
Integrability in Quantum 
Field Theory

Todor Milanov

Kavli IPMU Colloquium

Sep 22, 2021



1. Classical integrable systems


2. KdV and Dirac Fermions


3. Kac-Wakimoto hierarchies


4. Tau functions in Gromov-Witten theory

Outline 



Classical integrable systems
Mechanical system with coordinates  satisfying 
the Lagrangian principle:

q1, …, qn

The trajectories of the system are critical points for 
an action functional 

S(γ) = ∫
t2

t1

L(q(t), ·q(t))dt

Euler-Lagrange equations
∂
∂t

∂L
∂ ·qi

=
∂L
∂qi



Momentum   pi :=
∂L
∂ ·qi

Energy H(q, p) :=
n

∑
i=1

pi
·qi − L(q, ·q)

L is a function on a space with coordinates (q1, …, qn, ·q1, …, ·qn)

Equivalently, after changing the coordinates, a function on


 the so called phase space 

M := {(q1, …, qn, p1, …, pn)}

Euler-Lagrange equations turn into 


Hamilton equations

∂qi

∂t
=

∂H
∂pi

∂pi

∂t
= −

∂H
∂qi



Poisson bracket: {H1, H2} :=
n

∑
i=1

(∂H1

∂pi

∂H2

∂qi
−

∂H1

∂qi

∂H2

∂pi
)

Conservation laws:  given a Hamiltonian system with Hamiltonian H

G(q(t), p(t)) = const ⇔ {H, G} = 0

Liouville integrable system:

(i) There are n independent conservation laws G1, …, Gn

(ii) The conserved quantities pairwise Poisson commute

{Gi, Gj} = 0



Liouville-Arnold theorem

If a Hamiltonian system is Liouville integrable with conserved 


quantities  and the Hamiltonian flows of  are 


complete, then the map





is a smooth fibration with fiber .

G1, …, Gn Gi

(G1, …, Gn) : M → ℝn

(S1)k × ℝn−k



Examples

1) Free particle:   . 





2) Kepler’s problem


3) Coupled oscillators

H = p2
1 + p2

2 + p2
3

G1 = p1, G2 = p2, G3 = p3

H =
p2

1

2
+

p2
2

2
+

2

∑
i,j=1

kijqiqj

G1 = H, G2 =
q2

1

2
+

q2
2

2
+

2

∑
i,j=1

k̃ij pipj



KdV 
A model for waves in shallow water

ut + u ux +
1
12

uxxx = 0

Korteweg-de Vries (KdV) equation

Introduced in the 2nd half of 19th century by Boussinesq, 
Kortweweg, and de Vries.



It is an Euler-Lagrange equation for a 2d field theory


                                 


where  is a scalar field . 


Miura, Gardner, Kruskal (1968): KdV is integrable, that is, it admits an 
infinite sequence of conserved quantities. 


This is the beginning of a new subject: integrable systems in 2d field 
theories, i.e., integrable systems on loop/path spaces of manifolds.


S = ∬ℝ2

L(ϕ, ϕx, ϕt, ϕxx)dxdt

ϕ = ϕ(x, t) u(x, t) = ϕx(x, t)



Dirac fermions 
Space time  equipped with Minkowski metric


standard flat coordinates:  


Fields:         and 


Lagrangian:      


Action: 


,


where  

M = ℝ1 × S1

x = (x0, x1) ↦ (x0, eix1) ∈ M

ψ = (ψ1(x)
ψ2(x)) ψ† = (ψ†

1(x), ψ†
2(x))

L = i ψ† ⋅ (∂0 − ∂1 0
0 ∂0 + ∂1) ψ

S = ∬M
L(ψ, ψ†) = ∫ℝ

∑
n∈ℤ

ψ†
n ⋅ (i∂0ψn + (n 0

0 −n) ψn)

ψ(x) =: ∑
n∈ℤ

ψn(x0) einx1, ψ†(x) =: ∑
n∈ℤ

ψ†
n(x0) e−inx1 .



H = ∑
n

(− n ψ†
n,1ψn,1 + n ψ†

n,2ψn,2) P = ∑
n

(n ψ†
n,1ψn,1 + n ψ†

n,2ψn,2)
Quantization: 


  creating anti-fermion with momentum   ψn,1 ↦ b†
−n −n (n > 0)

  creating fermion with momentum ψ†
n,2 ↦ a†

n n (n > 0)

  creating fermion with momentum ψ†
n,1 ↦ a†

n n (n < 0)

  creating anti-fermion with momentum ψn,2 ↦ b†
−n −n (n < 0)

ama†
n + a†

nam = δm,n bmb†
n + b†

nbm = δm,n

All operators anti-commute except for



Sato Grassmannian
 vector space of states created by  and  from the vacuum 

state . The Lie algebra of  matrices with finitely many 
non-zero entries acts on F


