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Classical integrable systems
Mechanical system with coordinates  satisfying 
the Lagrangian principle:

q1, …, qn

The trajectories of the system are critical points for 
an action functional 

S(γ) = ∫
t2

t1

L(q(t), ·q(t))dt

Euler-Lagrange equations
∂
∂t

∂L
∂ ·qi

=
∂L
∂qi



Momentum   pi :=
∂L
∂ ·qi

Energy H(q, p) :=
n

∑
i=1

pi
·qi − L(q, ·q)

L is a function on a space with coordinates (q1, …, qn, ·q1, …, ·qn)

Equivalently, after changing the coordinates, a function on 

 the so called phase space 

M := {(q1, …, qn, p1, …, pn)}

Euler-Lagrange equations turn into  

Hamilton equations

∂qi

∂t
=

∂H
∂pi

∂pi

∂t
= −

∂H
∂qi



Poisson bracket: {H1, H2} :=
n

∑
i=1

(∂H1

∂pi

∂H2

∂qi
−

∂H1

∂qi

∂H2

∂pi
)

Conservation laws:  given a Hamiltonian system with Hamiltonian H

G(q(t), p(t)) = const ⇔ {H, G} = 0

Liouville integrable system:

(i) There are n independent conservation laws G1, …, Gn

(ii) The conserved quantities pairwise Poisson commute

{Gi, Gj} = 0



Liouville-Arnold theorem

If a Hamiltonian system is Liouville integrable with conserved  

quantities  and the Hamiltonian flows of  are  

complete, then the map 

 

is a smooth fibration with fiber .

G1, …, Gn Gi

(G1, …, Gn) : M → ℝn

(S1)k × ℝn−k



Examples

1) Free particle:   .  

 

2) Kepler’s problem 

3) Coupled oscillators

H = p2
1 + p2

2 + p2
3

G1 = p1, G2 = p2, G3 = p3

H =
p2

1

2
+

p2
2

2
+

2

∑
i,j=1

kijqiqj

G1 = H, G2 =
q2

1

2
+

q2
2

2
+

2

∑
i,j=1

k̃ij pipj



KdV 
A model for waves in shallow water

ut + u ux +
1
12

uxxx = 0

Korteweg-de Vries (KdV) equation

Introduced in the 2nd half of 19th century by Boussinesq, 
Kortweweg, and de Vries.



It is an Euler-Lagrange equation for a 2d field theory 

                                  

where  is a scalar field .  

Miura, Gardner, Kruskal (1968): KdV is integrable, that is, it admits an 
infinite sequence of conserved quantities.  

This is the beginning of a new subject: integrable systems in 2d field 
theories, i.e., integrable systems on loop/path spaces of manifolds. 

S = ∬ℝ2

L(ϕ, ϕx, ϕt, ϕxx)dxdt

ϕ = ϕ(x, t) u(x, t) = ϕx(x, t)



Dirac fermions 
Space time  equipped with Minkowski metric 

standard flat coordinates:   

Fields:         and  

Lagrangian:       

Action:  

, 

where  

M = ℝ1 × S1

x = (x0, x1) ↦ (x0, eix1) ∈ M

ψ = (ψ1(x)
ψ2(x)) ψ† = (ψ†

1(x), ψ†
2(x))

L = i ψ† ⋅ (∂0 − ∂1 0
0 ∂0 + ∂1) ψ

S = ∬M
L(ψ, ψ†) = ∫ℝ

∑
n∈ℤ

ψ†
n ⋅ (i∂0ψn + (n 0

0 −n) ψn)

ψ(x) =: ∑
n∈ℤ

ψn(x0) einx1, ψ†(x) =: ∑
n∈ℤ

ψ†
n(x0) e−inx1 .



H = ∑
n

(− n ψ†
n,1ψn,1 + n ψ†

n,2ψn,2) P = ∑
n

(n ψ†
n,1ψn,1 + n ψ†

n,2ψn,2)
Quantization:  

  creating anti-fermion with momentum   ψn,1 ↦ b†
−n −n (n > 0)

  creating fermion with momentum ψ†
n,2 ↦ a†

n n (n > 0)

  creating fermion with momentum ψ†
n,1 ↦ a†

n n (n < 0)

  creating anti-fermion with momentum ψn,2 ↦ b†
−n −n (n < 0)

ama†
n + a†

nam = δm,n bmb†
n + b†

nbm = δm,n

All operators anti-commute except for



Sato Grassmannian
 vector space of states created by  and  from the vacuum 

state . The Lie algebra of  matrices with finitely many 
non-zero entries acts on F 

                         

The action can be exponentiated and we define  

                      

F ψn,2 ψ†
n,2

|0⟩ ℤ × ℤ

A := (aij)i,j∈ℤ ↦ ∑
i,j

aij : ψ†
i,2 ψj,2 :

