⇒ Ψ ∼ exp(−ζ3/2
0 /λ1/4)
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Future Directions: Inflation

• Explore PBH formation ζc ∼ 1, P[ζ0
k ] = |Ψ[ζ0]|2

P[ζc ] = N−1

∫
D[ζ0

k ] P[ζ0
k ] Θ(ζ̂[ζ0

k ]− ζc)

ζ̂[ζ0
k ] =

∫
k
W (k)ζ0

ke
ik·x

• Generalize to

- Different interactions

- Slow-roll inflation

- Tensor mode γij

• Connection to large number of legs limit (e.g. Badel et al. 20)

• Any implication for AdS/CFT ? Compute the exact Z for given source ?
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Two fields in dS

• Idea: take one field to be on the background and compute the other
non-perturbatively

S =

∫
dηd3x

[
1

2η2H2
(σ′2 − (∂iσ)2) +

1

2η2H2
(χ′2 − (∂iχ)2)− λ

η4H3
χσ2

]
• For kχ � kσ we have

Sσ =

∫
dηd3x

[
1

2η2H2
(σ′2 − (∂iσ)2)− αH2

2η4
σ2

]
where α ≡ 2λχ̄/H. This is just a massive scalar field on dS whose power
spectrum at late times is

〈σkσ−k〉′ '
H2

2k3− 2
3
α

=
H2

2k3− 4
3
λχ̄/H

We have resummed all powers in λχ̄

Beyond Perturbation Theory in Inflation December 10th, 2021



Two fields in dS

• Tree-level diagrams, enhanced by χ̄ and resummed

• Tree-level exchange diagrams, with fewer powers of χ̄

• Loop diagrams, subleading in λ
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Work in progress: Spatial derivative coupling

• The spatial derivative interaction (∂iζ)4

S =

∫
d3xdη

1

Pζ

{
1

2η2

[
ζ ′2 − (∂iζ)2

]
± λ

4!
(∂iζ)4

}
• All possible subtleties:

- The + sign ⇒ Gradient inst.

- The − sign (healthy) ⇒ the solution becomes complex for large λ

- Study QM in p-space for x̂2 + x̂4, x̂ ∼ d/dp, Ψ(p) ∼ e iσ(p)/~

p2

2m
+ V (−σ′(p)) = E , σ(pf ) =

∫ pf

dp V−1

(
E − p2

2m

)
- There are complex saddle points depending on pf
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Work in progress: Two fields model

• Two field model: S =
∫
dηd3x

[
L0
σ + L0

χ − λ
Λ4 (∂iσ)2(∂iχ)2

]
• Treat χ as a background for σ (kχ � kσ)

σ′′k −
2

η
σ′k + (1 + αη2)k2σk = 0, α ≡ 2λ(∂i χ̄)2H2

Λ4

• The power spectrum of σ is

〈σkσ−k〉′ =
π

8k3/2α3/4

e−πk/(4
√
α)∣∣∣Γ(5

4 + ik
4
√
α

)∣∣∣2
⇒ Not analytic around α = 0
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Work in progress: Two fields model

• The result matches with PT for small α

〈σkσ−k〉′ =
H2

2k3

(
1− 5λ(∂i χ̄)2H2

2Λ4k2

)
• For large α

〈σkσ−k〉′ '
H2

k3/2α3/4

• The Wavefunction of the Universe is

Ψ[σ0] ∼ exp[−α3/4σ2
0]

⇒ This is the WFU of σ in the large background of χ
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Backup Dark Energy
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Introduction

• Universe undergoes accelerating expansion =⇒ Many models of dark
energy (DE) e.g. Quintessence, P(X ), (beyond) Horndeski, etc.

• Gravitational wave (GW) observations =⇒ New test of GR and
modified gravity theories

• Use GW propagation (LIGO/Virgo) to constrain those DE models
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Dark enery models: Scalar-tensor theories

• One extra scalar field:

L = R − 1

2
X − V (φ) Quintessence

L = f (φ)R − 1

2
X − V (φ) Brans-Dicke

L = R − P(φ,X ) k-essence

X = gµν∂µφ∂νφ

Scalar fluctuation: φ = φ0(t) + π(t, x) leads to a sound speed cs

X 2 ⊃ φ2
0(t)π̇2 =⇒ Lπ ∼ π̇2 − c2

s (∂iπ)2
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Dark enery models: Scalar-tensor theories

• Most general scalar-tensor theories with 2nd order EoM:
(Beyond) Horndeski

L2 =G2(φ,X )

