# Full Census of Supermassive Black Holes in the Early Universe

Masafusa Onoue (MPIA -> KIAA / Kavli IPMU)

APEC SEMINAR, IPMU, OCT 14, 2021, MASAFUSA ONOUE





PMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE



APEC SEMINAR, IPMU, OCT 14, 2021, MASAFUSA ONOUE

# Brief Overview of High-z QSO Studies

# Why Do We Care High-z SMBHs?



### SMBH formation paths (Inayoshi+2019)



• Cosmological evolution of BH accretion density w/ SFRD (Kormendy & Ho 2013)





### Known z>5.8 quasars (as of July 2021)

6.0 7.0 6.5 7.5 Redshift



- ~300 known at z>6 (<10 in Gpc<sup>-3</sup> per mag; M<sub>UV</sub>>-24)
  - Need >100 deg<sup>2</sup> coverage
  - SDSS/PS1/HSC/DES/UKIDSS/VIKING/WISE, etc.
- Frontier: z~7.5 (Bañados+18; Yang+20; Wang+21)
  - 8 at z>7, 50 at z>6.5
  - The low-luminosity regime dominated by the HSC sample (Matsuoka+16-19)
- z=8-10 discoveries expected in 2020s with Euclid, Roman, and Rubin



### **Rest-UV Spectrum**

Composite spectrum of luminous 6.3<z<7.6 quasars (Yang+21)</li>



- High-ionization BLR emission lines do show larger velocity blueshifts at higher-z

The rest-UV spectrum shapes of quasars does not show significant redshift evolution down to z=7.6!

### ▶ J1007+2115 at z=7.515 ("Poniua'ena"; Yang+20)



- Selection: J & WISE detection + color cuts
- $J_{AB}=20.20, M_{UV}=-26.66$
- $M_{BH} = 1.5 \times 10^9 M_{sun}, L_{bol}/L_{Edd} = 1.06$



▶ J0313-1806 at z=7.642 (Wang+21)



- Selection: J & WISE detection + color cuts
- $J_{AB}=20.92, M_{UV}=-26.13$
- $M_{BH} = 1.6 \times 10^9 M_{sun}, L_{bol}/L_{Edd} = 0.67$
- Strong BAL feature in CIV & SiIV (+ MgII?)

## **Billion-solar-mass SMBHs at z>7**

Growth history of known z>7 SMBHs (Wang+21)



- Known SMBHs at z>7.5 all have  $M_{BH} \sim 10^{9} M_{sun}$  (t<sub>uni</sub>~0.7Gyr)
- BH mass reaches only down to ~ $10^{4-5}$  M<sub>sun</sub> if constant Edd. Limit accretion is assumed
  - still too massive for stellar remnant seeds (<10  $^3$   $M_{sun}$ )
- ➡ Did SMBHs form through the DCBH channel?
- Or, they originated from light-seed channel and experienced super-Eddington phase?

# 1<sub>sun</sub>



• Dynamical mass vs SMBH mass at z=6 (Neeleman+21)



### BH growth first and host stellar mass growth next?



• Schematic diagram of SMBH-galaxy co-evolution (Volonteri12)



APEC SEMINAR, IPMU, OCT 14, 2021, MASAFUSA ONOUE

### **Deep NIR Spectroscopy of a z=7.54 QSO** Onoue+20, ApJ, 898, 105



## ULAS J1342+0928 at z=7.54

▶ NIR spectrum (FIRE 3.5 hr + GNIRS 4.7hr; Bañados+18)



◆ SMBH: M<sub>BH</sub>=8×10<sup>8</sup> M<sub>sun</sub>, L<sub>bol</sub>/L<sub>Edd</sub>=1.5 (Bañados+18; Onoue+20)

✦ Host: SFR=150M<sub>sun</sub>/yr, Dust mass: 4×10<sup>7</sup> M<sub>sun</sub> (Venemans+17, Novak+19), Merger? (Bañados+19)



