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Asymptotic series in QFT

Many if not most series in QFT are asymptotic, i.e. divergent (Dyson 1953).
Typically they are of the form:

FN (g) =
N∑

k=1
akgk , ak ∼ A−kk! k � 1. (1.1)

Where an optimal truncation makes an error of order ∼ e−|A/g|.

We can try Borel (re)summation (1899). The Borel transform of a series is given by

ϕ(z) ≈
∑
k≥0

ckzk → ϕ̂(ζ) =
∑
k≥0

ck
k!
ζk (1.2)

If ϕ is Borel summable and we recover the “true” function ϕ(z) from the Borel sum

s(ϕ)(z) =
∫ ∞

0
e−ζϕ̂(zζ)dζ. (1.3)
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Ambiguity strikes back

If we Borel transform the example from before with A > 0

Fp(g) ∼
∞∑

k≥0
(A−kk!)gk ⇒ F̂(ζ) =

1
1 − ζ/A

(1.4)

There’s a pole on R+! We can deform the contour to go slightly above or below
the real axis. But an ambiguity remains

s+(F)(g)− s−(F)(g) = 2πiAg−1e−A/g (1.5)

Figure 1: Deformed contours.
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The transseries

Ambiguities can be cancelled by non-perturbative sectors. The “true” function is
then given by a trans-series

Φ(z) =
∑
k≥0

ckzk +
∑

i
C±

i e−Ai/zzbi
∑
k≥0

c(i)k zk + · · · (1.6)

In order to cancel ambiguities the trans-series parameters C±
i must depend

themselves on the ray in the complex plane where we perform the Borel
summation.

We saw an example where

s+(F)(g)− s−(F)(g) = 2πiAg−1e−A/g (1.7)

To cancel we must have

C+ − C− = −2πiA, b = −1, c0 = 1. (1.8)
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Resurgence itself

Generally the closest singularity in the trans-series (top) implies a contribution to
the asymptotic behaviour of the perturbative series (bottom)

C±
1 g−b1e−A1/g (ψ1,0 +O(g)) , C+

1 = C−
1 − iS1

⇔

ck ∼ S1
2π

A−k−b1
1 Γ(k + b1)

(
ψ1,0 +O(k−1)

)
, k � 1,

(1.9)

The constant S1 is sometimes called the Stokes constant.

Thus the perturbative series, and its Borel transform, knows a lot about the
transseries sectors!

However it doesn’t know everything, we can see the “jump” S1

but not the actual values of C±
1 . Often we have to fix those with other methods

like numerics.
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The resurgence program in QFT

We can then take the following ideas to the study of QFT

QFT observables are given by Borel summations of trans-series, which are
unambiguous, making sense of perturbative and non-perturbative physics.

We can use large order behaviour of perturbative QFT to probe
non-perturbative effects.
Often, this is enough to specify the structure of the trans-series (e.g. the Ai ,
c(i)k , Si) up to overall constants.
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Work to do

With this in mind, for a given QFT (and eventually for any QFT) we can ask

What can we learn about the transseries and its non-perturbative sectors
from the large order behaviour of perturbation theory?

What is the physical interpretation of the non-perturbative sectors we find?
Is what we find from the large order behaviour the full transseries?
Can we find the value of the trans-series parameters numerically?
Can we derive them analytically?
Can we construct the full transseries systematically?
Can we have a physical first principles construction of the transseries (for
example from a path integral)?
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Work to do

Today I will show how, in some integrable field theories, we tackle

What can we learn about the transseries and its non-perturbative sectors
from the large order behaviour of perturbation theory?
What is the physical interpretation of the non-perturbative sectors we find?
Is what we find from the large order behaviour the full transseries?
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Meet the renormalons

Why are series factorially divergent?

With instantons, coefficients are factorially
divergent because of the number of Feynman diagrams at each order.

But a series can also diverge because individual Feynman diagrams through their
momenta integration become too big. We call this a renormalon effect
(discovered in renormalizable theories, and baptised in analogy with instantons.).

Figure 2: A typical renormalon diagram in particle physics.
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What renormalons are not

For instantons we have a semi-classical picture of non-trivial saddle points.

There is no general path integral description of renormalons. There is work in that
direction by Dunne et al., but there could be no semi classical description at all!

