Machine learning for people who
already know all the math.

Anton de la Fuente
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The best kind of ramen Is the one you can eat while doing your taxes.
At least, that's what the government's recently published "Ramen: The
Global Ramen Experiment” suggests.

Next, | will tell you about string theory. String theory is a mathematical
model of our universe, a theory that describes not only how our
spacetime is constructed, but how it is built into the fabric of reality.
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PIRNADRNDOFEZ U TcEF

& OpenAl



a tapir made of accordion
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Outline

 How is playing chess and writing text curve fitting?
e What do these functions look like?

 Why don’t we overfit or get stuck in a local minimum??
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Goal of machine learning
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Function domain and range
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Chess input space
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Chess output space
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How to play chess




Text-writing training data
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Kavli Institute for the Physics and Mathematics of the Universe

From Wikipedia, the free encyclopedia

The Kavli Institute for the Physics and Mathematics of the Universe (IPMU) is an international research institute for
physics and mathematics situated in Kashiwa, Japan, near Tokyo. Its full name is "Kavli Institute for the Physics and
Mathematics of the Universe, The University of Tokyo Institutes for Advanced Study, the University of Tokyo, Kashiwa,
Japan".

The main subjects of study at IPMU are particle physics, high energy physics, astrophysics, astronomy and
mathematics. The institute addresses five key questions: "How did the universe begin? What is its fate? What is it made
of? What are its fundamental laws? Why do we exist?"l]
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Kavli Institute for the Physics and
Mathematics of the Universe

#KAVLI
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MATHEMATICS OF THE UNIVERSE
Named after Kavli Foundation (United
States)

Predecessor Institute for the Physics and
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Sentences are a concatenation of words
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How to write text
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Multiple class loss

Data = {(x,,v,)} y R VSN

one-hot

labela — Index of non-zero element



Multiple class loss

N, data
Loss(0) = — ) Inpjpe; (%, 0)
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Gradient Descent

0 = 0 — €dyLoss



Loss decreases during learning (optimization)
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Overfitting




Preventing Overfitting

Underfitting Overfitting
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. ocal Minimum?
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Stochastic Gradient Descent
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Stochastic Gradient Descent

Stochastic Gradient Descent (Gradient Descent
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Curve fitting inside a loop

generate data — curve fit —- generate data — curve fit — ---
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(PID variables)

(particle, p, cos @) — detector response







Transformer

self-attention “layer”

k1 k2




Transformer
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Training (next word prediction)
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Convolutional Neural Networks
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