ALMA dust (top) and [CII] 158 µm (bottom); Bañados+19



# **Deep Gemini**/ **GNIRS Follow-up**

- $+ T_{exp} = 9hr (+4.3hr from the discovery paper)$
- ◆ Data reduction: Pypelt (Prochaska+20)
- Continuum modeling: power-law + Balmer conti. + Fe forest (Tsuzuki+06 and Vestergaard & Wilkes 2001)
- Emission line modeling: single Gaussian

z=6 quasar composite (Shen+19) Expected line centers from [CII] 158um redshift







# **Blueshifts of High-ionization Lines**

Normalized BLR line profiles



Large BLR blueshift at z=7.5 in high ionization lines -> nuclear-scale outflow

### ▶ BLR blueshifts (wrt [CII] 158µm) vs ionization potential





- Fell/Mgll: "cosmic clock" (e.g., Hamann & Ferland 93) a-elements...SNe II, Fe...SNe Ia (t<sub>la</sub> ~ 1Gyr) -> time delay of Fe enrichment expected at z>6
- ♦ No Fell/Mgll break found up to to tuniv=0.7Gyr: PISNe or prompt SNIa?



 Large systematic uncertainties associated with rest-UV Fell/Mgll measurements due to different Fell+Felll templates (Woo+18, Shin+19) & continuum windows

APEC SEMINAR, IPMU, OCT 14, 2021, MASAFUSA ONOUE

### Low-luminosity Quasars at z>6



### >100 low-luminosity z=6-7 quasars found thanks to the moderately deep HSC-SSP imaging

### Quasar LF

### z=4-6 QLF (Matsuoka+18)



### QLF evolution at z=0-6 (Niida+20)



# Low-luminosity QSO at z=7

▶ HSC J1243+0100 at z=7.07 (Matsuoka, MO+19a)



### Large-scale outflow just starting to regulate host star formation: Propagation of nuclear-scale (BAL) wind, or radiation pressure-driven dusty wind?

Quasar-driven [CII] outflow (Izumi+21b)

### Early Bulge Formation at z ~ 7??

 $\widehat{\mathbf{S}}$ 

![](_page_19_Figure_1.jpeg)

Courtesy of T.Izumi

43

See also Smit+17; RIzzo+20; Neeleman+20

# Dust-Reddened Quasar at z=6.7

# ► VLT/XShooter spectrum of J1205-0000 (T<sub>exp</sub>=7hr)

![](_page_20_Figure_2.jpeg)

![](_page_20_Picture_3.jpeg)

### A modestly dust-obscured quasar found from the HSC's low-luminosity quasar sample at z>6

SED fitting with HSC/VIKING/WISE (Kato+20)

![](_page_20_Figure_8.jpeg)

# A Candidate Obscured Quasar at z>6

▶ J1423-0018 at z=6.13 (Matsuoka+18)

![](_page_21_Figure_2.jpeg)

MUV vs Lya luminosity of NL/BL quasars and LAEs

![](_page_21_Figure_4.jpeg)

![](_page_21_Picture_6.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

clear de

Chandra and MLT/XSHOOTER follow-up scheduled (with 3 giners)

U U

### MOSFIRE Y-band 2hr; Onoue+21

![](_page_22_Picture_5.jpeg)

![](_page_23_Picture_0.jpeg)

# **Cy1 JWST GO project:** *Full Census of SMBHs and Host* Galaxies at z=6

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_24_Picture_0.jpeg)

### Webb arrives at Pariacabo harbour

![](_page_24_Picture_2.jpeg)

The James Webb Space Telescope, a once in a generation space mission, arrived safely at Pariacabo harbour in French Guiana on 12 October 2021, ahead of its launch on an Ariane 5 rocket from Europe's Spaceport.

Webb, packed in a 30 m long container with additional equipment, arrived from California on board the MN Colibri which sailed the Panama Canal to French Guiana. The shallow Kourou river was specially dredged to ensure a clear passage and the vessel followed high tide to safely reach port.

The MN Colibri, like its sister vessel the MN Toucan, were built to ship Ariane 5 rocket parts from Europe to French Guiana. They were specifically designed to carry a complete set of Ariane 5

![](_page_24_Picture_7.jpeg)

![](_page_24_Picture_8.jpeg)