L3 =G3(φ,X )�φ

L4 =G4(φ,X )R − 2G4,X (φ,X )[(�φ)2 − φµνφµν ]

− F4(X , φ)εµνρσε
µ′ν′ρ′σφµφµ′φνν′φρρ′

L5 =G5(φ,X )Gµνφ
µν +

1

3
G5,X (φ,X )[(�φ)3 − 3(�φ)φµνφ

µν + 2φµνφ
σµφνσ]

− F5(φ,X )εµνρσεµ
′ν′ρ′σ′φµφµ′φνν′φρρ′φσσ′

φµ ≡ ∇µφ
Horndeski 74, Deffayet et al. 11,

Zumalacárregui and Garćıa-Bellido 14, Gleyzes et al. 14
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Dark enery models

• The cosmological background φ0(t) spontaneously breaks Lorentz
invariance

• Interesting phenomena for tensor perturbation γij from second derivatives

For example

(∇µ∇νφ)2 ⊃ φ̇2
0γ̇

2
ij

Lγ ∼ γ̇2
ij − c2

T (∂lγij)
2
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Dark enery models

Extra scalar field: Lorentz violating medium ⇒ cT 6= 1
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EFT of Dark Energy

• Efficient way to study a perturbation
around fixed background

• Spontaneously break time
diffeomorphism

ds2 = −N2dt2 + hij(N
idt + dx i )(N jdt + dx j)

S =

∫
d4x
√−g L[t;N,K i

j ,
(3)R, . . .] g00 = −N−2

• The action contains all possible invariances under 3d diffs

Cheung et al. 08,

Gubitosi et al. 12, and many others
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EFT of Dark Energy

SEFT =

∫
d4x
√−g

[
M2
∗

2
f (t)(4)R − Λ(t)− c(t)g00

+
m2

2(t)

2
(δg00)2 − m3

3(t)

2
δKδg00 −m2

4(t)δK2 +
m̃2

4(t)

2
δg00(3)R

− m2
5(t)

2
δg00δK2 −

m6(t)

3
δK3 − m̃6(t)δg00δG2 −

m7(t)

3
δg00δK3

]
This term changes the speed of GWs

δK2 = δK 2 − δKµ
ν δK ν

µ⊃ γ̇2
ij , δKµ

ν = Kµ
ν − Hδµν

δG2 = δKµ
ν

(3)Rνµ − δK (3)R/2

δK3 = δK 3 − 3δKδKµ
ν δK ν

µ + 2δK ν
µδK

µ
ρ δK

ρ
ν
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GW170817 = GRB170817A

|c2
T − 1| . 10−15

LIGO/Virgo + Fermi/GBM + INTEGRAL 17
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EFT of DE after GW170817 & GRB170817A

• The speed of GWs can be expressed as

c2
T = 1− 2m2

4

M2
∗ f + 2m2

4

• c2
T = 1 ⇒ m2

4 = 0

• The EFT action becomes

LEFTcT =1 =
M2

Pl

2
f (t)(4)R − Λ(t)− c(t)g00 +

m2
2(t)

2
(δg00)2 − m3

3(t)

2
δKδg00

+
m̃2

4(t)

2
δg00((3)R − δK2)

Creminelli and Vernizzi 17,
Ezquiaga and Zumalacárregui 17,

Baker et al. 17, Sakstein and Jain 17
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Pertubative decay of GWs due to m̃2
4-term

• Spontaneous breaking of Lorentz
allows the decay

• m̃2
4: δg00((3)R − δK2) ⇔ Beyond

Horndeski (F4&F5)

• The interaction term:

Sγππ =
1

Λ3
?

∫
d4x γ̈ij∂iπ∂jπ , Λ3

? '
√

2
α

αH
Λ3

3

αH = 2m̃2
4/M

2
Pl, Λ3 = (MPlH

2
0 )1/3

• The perturbative decay rate: Γγ→ππ '
(
αH

Λ3
3

)2
ω7(1−c2

s )2

480πc7
s

Creminelli et al. 18
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Constraint from no pert. decay

• At LIGO/Virgo, take ω ∼ Λ3, Λ3 ∼ 10−13 eV

• Compare the decay rate with the cosmological distances ∼ H−1
0

Γγ→ππ
H0

∼ 1020α2
H

(1− c2
s )2

480πc7
s

. 1

H0 ∼ 10−33 eV

αH . 10−10 =⇒ beyond Horndeski is highly constrained

• What if a large occupation number of GWs is taken into account =⇒
non-perturbative effect, resonant π-production ?
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EFT of DE with constriants