However, they are certainly important. They are expected in asympotically free
theories. Notably, there is a renormalon effect in QCD (it is the dominant pole in
the positive real axis, beating the instanton one!).

What do we know about renormalons?
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What’s in a name?

From renormalization and diagrammatic arguments, Parisi (1978) and ’t Hooft
(1979) argued that in asymptotically free theories, the Borel transform of an
observable F(g) should have singularities at

ζ =
`

2|β0|
(2.10)

for ` integer (positive or negative) and β0 the first coefficient of the β-function of
the coupling g. This was verified for some examples.

We can interpret this as meaning that non-pertubative effects are proportional to
an integer power of the dynamically generated scale (i.e. ∝ Λ`), which for some
observables can be motivated through the OPE.

But is this true in general? To study the perturbative series we need a lot of
coefficients, this can be very hard!
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Bethe(r) idea

”A man grows stale if he works all the time on insoluble problems, and a trip to
the beautiful world of one dimension will refresh his imagination better than a
dose of LSD.” - Freeman Dyson

Integrable models like

O(N ) Gross-Neveu model (GN), a fermion vector model
O(N ) non-linear sigma model (NLSM), a vector valued sigma-model
N = 1 supersymmetric O(N ) non-linear sigma model
SU (N )× SU (N ) principal chiral field (PCF) , a matrix valued sigma-model

are both very rich asymptotically free theories and admit a Bethe ansatz solution.
For example, their mass gaps were computed exactly in the 90’s (Forgacs et al.
Hasenfratz et al., Evans et al., Balog et al., ...)
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Unleash the particles

In order to use integrability to our advantage, we add a chemical potential h > m
coupled to a conserved charge Q such that it excites a single species of particles
of the lowest mass m in the ground state

H→ H− hQ. (2.11)

In this case the ground state, populated by particles, can be described by the
Bethe ansatz integral equation

ε(θ)−
∫ B

−B
K(θ − θ′)ε(θ′)dθ′ = h − m cosh θ, ε(±B) = 0, (2.12)

where ε is like a Fermi density over rapidities θ. B is a function of h specified by
the “Fermi level”, and the kernel K is specified by the S-matrix of the excited
particles, which is known exactly thanks to integrability.
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In a previous episode...

Thanks to a method by Volin, at weak coupling (B � 1) one can can turn the
integral equation into a series of recursive algebraic solution that give the
perturbative expansion of the solution and some observables. This can be done
exactly (we get 40-50 coefficients) or numerically (Abbott et al. got ∼2000
coeffiecients for the O(4) NLSM).

An interesting observable is the free energy

F(h) = − m
2π

∫ B

−B
ε(θ) cosh θdθ . (2.13)

Using Volin’s method we tested that the leading large order behaviour of the
perturbative series of F(h) matched Parisi’s prediction with ` = 2.

But the integral
equation is an exact solution, it should know the full trans-series!
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The Gross Neveu model

Let us focus on the example of the Gross-Neveu model. We have N Majorana
fermion χ with a 4 point interaction

L =
i
2
χ̄ · /∂χ+

g2

8
(χ̄ · χ)2 (3.14)

The theory is asymptotically free, so we the running coupling is evaluated at scale
µ = h. The following expansions are equivalent

ḡ(h) � 1 ⇔ h � Λ ⇔ B � 1 (3.15)

but they all have different complications.

The most simple choice is to write our
results as a function of

1
α
+∆ logα = log

h
Λ
, α ∼ 2|β0|ḡ(h)2 ∼ 1/B (3.16)
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An adventure in (Fourier) space

The previous integral equation can be taken into Fourier space to apply
Wiener-Hopf type methods.