# Cy1 GO programs (High-z QSO only)

| ID   | program                                                                                                                         | PI                                                                                 | Prime/<br>Parallel Time | instrument                                     | science                                                                                               | targets                                                                                             | Note                                                      |
|------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1554 | Nebular line diagnostics in a merger<br>at cosmic dawn                                                                          | Dr. R. Decarli                                                                     | 7.8                     | NIRSpec IFU G395H                              | z=6.2 merger in Decarli+19<br>(M*, SFR, ionized gas kinematics,<br>metallicity, ionization parameter) | PJ308-21                                                                                            | Satellite gal<br>tidal-strippir<br>signature se<br>+ ALMA |
| 1760 | First Accreting BH candidates" IR-<br>dropout heavily obscured X-ray<br>AGNs                                                    | Dr. H. Suh                                                                         | 23.6                    | NIRSpec FS G395H + MIRI<br>LRS                 | Spec confirmation of IR-dropout obscured X-ray sources                                                | 7 IRAC sources in COSMOS                                                                            | DCBHs or heat obscured AGN                                |
| 1764 | A Comprehensive JWST View of the<br>Most Distant QSOs Deep into the<br>EoR                                                      | Prof. X. Fan<br>Dr. J. Yang<br>Dr. E. Bañados                                      | 65.5/8.6                | NIRCam + MIRI imaging/<br>MRS + NIRSpec FS/IFU | Everything on highest-z qsos (host, environment, BH mass, BLR, IGM)                                   | Three z=7.5 QSOs                                                                                    |                                                           |
| 1813 | Unveiling Stellar Light from Host<br>Galaxies at z=6 QSOs                                                                       | Dr. M. Marshall                                                                    | 15.9                    | NIRCam F150W, F200W,<br>F277W, F356W, F444W    | Host (SED, M*), companions                                                                            | J2054<br>J0129 (both SDSS)                                                                          | HST+ALMA p<br>in Marshall+20                              |
| 1964 | The Role of Radio AGN Feedback in Massive Galaxies at z=4-6                                                                     | Prof. R. Overzier<br>Dr. A. Saxena                                                 | 23.8                    | NIRSpec IFU                                    | HzRGs (ionized gas kinematics and metallicity, host stellar population)                               | TN J1338-1942<br>TGSS J1530+1049                                                                    | Most distant ra<br>galaxies                               |
| 1967 | A Complete Census of SMBHs and<br>Host Galaxies at z=6                                                                          | Dr. M. Onoue<br>Prof. Y. Matsuoka<br>Prof. J. Silverman<br>Dr. T.Izumi, Dr. X.Ding | 49.5                    | NIRCam + NIRSpec                               | Host M* + BH mass, BHMF, BLR, etc.                                                                    | 12 lowest-L QSOs                                                                                    |                                                           |
| 2028 | Mapping a Distant Protocluster<br>Anchored by a Luminous QSO in<br>the EoR                                                      | Dr. F. Wang<br>Dr. J. Yang                                                         | 16.3/5.8                | NIRSpec MSA+IFU                                | Protocluster member confirmation<br>(targets from HST pre-imaging) +<br>quasar characterization       | z=6.63 QSO field                                                                                    | Protocluster ic with HSC+JCI                              |
| 2249 | Monster in the Early Universe:<br>Unveiling the Nature of a Dust<br>Reddened QSO Hosting a 10 <sup>10</sup><br>Msun BH at z=7.1 | Dr. F. Wang<br>Dr. J. Yang                                                         | 5.5                     | NIRSpec IFU + MIRI Imaging                     | Constraining dust extinction, BH mass                                                                 | J0038-0653                                                                                          | Unpublished o                                             |
| 2078 | ASPIRE: A JWST QSO Legacy<br>Survey                                                                                             | Dr. F. Wang<br>Prof. X. Fan<br>Prof. J. Hennawi                                    | 61.5/29.6               | NIRCam WFSS                                    | Large-scale environments                                                                              | 25 QSOs at<br>6.5 <z<6.8< th=""><th>350 galaxies a<br/>from Slitless<br/>spectroscopy</th></z<6.8<> | 350 galaxies a<br>from Slitless<br>spectroscopy           |
| 2073 | Towards Tomographic Mapping of<br>EoR QSO Light Echos with JWST                                                                 | Prof. J. Hennawi<br>Dr. F. Davies                                                  | 24.3/6.3                | NIRCam + NIRSpec MOS                           | QSO light echos                                                                                       | J0252-0503<br>J1007+2115                                                                            |                                                           |

![](_page_25_Figure_2.jpeg)

# **Targets: Lowest-luminosity Quasars at z=6**

Discovery spectra of 12 JWST targets (y<sub>HSC</sub>=23.0-24.8 AB mag, 10 from QLF sample) -> least-biased SMBH sample!