Recap most general EFT action with c2
T = 1: S = S0 + Sm3 + Sm̃4

S0 =

∫
d4x
√−g

[
M2

Pl

2
(4)R − λ(t)− c(t)g00 +

m4
2(t)

2
(δg00)2

]
Sm3 = −

∫
d4x
√−g m3

3(t)

2
δKδg00 Cubic Horndeski

Sm̃4 =

∫
d4x
√−g m̃2

4(t)

2
δg00

(
(3)R + δK ν

µδK
µ
ν − δK 2

)
Quartic beyond Horndeski

δg00 = 1 + g00, δKµ
ν = Kµ

ν − Hδµν
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Classification of instabilities

• L0 + Lm̃4 = 1
2 γ̇

2
ij − 1

2 (∂kγij)
2 + 1

2 π̇
2 − c2

s
2 (∂iπ)2 + 1

Λ3
?
γ̈ij∂iπ∂jπ

• Treat GW as a classical background: γij = MPlh
+
0 sin(ω(t − z))ε+

ij

• The EoM of π reads

π̈ − c2
s∇2π − c2

s β sin[ω(t − z)](∂2
x − ∂2

y )π = 0

where

β ≡ 2ω2MPlh
+
0

c2
s |Λ3

?|
, Λ3

? '
Λ3

3

αHc2
s

β < 1: Resonant instability

β > 1: Gradient instability
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Resonant decay of GWs

• EoM of π for m̃2
4-operator

π̈ − c2
s ∂

2π − β sin(ω(t − z))(∂2
x − ∂2

y )π = 0

• Light-cone coord.

d2f

dτ2
+ [A− 2q cos(2τ)]f = 0

π(u, x̃) ∼
∫

e i p̃·x̃ fp̃(u)âp̃ + h.c.

• fp ∼ eµkτ , µ ∼ β < 1 (Narrow
resonance)

°ij

¼

va
cu

um

vu

so
u
rc

e
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Resonant decay of GWs

• In Fourier space fp satisfies the
Mathieu eq.

d2f

dτ2
+ [A− 2q cos(2τ)]f = 0

• fp ∼ eµkτ

• the exponent µ ∼ β for β < 1
(Narrow resonance)

• Need ∼ 700 cycles to reach
ρπ ∼ ργ

0

0.2

0.4

0.6

0.8

1.0
p

τ =
ωu

2
, Ω = pz/|p|

A = 4
c2
s p

2

ω2

(1− csΩ)2

(1− c2
s )2

q = 2β
c2
s p

2

ω2

(1− Ω2) cos(2φ)

1− c2
s
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Modifications of GWs signal

For m̃2
4-operator: γ̈ij∂iπ∂jπ

• EoM of γ

γ̈ij −∇2γij −
2

Λ3
?

Λij ,kl∂
2
t (∂kπ∂lπ) = 0

• Write γij ≡ γ̄ij + ∆γij

∆γij(u, v) = − v

4Λ3
?

∂uJij(u) , Jij(u) ≡ Λij ,kl∂kπ∂lπ

• Expand π ∼ fp ∼ eµτ , use the saddle-point approx. (τ � 1)

∆γ(u, v)ij ' −
v

4Λ3
?

(1− c2
s )2

c5
s

√
β

ω7/2

(8uπ)3/2
exp

(
β

4
ωu

)
ε+
ij
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Observational signature for m̃4

• Modification of GWs signal: ∆γij ∼ −A exp(βωu/4)ε+
ij

• Effect of G4 (Quartic Galileon), Λ6
c ∼ Λ6

3/(αHc
4
s ) for m3

3 = 0

G4 =
1

Λ6
c

(∂π)2[(�π)2 − πµνπµν ] ∼ 1

Λ3
?

γ̈ij∂iπ∂jπ

We obtain

∆γ

γ̄
. (βNcyc)3/2(rH0)2 ≡

(
∆γ

γ̄

)
NL
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Observational signature for m̃4

• For a binary system (Mc , f , r): h+
0 ∼ 10−3/(fNcycr)

• Sizeable effect in GW waveform requires exp(βωu/4) ∼ O(102)

∆γ

γ̄
> 0.1 ⇒ αH & 10−17 · rH0 ·

Λ3

2πf
αc2

s

• Our calculation is valid when β < 1

αH .
H0

f
· Ncyc · rH0 , Ncyc ∼ (GMc f )−5/3

• To neglect effect of NL, demands (∆γ/γ̄)NL > 0.1

αH &
H0

f
(rH0)1/3
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Observational signature for m̃4

/Virgo

f = 30 Hz,Mc = 1.2M�
GW170817,

40 Mpc (rH0 ∼ 5 · 10−3)

perturbative bound: αH . 10−10
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What about the resonant effect from m3
3-term ?