Our bestiary becomes

We split the Fourier transform of the kernel into

1 − K(ω) =
1

G+(ω)G+(−ω)
(3.17)

such that G+(ω) is analytic in the upper half plane. This function is our key
ingredient.
u(ω) is an unknown function. Finding u(ω) is equivalent to solving ε(θ).
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An adventure in (Fourier) space - part II

The integral equation is now

u(ω) = i
ω
+

1
2πi

∫
R

e2iBω′

ω + ω′ + i0
ρ(ω′)u(ω′)dω′, ρ(ω) = −ω + i

ω − i
G+(−ω)
G+(ω)

. (3.18)

The free energy can be found through

F(h) = − h2

2π
u(i)G+(0)2

{
1 − 1

2πi

∫
R

e2iBω′

ω − i
ρ(ω′)u(ω′)dω′

}
. (3.19)

What you need to know from these equations

We need to solve for u(ω) to find the free energy.
The key ingredient is ρ(ω) which is constructed from the kernel of the
original equation and ultimately derives from the S-matrix.
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To the complex plane and beyond

Let us take the integral

1
2πi

∫
R

e2iBω′

ω − i
ρ(ω′)u(ω′)dω′, ρ(ω) = −ω + i

ω − i
G+(−ω)
G+(ω)

, (3.20)

because of e2iBω′ we must deform upwards in the complex plane, and we can do
so around the positive imaginary axis but...

G+(−ω) is discontinuous along the positive imaginary axis
G+(−ω) has poles along the imaginary axis, whose residues have different
values depending on the branch. The poles are at

ω = iξk , ξk = (2k + 1)N − 2
N − 4

, k ∈ N (3.21)

So we must careful about how we proceed.
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A plot is worth more than 103 equations

ρ±0

ρ±1

ρ±2

ω

C

C+

ρ+0

ρ+1

ρ+2

C

C−

ρ−0

ρ−1

ρ−2

C

Figure 3: Deforming the contour in the complex plane.
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Non-perturbative effects appear

1
2πi

∫
R

e2iBω′

ω − i
ρ(ω′)u(ω′)dω′ =

1
2πi

∫
C±

e−2Bξ

ξ − 1
disc ρ(iξ)u(ξ)dξ

+ e−2Bρ(i ± 0)u(i) +
∑
n≥1

e−2Bξnρ±n
u(iξn)

ξn − 1

(3.22)

where ρ±n are the residues of ρ(ω) in the two branches.

Because we want the perturbative expansion, we must expand in 1/B.
Furthermore, we also need to do this in the equation for u , where we find the
same structure, and to apply boundary conditions.
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After filling in the details...

The sketch of what happens in the end is

1
2πi

∫
C±

e−2Bξ

ξ − 1
disc ρ(iξ)u(ξ)dξ → · · · → c0

B

{
1 +O

(
1
B

)}
e−2Bρ(i ± 0)u(i) → · · · → e−2BC±

0

e−2Bξnρ±n
u(iξn)

ξn − 1
→ · · · → e−2BξnC±

n

{
1 +O

(
1
B

)} (3.23)

where the C±
0,n depend on the branch choice through the ρ±n .
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The trans-series

We find an formal series with exponential suppressed terms and ambiguous
coefficients: the trans-series!

F(h) = − h2

2π

(1 +O(α))− e−
2
αα

2
N−2C±

0 +
∑
k≥1

e−
2k
α

N−2
N−4α

2k
N−4C±

k (1 +O(α))


(3.24)

(remember α ∼ 1/B ∼ 2|β0|ḡ(h)2).
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New renormalons

How does our analytic trans-series compare to renormalon predictions?
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Instead of Borel singularities

ζ =
k

|β0|
, k ∈ N

we have
ζ =

1
|β0|

,

and then

ζ =
k

|β0|(1 − r)
, r =

2
N − 2

So our trans-series is very different from what the standard lore predicted!
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New renormalons

How does our analytic trans-series compare to renormalon predictions?
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|�0|(1� r)
<latexit sha1_base64="Y4Qk8b4xM0VnNJM2PQsP98DqNDY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRSVDwVvHisYD+gDWWz2bRrN7thdyKU0v/gxYMiXv0/3vw3btsctPXBwOO9GWbmhangBj3v2ymsrW9sbhW3Szu7e/sH5cOjllGZpqxJlVC6ExLDBJesiRwF66SakSQUrB2Obmd++4lpw5V8wHHKgoQMJI85JWilVo9GCk2/XPGq3hzuKvFzUoEcjX75qxcpmiVMIhXEmK7vpRhMiEZOBZuWeplhKaEjMmBdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODQLHsz8T+vm2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0uHRBOKNqCSDcFffnmVtC6q/mW1dl+r1G/yOIpwAqdwDj5cQR3uoAFNoPAIz/AKb45yXpx352PRWnDymWP4A+fzB67djzA=</latexit>· · ·