![](_page_26_Figure_2.jpeg)

![](_page_26_Figure_3.jpeg)

![](_page_27_Picture_0.jpeg)

- NIRCam Imaging (FoV: 2.2x2.2 amin<sup>2</sup>)
  - Filter: F150W + F356W (straddling 4000A break)
- Quasar- Host decomposition
  -> host stellar light detection!
  - M\*, age, companions, environment, etc.

### ► NIRCam simulation: J0859 (M<sub>BH</sub>=10<sup>7.6</sup>M<sub>sun</sub>, M<sub>\*</sub>=10<sup>10.7</sup>M<sub>sun</sub>), Courtesy of X.Ding

![](_page_27_Figure_6.jpeg)

![](_page_28_Picture_0.jpeg)

- NIRCam Imaging (FoV: 2.2x2.2 amin<sup>2</sup>)
  - Filter: F150W + F356W \_ (straddling 4000A break)
- Quasar- Host decomposition -> host stellar light detection!
  - **M**\*, age, companions, environment, etc. -

 Mean (and scatter of) M<sub>BH</sub> / M\* ratio at z=6 -> Do BHs and galaxies grow together, or one went faster than the other? -> 12 faintest z=6 quasars = the *least-biased* BH sample

![](_page_28_Picture_6.jpeg)

- NIRSpec Fixed-Slit spectroscopy
  - Grism: G395M (R=1000), 2.87-5.27µm (rest 4000-7300Å, incl. many Balmer lines)
- Rest-optical emission line measurements
  - $H\beta$ -based  $M_{BH}$ , [OIII] gas outflow, etc.

![](_page_28_Picture_13.jpeg)

# z>6 SMBH mass - Lbol distribution

![](_page_29_Figure_1.jpeg)

# **ALMA Views of Co-evolution at z>6**

![](_page_30_Figure_1.jpeg)

Less-biased low-luminosity quasars essential to trace the general SMBH trend **Consistent with a recent hydrodynamical model prediction** 

See also Wang+15; Izumi+18; Pensabene+20; Marshall+20ab; Neeleman+21

![](_page_30_Picture_7.jpeg)

![](_page_31_Figure_0.jpeg)

Consistent with a recent hydrodynamical model prediction

Neeleman+21

### **Redshift Evolution of M<sub>BH</sub>/M\* Ratio** 10 15 20 Host stellar mass measurements at z~1.5 (Ding+20) data QSO 2.PFS model Host (=1-2) 1.HST Residual Host CID1174 Illustris Radial profile **TNG100** TNG300 0.2 0.1 0.5 1.0 2.0 Ζ arcsec Horizon-AGN 0.5 2.5 1.5 $\Delta \log_{10} M_{BH}/M * (M_{dyn})$ 3.5 EAGLE • Local by Bennert+11 Intermediate redshift AGNs 3.0 • Local by H&R $\star$ This work 2.5 ×2.7 from z=0: BH-dominant growth? (but consistent with no evolution when ∆logM<sub>BH</sub> (vs M∗) 2.0 selection effect taken into account) 1.5 1.0 0.5 $\hat{x}$ 3 $\sigma$ from this proposal 0.0 -0.5 -1 HS1 -1.0 M\*: HST image -1.5 MBH: Ha $-2.0 \stackrel{\square}{=} 0.0$ 0 0.2 0.3 0.4 0.1 0.5 redshift log(1+z)

Prediction from six cosmological simulations (Habouzit+ in prep.): Completely different predictions due to different modeling of AGN feedback

![](_page_32_Figure_3.jpeg)

![](_page_32_Figure_5.jpeg)

- next-generation survey telescopes in mid-to-late 2020s
- outflow and metal-rich BLR gas
- that may hold the key to understanding the triggering mechanism of high-z quasars
- of the universe

![](_page_33_Picture_5.jpeg)

♦ Wide-field optical and NIR surveys have revealed ~300 EoR quasars up to z=7.5. More to come with

 $\bullet$  Deep NIR spectroscopy of ULAS J1342+0928 at z=7.54 suggests the presence of strong nuclear-scale

The z>6 low-luminosity quasar search with the HSC-SSP has revealed obscured quasar populations

 $\bullet$  With JWST and ground-based follow-up observations of z>6 low-luminosity quasars, we will derive the comprehensive picture of SMBHs, host galaxies, and their relative growth within the first billion years