                        


The action can be exponentiated and we define 


                      

F ψn,2 ψ†
n,2

|0⟩ ℤ × ℤ

A := (aij)i,j∈ℤ ↦ ∑
i,j

aij : ψ†
i,2 ψj,2 :

Gr := {eA |0⟩ | ∀A} ⊂ F(0)

Let us consider Dirac theory with interactions of the form


∫ℝ
(∫S1

L(ψ, ψ†) − ∑
i,j

bijψ†
i,2 ψj,2)



The ground state of the deformed theory will be a point in .Gr

Mikio Sato: The solutions of the KdV hierarchy can be obtained


from the points in !Gr

Boson-Fermion isomorphism:  F(0) ≅ ℂ[t1, t2, t3, …]

Jk := ∑
i

: ψ†
i ψi+k : Heisenberg Lie algebra [Jk, Jl] = k δk,−l

|0⟩ ↦ 1, Jk ↦
∂

∂tk
, J−k ↦ ktk

If we embed  in  via the Boson-Fermion 


isomorphism, then the Plucker relations turn into a system of 


PDEs known as Hirota Bilinear Equations (of the KP hierarchy). 

Gr ℂ[t1, t2, t3, …]



States   correspond to functions  called 


tau-functions. The quantization of the Dirac field 


corresponds to a vertex operator


.


The wave function  takes the form


. 


The Plucker relations are equivalent to a system of PDEs


                        ,


where  is a differential operator of order  whose


coefficients depend on  and it’s -derivatives.

|Ω⟩ ∈ Gr τ(t1, t2, …)

ψ2(x)

Γ(z) = exp(
∞

∑
k=1

tkzk)exp(
∞

∑
k=1

∂k
z−k

−k ), z = e−ix1 ∈ S1

ψ2(x) |Ω⟩

Ψ(z, t) = τ(t1 − z−1, t2 − z−2/2,t3 − z−3/3,…) exp(
∞

∑
k=1

tkzk)

∂kΨ(z, t) = Bk(Ψ, ∂1)Ψ(z, t)

Bk = ∂k
1 + ⋯ k

Ψ t1



How to recover the solutions to the KdV equation? 


Suppose that  is independent of the even 


variables. Put . Then one can check that


                    and that     .


This is non-trivial only if  is odd . If , after setting 


 and , we get precisely the KdV equation.

τ(t1, t3, t5, …) ∈ Gr

L := B2 = ∂2
1 + u

Bk = (Lk/2)+ ∂kL = [Bk, L]

k ≥ 3 k = 3

t1 := x t3 := t



Kac-Wakimoto hierarchies
Main ingredients of Sato’s construction of the KP hierarchy:


1) Lie algebra .


2) Representation  of  that can be exponentiated.


3) Heisenberg Lie sub algebra  whose Fock representation is .


4) Bi-linear operator  acting on  and commuting with .

𝔤 = gl∞

V = F(0) 𝔤

𝔥 V

Ω V ⊗ V 𝔤

If  is an affine Lie algebra of type A,D, or E, then Kac-Peterson 


classified all Heisenberg subalgebras: they are in one-to-one 


correspondence with conjugacy classes of the Weyl group.

𝔤



Moreover, they proved that the Fock representation  
 extends to a representation  

of , where  is the dimension of the sub space of fixed points of 
an element  in the Weyl group (representing the conjugacy 
class).


Kac and Wakimoto proved that Sato’s idea extends to all affine 
Lie algebras for any given conjugacy class in the Weyl group.


ℂ[t]
t = (t1, t2, t3, …) ℂ[Q±1

1 , …, Q±1
r , t]

𝔤 r
w

Type Fock space

A Created by Dirac fermions

D Created by neutral fermions

E ???



Tau functions in GW theory

 smooth projective variety or more generally orbifold


 nodal Riemann surface equipped with marked points


 holomorphic map


 is called a stable map if it does not have 


infinitesimal deformations

X :

Σ :

f :

(Σ, z1, …, zn, f )



moduli space of stable maps, such that, the 


Riemann surface has genus , there are  marked points and 


the degree of the map    is  , that is,   

ℳg,n(X, d) :=

g n

f d f*[Σ] = d ∈ H2(X, ℤ) .

Using the natural evaluation maps  and 


the line bundles  formed by the cotangent lines , we define


the total descendent potential 








 basis of  and  are formal variables.

evi : ℳg,n(X, d) → X

Li T*zi
Σ

𝒟X(ℏ, t) :=

exp( ∑
g,n,d

ℏg−1Qd

n!
⟨ϕi1ψ

k1
1 , ϕi2ψ

k2
2 , …, ϕinψ

kn
n ⟩g,n,d tk1,i1⋯tkn,in)

ϕi(1 ≤ i ≤ N) H*(X) tk,i



GW invariants were introduced by Witten. They coincide with the


correlation functions of a QFT known as the topological string.