Gr := {eA |0⟩ | ∀A} ⊂ F(0)

Let us consider Dirac theory with interactions of the form 

∫ℝ
(∫S1

L(ψ, ψ†) − ∑
i,j

bijψ†
i,2 ψj,2)



The ground state of the deformed theory will be a point in .Gr

Mikio Sato: The solutions of the KdV hierarchy can be obtained 

from the points in !Gr

Boson-Fermion isomorphism:  F(0) ≅ ℂ[t1, t2, t3, …]

Jk := ∑
i

: ψ†
i ψi+k : Heisenberg Lie algebra [Jk, Jl] = k δk,−l

|0⟩ ↦ 1, Jk ↦
∂

∂tk
, J−k ↦ ktk

If we embed  in  via the Boson-Fermion  

isomorphism, then the Plucker relations turn into a system of  

PDEs known as Hirota Bilinear Equations (of the KP hierarchy). 

Gr ℂ[t1, t2, t3, …]



States   correspond to functions  called  

tau-functions. The quantization of the Dirac field  

corresponds to a vertex operator 

. 

The wave function  takes the form 

.  

The Plucker relations are equivalent to a system of PDEs 

                        , 

where  is a differential operator of order  whose 

coefficients depend on  and it’s -derivatives.

|Ω⟩ ∈ Gr τ(t1, t2, …)

ψ2(x)

Γ(z) = exp(
∞

∑
k=1

tkzk)exp(
∞

∑
k=1

∂k
z−k

−k ), z = e−ix1 ∈ S1

ψ2(x) |Ω⟩

Ψ(z, t) = τ(t1 − z−1, t2 − z−2/2,t3 − z−3/3,…) exp(
∞

∑
k=1

tkzk)

∂kΨ(z, t) = Bk(Ψ, ∂1)Ψ(z, t)

Bk = ∂k
1 + ⋯ k

Ψ t1



How to recover the solutions to the KdV equation?  

Suppose that  is independent of the even  

variables. Put . Then one can check that 

                    and that     . 

This is non-trivial only if  is odd . If , after setting  

 and , we get precisely the KdV equation.

τ(t1, t3, t5, …) ∈ Gr

L := B2 = ∂2
1 + u

Bk = (Lk/2)+ ∂kL = [Bk, L]

k ≥ 3 k = 3

t1 := x t3 := t



Kac-Wakimoto hierarchies
Main ingredients of Sato’s construction of the KP hierarchy: 

1) Lie algebra . 

2) Representation  of  that can be exponentiated. 

3) Heisenberg Lie sub algebra  whose Fock representation is . 

4) Bi-linear operator  acting on  and commuting with .

𝔤 = gl∞

V = F(0) 𝔤

𝔥 V

Ω V ⊗ V 𝔤

If  is an affine Lie algebra of type A,D, or E, then Kac-Peterson  

classified all Heisenberg subalgebras: they are in one-to-one  

correspondence with conjugacy classes of the Weyl group.

𝔤



Moreover, they proved that the Fock representation  
 extends to a representation  

of , where  is the dimension of the sub space of fixed points of 
an element  in the Weyl group (representing the conjugacy 
class). 

Kac and Wakimoto proved that Sato’s idea extends to all affine 
Lie algebras for any given conjugacy class in the Weyl group. 

ℂ[t]
t = (t1, t2, t3, …) ℂ[Q±1

1 , …, Q±1
r , t]

𝔤 r
w

Type Fock space

A Created by Dirac fermions

D Created by neutral fermions

E ???



Tau functions in GW theory

 smooth projective variety or more generally orbifold 

 nodal Riemann surface equipped with marked points 

 holomorphic map 

 is called a stable map if it does not have  

infinitesimal deformations

X :

Σ :

f :

(Σ, z1, …, zn, f )



moduli space of stable maps, such that, the  

Riemann surface has genus , there are  marked points and  

the degree of the map    is  , that is,   

ℳg,n(X, d) :=

g n

f d f*[Σ] = d ∈ H2(X, ℤ) .

Using the natural evaluation maps  and  

the line bundles  formed by the cotangent lines , we define 

the total descendent potential  

 

 

 basis of  and  are formal variables.

evi : ℳg,n(X, d) → X

Li T*zi
Σ

𝒟X(ℏ, t) :=

exp( ∑
g,n,d

ℏg−1Qd

n!
⟨ϕi1ψ

k1
1 , ϕi2ψ

k2
2 , …, ϕinψ

kn
n ⟩g,n,d tk1,i1⋯tkn,in)

ϕi(1 ≤ i ≤ N) H*(X) tk,i



GW invariants were introduced by Witten. They coincide with the 

correlation functions of a QFT known as the topological string. 