Instead of Borel singularities

ζ =
k

|β0|
, k ∈ N

we have
ζ =

1
|β0|

,

and then

ζ =
k

|β0|(1 − r)
, r =

2
N − 2

So our trans-series is very different from what the standard lore predicted!
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Extraordinary claims require extraordinary evidence

If this is the trans-series for the exact function of the observable F(h) we should
be able to test it

By comparing the discontinuity of the C±
n with the large order behaviour of

the perturbative series found with Volin’s method.
By comparing the resummation of the perturbative series with the numeric
solution of the exact integral equation and see what exponentially
suppressed terms are missing.

We have done many such tests with success, I will present two of the most
important.
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Large order behaviour

One important test is to take long perturbative series from Volin’s method and
compare with the Stokes constants C+

0 − C−
0 = −iS0.

With a series that grows

ck ∼ S0
2π

A−k−b1
1 Γ(k + b1)

we can construct an auxiliary se-
ries sk such that

sk ∼ S0, k � 1

We plot the series sk for N = 7. 0 20 40 60 80 100
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0.479

0.480

0.481
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Intermezzo

Because the e−
2
α term is very simple in

F(h) = − h2

2π

{
(1 +O(α))− e−

2
αα

2
N−2C±

0 + e−
2
α

N−2
N−4α

2
N−4C±

1 (1 +O(α) + · · · )
}

we can subtract its contribution to the asymptotics and see the effects of the
term e−

2
α

N−2
N−4 .
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The singularity marks the spot

With N = 7, we plot the singularities of and approximation of the Borel transform
(they approximate a cut) after subtracting the leading order behaviour.

The removed singularity is at 2 (i.e. 1/|β0|) and the next predicted singularity is at
10/3 (i.e. 5/3|β0|).

-2 2 4 6

-2

-1

1

2
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Large N

In the large N limit we match known results but the new renormalons move to
the “traditional” renormalon predictions

`

|β0|
N − 2
N − 4

→ `

|β0|
(3.25)

which is why previous studies of non-perturbative effects at large N had not
noticed the unusual position of the renormalons!

This also shows that these effects are “renormalons”, at large N we see they are
the result of ring diagrams, which grow factorially.

e1(�) = + + + · · ·
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Non-linear sigma model

This approach to finding the trans-series can be generalised to a wider class of
integrable models. For other models we also found interesting Borel singularities

O(N ) non-linear sigma model

L =
1

2g2 S · S, S2 = 1 (3.26)

and we find the Borel singularities

ζIR =
1

|β0|
and ζ` =

`(N − 2)
|β0|

` ∈ N (3.27)

The first one is a traditional IR renormalons, while the other might
correspond to unstable instantons.
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Other examples

N = 1 SUSY non-linear sigma model

ζ` =
`

|β0|
N − 2
N − 4

, ζ ′` =
`(N − 2)

|β0|
and ζ`1 + ζ ′`2 (3.28)

There is no traditional IR renormalons, but there are new renormalons like in
GN and instanton-like singularities like in the NLSM.

SU (N ) principal chiral field

ζIR =
1

|β0|
, ζ` =

`

|β0|
N

N − 1
, ζ ′` =

`N
|β0|

and ζ`1 + ζ ′`2 (3.29)

A traditional IR renormalon, new renormalons and instanton-like
singularities.
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Conclusion

Transseries in QFT
Renormalons in a nutshell
New renormalons in Gross-Neveu
Conclusion



Take-home ideas

Resurgence is a useful and important tool in making sense of perturbative
and non-perturbative QFT. Through resurgence we can relate
non-perturbative effects and large order behaviour of the perturbative series.

Renormalons are an important feature of QFT which is little understood.
Integrable models are great toy models for resurgence and renormalons.
Using integrability we found a way of extracting the analytic trans-series,
which we tested extensively.
Standard renormalon predictions are sometimes wrong! Borel singularities
appear in weirder places than expected.
Large N can be deceiving.
Would be very interesting to understand renormalons from first principles to
compare to our results, which give a guiding template.
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Thank you!

arxiv reference for more details: 2111.11951
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