• One can run the same procedure with m3
3δKδg

00

m3
3δKδg

00 ⊃ 1

Λ2
γ̇ij∂iπ∂jπ , Λ2 ' − αΛ2

2√
2αB

αB ≡ −m3
3/(2M2

PlH), β = 2ωMPlh
+
0 /(c2

s |Λ2|), Λ2 ∼ 10−3 eV

• Once the resonance happens (β < 1), the cubic self-interaction quickly
becomes important

G3 ∼
1

Λ3
B

�π (∂iπ)2 , Λ3
B ∼ α−1

B Λ3
3

• No sizable effect on GWs signal: ∆γ/γ̄ � 1 ⇒ Need to study β > 1
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Gradient/Ghost instabilities (β > 1)

• Let’s consider

Lπ =
1

2

[
π̇2 − c2

s (∂iπ)2
]

+
1

Λ2
γ̇ij∂iπ∂jπ + . . .

=
1

2
π̇2 − c2

s

2
(1− β)(∂iπ)2 + NL self-couplings + Source terms

Generally, this leads to the gradient instability of π.

• Can the non-linearity quench the instability ?

• Study the stability at NL level with the bg. of π induced by GWs
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Classical stability conditions

• Consider a generic Lagrangian for π

Lπ π=π̂+δπ−−−−−→ Lδπ = Zµν(x) ∂µδπ∂νδπ

• Free of instability ⇒ Conditions on Zµν

• Absence of ghost: Z 00 > 0

• Absence of gradient: Z 0iZ 0j − Z ijZ 00 positive definite

• Cubic Galileon w/o GWs: no ghost/gradient inst. for non-relativistic
source (Nicolis and Rattazzi 04)
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Instability in the presence of GWs

• The Lagrangian for π now is

L = −1

2
η̄µν∂µπ∂νπ −

1

Λ3
B

�π(∂π)2 +
1

Λ2
γ̇ij∂iπ∂jπ +

Λ3
B

2Λ4
πγ̇2

ij

η̄µν ≡ diag(−1, c2
s , c

2
s , c

2
s ), The parameter β ∼ γ̇ij/Λ2 > 1

• π = π̂ + δπ. The kinetic matrix Zµν for δπ is

Zµν ≡ −1

2
η̄µν − 2 (Kµν − ηµνK) +

γ̇µν
Λ2

, Kµν = − 1

Λ3
B

∂µ∂ν π̂

• The EoM for π̂ is

�̄π̂ − 2

Λ3
B

[
(∂µ∂ν π̂)2 −�π̂2

]
− 2

Λ2
γ̇µν∂

µ∂ν π̂ − Λ3
B

2Λ4
γ̇2
µν = 0
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Instability in the presence of GWs with cs < 1

• Assume that γµν = γµν(u)

• One can solve the EoM for π̂ analytically

π̂′′(u) = −
Λ3
Bγ̇

2
µν

2(1− c2
s )Λ4

• The components of Zµν are

Z 00 =
1

2
+ 2

π̂′′(u)

Λ3
B

, Z 03 = Z 30 = 2
π̂′′(u)

Λ3
B

, Z 33 = −1

2
c2
s + 2

π̂′′(u)

Λ3
B

Z 11 = −1

2
c2
s +

γ̇11

Λ2
, Z 22 = −1

2
c2
s +

γ̇22

Λ2
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Phenomenological consequences

• Free of gradient int.: Z 11,Z 22 < 0 ⇒ β < 1

• Free of ghost int.: Z 00 > 0 ⇒ β2 < (1− c2
s )c−4

s

Free of instabilities: |αB| . 10−2
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Fate of the instability

• The instabiliy occurs: the fluctuation grows at rate of the cutoff

• What happens next to the instability relies on the UV completion, so
does the fate of γµν

• LIR = P(X ) with constant X
background ⇒ Ghost + gradient
inst.