1) Witten conjectured and Kontsevich proved that  is a tau  

function of the KdV hierarchy.  

2) Egouchi-Hori-Yang conjectured that  is a highest weight vector 

for the Virasoro algebra. This is the main open problem in GW  

theory. 

3) Okounkov-Pandharipande computed the GW invariants when 

 is a Riemann surface. If , they proved the so called Toda 

conjecture:  is a tau function of the extended Toda hierarchy. 

Remark: the Toda hierarchy is a Kac-Wakimoto hierarchy of type  

 with conjugacy class  

𝒟pt

𝒟X

X X = ℙ1

𝒟ℙ1

A1 w = 1.



4) In collaboration with H.-H. Tseng and Y. Shen we proved 

that if  sphere with 3 orbifold points, such that,  

 (positive orbifold Euler characteristic), then 

 is a tau function of a Kac-Wakimoto hierarchy. 

X = ℙ1
a,b,c

1
a

+
1
b

+
1
c

> 1

𝒟X

composition of all reflections different from the red nodew =



5) Dubrovin-Zhang proved that if the quantum cohomology of  
is semi-simple, then the GW invariants define an integrable 
hierarchy. The DZ construction resembles the situation on slide 14 
— the integrable system there was defined using the Plucker 
relations. Dubrovin and Zhang used the Topological recursion 
relations  in GW theory and Virasoro constraints.  

a) DZ hierarchy can not be used to compute GW invariants! It is 
defined using GW invariants and  is tautologically a solution.

X

𝒟X

b) Nevertheless the result of Dubrovin and Zhang is very 
important for the theory of integrable systems. If we exclude the 
examples of integrable systems coming from the theory of 
simple or affine Lie algebras, then we will be left with very few 
examples. GW theory provides a huge class of examples that go 
beyond the theory of simple or affine Lie algebras. 



Hirota Quadratic Equations?
The DZ hierarchies admit the notion of a tau-function. Is the 

set of tau functions a manifold similar to Sato’s Grassmannian? 

My approach is the following: 

1) Construct HQEs for  .𝒟X

2) Prove that the HQEs define an integrable system. 

3) Prove that the integrable system coincides with the DZ 
hierarchy.

The most difficult step is 1). Nevertheless, it seems to be going in 

the right direction.



Lattice vertex algebras

Let  be a smooth projective variety, such that,  has a full 

exceptional collection. 

X Db(X)

Lattice  — the topological K-ring of X 

Euler pairing    

Intersection pairing   (E|F):=

Λ := K0(X)

χ(E, F) := ∑
i

(−1)i dim(Exti(E, F))

χ(E, F) + χ(F, E)

Let  be the K-theoretic classes of a full exceptional  

collection. Each  determines a reflection  

α1, …, αN

αi ri(x) := x − (αi |x)αi



Let W be the reflection group generated by all  . The smallest W- 

invariant subset R of  containing all  is called the set of reflection 
vectors. Let us recall the lattice vertex algebra 

                                

It is equipped with products  (one for each integer ), satisfying 

generalized Jacobi identities.  

Bakalov-M: If we can find a state , such that, 
 for all reflection vectors , then  

there is a general method to produce HQEs for .

ri

Λ αi

VΛ = ⨁
α∈Λ

ℂ[[αi, ∂αi, ∂2αi, …]]eα

v(n)w n

Ω ∈ VΛ ⊗ VΛ
(eα

(0) ⊗ 1 + 1 ⊗ eα
(0))Ω = 0 α

𝒟X



The general method is the following: quantum cohomology gives 

a family of Fuchsian connections whose local mondoromies are  

precisely the reflections . Using the solutions to the Fuchsian  

connection we construct vertex operators. The vertex operators  

define a twisted representation of . Therefore, the state  can  

be represented by a differential operator acting on .  

The coefficients of the differential operator are meromorphic  

functions in a parameter . The screening condition in the  

definition of  implies analyticity at we get a system 

of quadratic equations for the coefficients of . 

ri

VΛ Ω

𝒟X ⊗ 𝒟X

λ

Ω λ = 0 ⇒

𝒟X



There is a progress in understanding the kernel of the 
screening operators. If Q is a quiver, then we have a natural 
lattice, Euler pairing, and reflection vectors. The problem of 
finding the kernel of the screening operators makes sense. 

Kimura-Pestun: the qq-characters of Nekrasov define states in 
the  kernel of the screening operators. 

Unfortunately, lattices associated with quivers and K-rings 
rarely coincide. Nevertheless, if  with arbitrary , 
then the K-ring can be identified with a quiver lattice. The 
conjecture of Kimura and Pestun should give many interesting 
results in this case.

X = ℙ1
a,b,c a, b, c



Thank you!


