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TDLI/SJTU: Particle & Nuclear Physics

Underground Experimental Group
1. Dark Matter and Axion (PandaX).  
2. Neutrinoless Double Beta Decay (PandaX).  
3. Neutrino mass, Reactor and Cosmic Experiments

(JUNO, ICECUBE, Hai-Ling Neutrino Telescope).

Collider Experiment Group 
1. LHC Physics.  2.  CEPC R&D.  3.  Muon g-2. 4. Dark photon.

Theory Group 
1. Dark Matter, Dark Energy, Inflation, Phase Transition 

In the Early Universe, Gravitational Waves, and Unification 
of Different Interactions.  

2. Lattice QCD Calculations, Higgs, Neutrino and Flavor 
Physics, New Physics and Collider Phenomenology.
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Amherst Center for Fundamental Interactions

• Experimental & theoretical research at the 
energy, intensity, and cosmic frontiers

• Targeted topical workshop program 

https://www.physics.umass.edu/acfi/

Founded 2013
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Goals for this Talk
• Motivate the scientific opportunity 

associated with a possible EWPT in BSM 
scenarios

• Introduce the EFTs used in studying the 
thermal history of EW symmetry breaking

• Illustrate the interplay with non-perturbative 
(lattice) computations

• Highlight recent results that draw on this 
interplay
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Key Ideas for this Talk
• The “electroweak temperature” à a scale 

provided by nature that gives us a clear 
BSM target for colliders & GW probes

• Simple arguments à BSM physics that 
changes the thermal history of EWSB 
cannot be too heavy or too feebly coupled to 
the SM 

• Robust test of theory requires a new era of 
EFT & non-perturbative computations à
new results highlight this theoretical frontier
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Key Ideas for this Talk

• MJRM: 1912.07189

• Recent EFT + Non-perturbative:

• L. Niemi, H.H. Patel, MJRM, T.V.I. Tenkanen, 
D. J. Weir: 1802.10500

• O. Gould, J. Kozaczuk, L. Niemi, MJRM, T.V.I. 
Tenkanen, D.J. Weir: 1903.11604

• L. Niemi, MJRM, T.V.I. Tenkanen, D.J. Weir: 
2005.11332
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I. Context & Questions



Electroweak Phase Transition

• Higgs discovery ! What was the thermal 
history of EWSB ?

• Baryogenesis ! Was the matter-antimatter 
asymmetry generated in conjunction with 
EWSB (EW baryogenesis) ?

• Gravitational waves ! If a signal observed in 
LISA, could a cosmological phase transition 
be responsible ?

12
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Thermal History of Symmetry Breaking

QCD Phase Diagram à EW Theory Analog? 



EWSB Transition: St’d Model
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EWSB Transition: St’d Model
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SM EW: Cross over transition

EW Phase Diagram

How does this picture change 
in presence of new TeV scale 
physics ? What is the phase 
diagram ? SFOEWPT ?
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S. Weinberg, PRD 9 (1974) 3357

f1 Mass

f2 Mass
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Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,
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which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.

100 120 140 160 180 200
0.0

0.5

1.0

1.5

2.0

m

b 4

mH 125 GeV, a2 1.07

EW vacuum
unstable

AB

2 1 0 1 2

0.0

0.5

1.0

1.5

2.0
m

b 4

mH 125 GeV 150 GeV,

a2

EW vacuum
unstable

A B

FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.

HIREN H. PATEL AND MICHAEL J. RAMSEY-MUSOLF PHYSICAL REVIEW D 88, 035013 (2013)
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Extrema can evolve differently as T evolves à
rich possibilities for symmetry breaking

Higgs phase
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How did we 
end up here ?
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
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• What is the landscape 
of potentials and their 
thermal histories?

• How can we probe this 
T > 0 landscape 
experimentally ?

• How reliably can we 
compute the 
thermodynamics ?



Electroweak Phase Transition

• Higgs discovery ! What was the thermal 
history of EWSB ?