• LUV = −|∂φ|2 − λ(|φ|2 − v2)2

φ = φ0e
iπ, 〈φ0〉 = v2 − X

2λ ,
X = (∂π)2

Ellis, et al. 15

All the modes are stable in the UV theory
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Conclusion

- Perturbative/Resonant decays of GWs ⇒ a strong bound on quartic
beyond Horndeski (αH)

- Ghost/Gradient instabilities of π in GWs bg. ⇒ a bound on Cubic
Horndeski (αB)

-The surviving scalar-tensor theory: gµν → C (φ,X )gµν

L = G2(φ,X ) + C (φ,X )R +
6C,X (φ,X )2

C (φ,X )
φ;µφ;µνφ;λφ

;νλ

- Fate of instability relies on the UV completion
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Bound on αB: instability

Independently of Mc the
instability is triggered close to

the ISCO for αB & 10−2

• Gradient-instability lines, β = 1, for different value of αB as a function
of Mc of the binary system

• The black lines indicate frequencies ω > ΛUV
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Bound on αH: instability

• Gradient-instability lines, β = 1, for different value of αH as a function
of Mc of the binary system

• αH & 10−20 triggers Gradient-instability
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Bound on αH: instability

• The cubic and quartic self-couplings are negligible compared to γππ term

• Cubic self-interaction

1

Λ3
?

γ̈ij∂iπ∂jπ ∼
(∂π)2

Λ3
?

∂2π ⇒ ∂2π̂

γ̈
∼ βH

ω
� 1

• Quartic self-interaction

(∂π)2

Λ6
c

[(�π)2 − (∂µ∂νπ)2] ∼ (∂π)2

Λ3
?

∂2π ⇒ (∂2π̂)2Λ3
?

γ̈Λ6
c

∼ β2h+
0 � 1

Note Λ? ' α−1/3
H α1/3Λ3 and Λc ' α−1/6

H α1/3Λ3

• No stability argument of quartic and quintic Galileons
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Stability in the absence of GWs

Here the Lagrangian is

L = −1

2
ηµν∂µπ∂νπ −

1

Λ3
B

�π(∂π)2 +
πT

2MPl

• π = π̂ + δπ, the EoM for π̂ is

K + 2
(
KµνKµν −K2

)
=

T

2MPlΛ
3
B

, Kµν = − 1

Λ3
B

∂µ∂ν π̂

• The kinetic matrix reads: Lδπ = Zµν∂µδπ∂νδπ

Zµν ≡ −1

2
ηµν − 2 (Kµν − ηµνK)

Nicolis and Rattazzi 04
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Stability in the absence of GWs

• In terms of Zµν the EoM of π̂ becomes

1

3
Z 2 − (Zµν)2 =

1

3
− T

MPlΛ
3
B

• For the non-relativistic source v � 1, the matrix Zµν is diagonalizable
with a Lorentz boost, so that Zµν = diag(z0, z1, z2, z3) and T ' −ρ ≤ 0

• Consider the plane z0 = 0 in zi -space

−1

3

[
(z1 − z2)2 + (z1 − z3)2 + (z2 − z3)2

]
=

1

3
+

ρ

MPlΛ
3
B

⇒ A solution crossing the plane doesn’t exist

⇒ The initial stable solution (Zµν = −ηµν/2) remains stable everywhere
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Summary of the results

EFT of DE operator 1
2m̃

2
4 δg

00
(

(3)R + δK ν
µδK

µ
ν − δK 2

)
m3

3 δg
00δK

GLPV theories with cT = 1

L = G2 + G3�φ+ B4R − 4B4,X

X (φ;µφ;νφ;µν�φ− φ;µφ;µνφ;λφ
;λν)

−2XB4,X

B4

2XB4,X

B4
+

φ̇XG3,X

2HB4

Dimensionless function αi αH αB

Perturbative decay (Γγ→ππ/H0 > 1) |αH| & 10−10 Irrelevant (|αB| & 1010)

Narrow resonance (β < 1, βωu > 1)
3× 10−20 . |αH| . 10−17 with LIGO-Virgo

10−16 . |αH| . 10−10 with LISA

Not applicable

(large non-linearities)

Instability (β > 1, βω > 1) |αH| & 10−20 |αB| & 10−2

The surviving scalar-tensor theory: gµν → C (φ,X )gµν

L = G2(φ,X ) + C (φ,X )R +
6C,X (φ,X )2

C (φ,X )
φ;µφ;µνφ;λφ

;νλ
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Turn on both m3 and m̃4 with cT = 1

• m3 gives γ̇ij∂iπ∂jπ, while m̃4 gives both γ̇ij∂iπ∂jπ and γ̈ij∂iπ∂jπ

• One tunes αB and αH such that γ̇ij∂iπ∂jπ is absent

• Narrow resonance: the bound on αH remains the same (non-linearities
are negligible) and inconclusive for αB

• π-Instability: No general stability argument for quartic Galileon even w/o
GWs. One expects the operator γ̈ij∂iπ∂jπ will lead to the instability
anyway ⇒ Bound on αH
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Generic frame with cT 6= 1

• We then put a bound on a combination of m4, m̃4 and m5 (the coupling
of γ̈ij∂iπ∂jπ)

α̂H =
1 + αH − c2

T (1 + αV)

1 + αH + c2
T (1 + αV)

where αV ≡ −2m2
5/M

2, αH ≡ 2(m̃2
4 −m2

4)/M2, c2
T ≡ 1− 2m2

4/M
2 and

hat quantities are with ĉ2
T = 1.