1) Witten conjectured and Kontsevich proved that  is a tau 


function of the KdV hierarchy. 


2) Egouchi-Hori-Yang conjectured that  is a highest weight vector


for the Virasoro algebra. This is the main open problem in GW 


theory.


3) Okounkov-Pandharipande computed the GW invariants when


 is a Riemann surface. If , they proved the so called Toda


conjecture:  is a tau function of the extended Toda hierarchy.


Remark: the Toda hierarchy is a Kac-Wakimoto hierarchy of type 


 with conjugacy class 


𝒟pt

𝒟X

X X = ℙ1

𝒟ℙ1

A1 w = 1.



4) In collaboration with H.-H. Tseng and Y. Shen we proved


that if  sphere with 3 orbifold points, such that, 


 (positive orbifold Euler characteristic), then


 is a tau function of a Kac-Wakimoto hierarchy. 

X = ℙ1
a,b,c

1
a

+
1
b

+
1
c

> 1

𝒟X

composition of all reflections different from the red nodew =



5) Dubrovin-Zhang proved that if the quantum cohomology of  
is semi-simple, then the GW invariants define an integrable 
hierarchy. The DZ construction resembles the situation on slide 14 
— the integrable system there was defined using the Plucker 
relations. Dubrovin and Zhang used the Topological recursion 
relations  in GW theory and Virasoro constraints. 


a) DZ hierarchy can not be used to compute GW invariants! It is 
defined using GW invariants and  is tautologically a solution.

X

𝒟X

b) Nevertheless the result of Dubrovin and Zhang is very 
important for the theory of integrable systems. If we exclude the 
examples of integrable systems coming from the theory of 
simple or affine Lie algebras, then we will be left with very few 
examples. GW theory provides a huge class of examples that go 
beyond the theory of simple or affine Lie algebras.




Hirota Quadratic Equations?
The DZ hierarchies admit the notion of a tau-function. Is the


set of tau functions a manifold similar to Sato’s Grassmannian?


My approach is the following:


1) Construct HQEs for  .𝒟X

2) Prove that the HQEs define an integrable system.


3) Prove that the integrable system coincides with the DZ 
hierarchy.

The most difficult step is 1). Nevertheless, it seems to be going in


the right direction.



Lattice vertex algebras

Let  be a smooth projective variety, such that,  has a full


exceptional collection. 

X Db(X)

Lattice  — the topological K-ring of X


Euler pairing   


Intersection pairing   (E|F):=

Λ := K0(X)

χ(E, F) := ∑
i

(−1)i dim(Exti(E, F))

χ(E, F) + χ(F, E)

Let  be the K-theoretic classes of a full exceptional 


collection. Each  determines a reflection 


α1, …, αN

αi ri(x) := x − (αi |x)αi



Let W be the reflection group generated by all  . The smallest W-


invariant subset R of  containing all  is called the set of reflection 
vectors. Let us recall the lattice vertex algebra


                               


It is equipped with products  (one for each integer ), satisfying


generalized Jacobi identities. 


Bakalov-M: If we can find a state , such that, 
 for all reflection vectors , then 


there is a general method to produce HQEs for .

ri

Λ αi

VΛ = ⨁
α∈Λ

ℂ[[αi, ∂αi, ∂2αi, …]]eα

v(n)w n

Ω ∈ VΛ ⊗ VΛ
(eα

(0) ⊗ 1 + 1 ⊗ eα
(0))Ω = 0 α

𝒟X



The general method is the following: quantum cohomology gives


a family of Fuchsian connections whose local mondoromies are 


precisely the reflections . Using the solutions to the Fuchsian 


connection we construct vertex operators. The vertex operators 


define a twisted representation of . Therefore, the state  can 


be represented by a differential operator acting on . 


The coefficients of the differential operator are meromorphic 


functions in a parameter . The screening condition in the 


definition of  implies analyticity at we get a system


of quadratic equations for the coefficients of .


ri

VΛ Ω

𝒟X ⊗ 𝒟X

λ

Ω λ = 0 ⇒

𝒟X



There is a progress in understanding the kernel of the 
screening operators. If Q is a quiver, then we have a natural 
lattice, Euler pairing, and reflection vectors. The problem of 
finding the kernel of the screening operators makes sense.


Kimura-Pestun: the qq-characters of Nekrasov define states in 
the  kernel of the screening operators.


Unfortunately, lattices associated with quivers and K-rings 
rarely coincide. Nevertheless, if  with arbitrary , 
then the K-ring can be identified with a quiver lattice. The 
conjecture of Kimura and Pestun should give many interesting 
results in this case.

X = ℙ1
a,b,c a, b, c



Thank you!