• This happens when we don’t have bound on c2
T such as PTA

(f ∼ 10−8 Hz and Mc ∼ 106 M�)

⇒ Pert. bound not applicable α̂H < 10−10(Λ3/E )3, E ∼ 10−11Λ3

⇒ Resonant bound 10−9 . α̂H . 10−5 is excluded
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Resonant bound: PTA

f = 10−8 Hz,Mc = 106 M�
PTA, 25 Mpc (rH0 ∼ 10−3)
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Perturbative decay of GWs due to m3
3-term

• m3
3: δKδg00 ⇔ Cubic Horndeski G3

• The interaction term:

Sγππ =
1

Λ2

∫
d4x γ̇ij∂iπ∂jπ , Λ2 = − α√

2αB

Λ2
2

αB ≡ −m3
3/2M2

PlH

• The perturbative decay rate

Γγ→ππ '
(
αB

Λ2
2

)2 ω5(1− c2
s )2

480πc7
s

Γ/H0 . 1⇒ |αB| . 1010, Λ2 ∼ 10−3 eV
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Vainshtein effect on the instability

• Suppose π̂ is generated by a non-relativistic astrophysical object. The
object possibly gives a large kinetic matrix Z for δπ and healthy (shown by
Nicolis & Rattazzi) within rV (∼ kpc). One sees that within this region
the coupling δπT is suppressed and GR is recovered at small scales
(non-linear).

• Can this happen to the instability induced by GWs ? Suppose again π̂ is
sourced by an astrophysical object. δπ seems to acquire a large Z . The
parameter β of γππ seems to get suppressed due to a large Z and the
instability might be stopped by this screening mechanism. But this is not
the case for the GWs traveling over the cosmo. distances (� the typical
rV ) since at large distances one expects the linear perturbation theory is
recovered, so that the Vainshtein mechanism is negligible. Hence, the
argument of having large Z to suppress the instability is not applicable in
the presence of GWs traveling over cosmo. distances and the instability
still remains active.
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Instability of plane wave π̂

• Let π̂ = Af (u) (consider u-direction)

• �π̂(u) = −4∂u∂v π̂(u) = 0

• ∂2
t π̂(u) = Af ′′(u), ∂2

z π̂(u) = Af ′′(u), ∂t∂z π̂(u) = −Af ′′(u)

• Without GWs: Zµν ≡ −1
2η

µν − 2 (Kµν − ηµνK), we have

Z 00 =
1

2
+ 2

Af ′′(u)

Λ3
B

, Z 33 = −1

2
+ 2

Af ′′(u)

Λ3
B

, Z 03 = 2
Af ′′(u)

Λ3
B

Z 11 = Z 22 = −1/2

• Ghost: Z 00 < 0⇒ Af ′′ < −Λ3
B/4.

• No gradient: Z 11,Z 22 < 0 and (Z 03)2 − Z 33Z 00 = 1/4 > 0

• Non-diagonalizable Zµν : 2|Z 03| = |Z 00 + Z 33| (avoid the theorem)
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DGP - Self-accelerating Universe

κ = M3
5/M

2
Pl, rc = 1/κ ∼ H−1

• At decoupling limit of DGP ⇒
(∂π)2�π/Λ3, Λ3 = MPlκ

2

• Self-accelerating universe:
H = 2M3

5/M
2
Pl

• The brane bending mode π
becomes ghost in self-accelerating
branch

• π-instability w/ GWs ? (in progress)

Dvali, Gabadadze and Porrati 2000,

Luty et al. 2003 and many others
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DGP - Self-accelerating Universe

κ = M3
5/M

2
Pl, rc = 1/κ ∼ H−1

• At decoupling limit of DGP ⇒
(∂π)2�π/Λ3, Λ3 = MPlκ

2

• Self-accelerating universe:
H = 2M3

5/M
2
Pl

• The brane bending mode π
becomes ghost in self-accelerating
branch

• π-instability w/ GWs ? (in progress)

Dvali, Gabadadze and Porrati 2000,

Luty et al. 2003 and many others
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DGP - Infrared transparency

• A source J(x , y) ∼ δ(y)δ(3)(x)e iωt

• For r � ωr2
c : 4d behaviour

G (ω, r) ∼ e−iωr

r

• For r � ωr2
c : 5d behaviour

G (ω, r) ∼ rc
√
ωe−iωr

r3/2

• Further applications ? (in progress)

• Similar effect for localized gauge field (Dvali, Gabadadze, and Shifman 2000)
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DGP - Infrared transparency

• A source J(x , y) ∼ δ(y)δ(3)(x)e iωt

• For r � ωr2
c : 4d behaviour

G (ω, r) ∼ e−iωr

r

• For r � ωr2
c : 5d behaviour

G (ω, r) ∼ rc
√
ωe−iωr

r3/2

• Further applications ? (in progress)

• Similar effect for localized gauge field (Dvali, Gabadadze, and Shifman 2000)
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Backup Inflation
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EFT of Inflation: Large field limit

• Take M2 = M3 = 0. The operators πN>4 are suppressed by gNL.
π → −π is an approx. symmetry when gNL >> 1. The operators with odd
power will then be suppressed by gNL.

• Loop corrections to M2(δg00)2 and M3(δg00)3 also are suppressed by
gNL since their leading terms are odd in π.

• What about (δg00)n ?

- For n odd, these will be suppressed by approx. symmetry

- For n even, no suppression ⇒ consider all of them or the loop integral
can be cut at Λ < ΛU . At least they are down by (Λ/ΛU)#. Otherwise UV
completion is needed

• δg00 = 1 + g00 → −2π̇ + (∂µπ)2 under t → t + π
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EFT of Inflation: Large field limit

• Lζ from (δg00)4: (ζ = −Hπ)

Sζ =

∫
d4x
√−g |Ḣ|M

2
Pl

H2

[
(∂µζ)2 + gNL

1

H2
ζ̇4 + gNL

1

H3
ζ̇3(∂µζ)2 + . . .

]
• Comparison with L2:

L4

L2
∼ gNLζ

2 ∼ 1 ,
L5

L2
∼ gNLζ

3 = gNLζ
2ζ � 1

for gNL � 1 (Exp. gNL � 106).

• L5 becomes important (gNLζ
3 ∼ 1) when gNLζ

2 & g
1/3
NL

• If ζ ∼ 1 ⇒ all the terms inside each (δg00)n are important, e.g.
L5/L4 ∼ ζ.
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Connection to Stochastic approach

• They study the evolution of ζL outside horizon, compute its PDF using
Fokker-Planck eq and treating ζS as a quantum noise.

• Instead, our ζ freezes outside horizon (single field inflation). We study
non-perturbative effects at horizon crossing (derivative interaction), which
are fully quantum-mechanical. Therefore, our non-perturbative result has
no direct connection to the stochastic approach

• Some recently papers address this issue (connection between stochastic
approach and standard PT), e.g. Cruces and Germani 21, Green et al. 21,
Starobinsky et al. 21
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PDE with sinusoidal profile

• The Gaussian profile at ηc : ζ(r) ∼ ζ0 sin(kx)

small λ large λ

• This can be easily checked with perturbation theory
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Perturbative check with PDE sine wave

• Perturbative 4-pt: iS ′int = 3ζ2
0 λ̃k

3/(8192Pζ)

• Numerical: ∆S λ̃PDE = −(∆SPDE −∆S0
PDE )

Beyond Perturbation Theory in Inflation December 10th, 2021



Non-linearity 6= Breaking down of EFT

• It is not generally true that when the non-linearities become important
the EFT we are considering necessarily breaks down

• Take GR in which all the non-linear terms are controlled by
diff-invariance but the EFT (GR) is still valid as long as ∂/Λ is small

• It’s the same spirit as one considers the Vainshtein mechanism where
there is a regime which is dominated by non-linear term, but the EFT is
still valid

• The issue of instabilities has to be taken care of separately. We are not
saying that all the solutions to the non-linear EoM are healthy (also it
depends on the background we are expanding around). The presence of
instabilities might signal the need of the UV completion.
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Non-linearity 6= Breaking down of EFT

• Take X +X 2 in which the UV completion is known, but it does not mean
that once the non-linearity becomes important the IR theory breaks down

• One can also take the DBI action and work out all the non-linear terms
of DBI around φ0(t). Again the EFT action is valid even though the
non-linearities become important

• Of course the question whether the UV completion exists or not is
interesting on its own, but it does not really mean that the EFT breaks
down once the non-linear terms are important
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Non-linearity 6= Breaking down of EFT

• UV completion of X + X 2

• LIR = P(X ) with constant X background ⇒ Ghost + gradient inst.

The non-linear terms are contained in X 2

• LUV = −|∂φ|2 − λ(|φ|2 − v2)2 φ = φ0e
iπ, 〈φ0〉 = v2− X

2λ , X = −(∂π)2

• Around φ0(t), X + βX 2 yields

SE = i

∫
dηd3x

1

Pζ

{
1

2η2
[ζ
′2 + (∂iζ)2] +

λ

4!
(∂iζ)4 +

λc2
s

6η
ζ ′(∂iζ)2

+
λc2

s

12
ζ
′2(∂iζ)2 +

λc4
s

6η
ζ
′3 +

λc4
s

4!
ζ
′4

}
No suppression due to small c2

s since c2
s = (1 +βφ̇2

0)/(1 + 3βφ̇2
0) ∈ (1/3, 1)

• The suppression happens for −X + βX 2 for small c2
s ∈ (0, 1/3)
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Analytic Continuation

• The Euclidean rotation η → iz can be easily shown in perturbation
theory - order by order of the solution given the source is analytic

ζ(η, k) = K (η, k)ζ0
k +

∫ ηc

−∞(1−iε)
dη′ G (η, η′; k)

δSint
δζ(η′, k)

K (η, k) is bulk-boundary propagator

K (η, k) =
(1− ikη)

(1− ikηc)
e ik(η−ηc )
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Analytic Continuation

The bulk-bulk propagator

G (η, η′; k) =
−iH2

2k3

[
φ+(η)φ−(η′)− φ−(ηc)

φ+(ηc)
φ+(η′)φ+(η)

]
, |η| > |η′|

=
−iH2

2k3

[
φ+(η′)φ−(η)− φ−(ηc)

φ+(ηc)
φ+(η′)φ+(η)

]
, |η| < |η′|

φ−(η) ≡ (1 + ikη)e−ikη , φ+(η) ≡ (1− ikη)e ikη
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Analytic Continuation beyond PT

Euclidean Path-Integral

• Is this the only real solution in Euclidean space ?

- If yes, the Picard-Lefschetz thimbles ⇒ it is the only saddle that

contributes to path integral

- If not, there are contributions from complex saddles and one needs to
worry about the Stokes phenomenon (the jump in asymptotic behaviour ⇒
other saddles can dominate)

• In QM with quartic potential, there is only one real solution (Serone,
Spada, and Villadoro 17)
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Stokes phenomenon of Airy function

Ai(x) ≡ 1

2π

∫ ∞
−∞

dt e
i
3
t3+ixt

• For x ∈ R+, two imaginary saddles: ±i
√
|x | ⇒ Oscillatory

• For x ∈ R−, two real saddles: ±
√
|x | ⇒ Decaying and growing (neglect

the growing behaviour)

• Changing from negative to positive
the integral is dominated by different
saddles (Stokes phenomenon) -10 -5 5

-1.0

-0.5

0.5

1.0
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Stokes phenomenon of Airy function

• For complex Airy function

Ai(z) ∼ z−1/4 exp

(
− 2

3
z2/3

)
, Bi(z) ∼ z−1/4 exp

(
2

3
z2/3

)
• Stokes lines: Im(z2/3) = 0 ⇒ arg(z) = 0,±2π/3

• Anti-Stokes lines: Re(z2/3) = 0 ⇒ arg(z) = ±π/3, π

• Ai(z) is subdominant in
−π/3 < arg(z) < π/3, dominant
otherwise

• Bi(z) is dominant in
−π/3 < arg(z) < π/3,
subdominant otherwise

(Mariño, Pasquetti, and Putrov 10)
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Analytic Continuation beyond PT

Real time Path-Integral

• Not well-defined because of huge oscillatory behaviour

• Need to give iε to have a well-defined integral

- How many saddle points are there ? All of them contribute to

path-integral ?

- Are they analytic ? If yes, the full rotation to Euclidean can be done

• For real time instanton, the on-shell action with iε is the same as the
on-shell Euclidean action (Cherman and Unsal 14)

• For real time quantum tunneling, the solution with iε admits poles and
zeros in complex t-plane (Turok 14)
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Analytic Continuation beyond PT

• From dS to Euclidean AdS

ds2 =
1

H2η2
(−dη2 + dx2)

Perform η → iz and H → i/L

ds2 =
L2

z2
(dz2 + dx2)

• It has been shown that the functional integral can be analytically
continued from dS to EAdS once restricted on the analytic functions
(Harlow and Stanford 11)
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