• Baryogenesis ! Was the matter-antimatter 
asymmetry generated in conjunction with 
EWSB (EW baryogenesis) ?

• Gravitational waves ! If a signal observed in 
LISA, could a cosmological phase transition 
be responsible ?
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• Baryogen*

• GW 

* Need BSM CPV
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II. EWPT: A Collider Target

MJRM 1912.07189

• Mass scale
• Precision



Experimental Probes
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Higgs precision tests

SM Higgs BSM Higgs
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Direct Production

Bubble Collisions

Grav Radiation

• How heavy can F be ?

• How coupled to H ?

• Can it be discovered at 
the LHC or beyond ? 
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High-T SM Effective Potential

T0 ~  140 GeV

ACFI-T18-17

The Electroweak Phase Transition: A Collider Target

Michael Ramsey-Musolf6,7⇤
1
Center for advanced quantum studies, Department of Physics,

Beijing Normal University, 100875, Beijing, China
2
Interdisciplinary Center for Theoretical Study and Department of Modern Physics,

University of Science and Technology of China, Hefei, Anhui 230026, China
3
Tsung-Dao Lee Institute, and School of Physics and Astronomy,

Shanghai Jiao Tong University, Shanghai 200240, China
4
Department of Physics, National Taiwan University, Taipei 106, Taiwan

5
National Center for Theoretical Sciences, Hsinchu 300, Taiwan

6
Amherst Center for Fundamental Interactions, University of Massachusetts-Amherst,

Department of Physics, Amherst, MA 01003, USA
7
Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 USA

We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter.
We derive the most general, renormalizable scalar potential, assuming the presence of the Standard
Model Higgs doublet, H, and an electroweak multiplet � of arbitrary SU(2)L rank and hypercharge,
Y . We show that, in general, the �-H Higgs portal interactions depend on three, rather than two
independent couplings as has been previously considered in the literature. For the phenomenologi-
cally viable case of Y = 0 multiplets, we focus on the septuplet and quintuplet cases, and consider
the interplay of relic density and spin-independent direct detection cross section. We show that
both the relic density and direct detection cross sections depend on a single linear combination of
Higgs portal couplings, �e↵ . For �e↵ ⇠ O(1), present direct detection exclusion limits imply that
the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of
the observed DM relic density.
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FIG. 4: Gluon luminosity ratio

ECM(TeV) M� (GeV) sin ✓ � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 100 NN 135 fb 3 NN
714 NN NN 3 NN

100 100 NN 135 fb 3 NN
714 NN NN 3 NN

14 714 0.01 135 fb 3 NN
100 714 0.01 NN 30 NN

TABLE IV: Single heavy higgs production via ggF.

VI. THE ELECTROWEAK TEMPERATURE REVISITED

VII. OUTLOOK
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Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:
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{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:
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T
12⇡
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{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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VI. THE ELECTROWEAK TEMPERATURE REVISITED

VII. OUTLOOK
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Models & Phenomenology

Thanks: J. M. No Extensive references in MJRM: 1912.07189
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III. Theoretical Robustness

• L. Niemi, H. Patel, MRM, T. Tenkanen, D. Weir  1802.10500

• O. Gould, J. Kozaczuk, L. Niemi, MJRM, T.V.I. Tenkanen, D.J. 
Weir: 1903.11604

• L. Niemi, MJRM, T.V.I. Tenkanen, D.J. Weir: 2005.11332
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Models & Phenomenology

Thanks: J. M. No

Models & pheno: how reliable ?

Extensive references in MJRM: 1912.07189
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Inputs from Thermal QFT

• Phase diagram: 
first order EWPT?

• Latent heat: GW

Thermodynamics Dynamics

• Nucleation rate: transition 
occurs? TN ? Transition 
duration (GW) ?

• EW sphaleron rate: baryon 
number preserved? 

How reliable is the theory ?
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EWPT & Perturbation Theory: IR Problem
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• Near phase transition: j ~ 0
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EWPT & Perturbation Theory

Expansion parameter

SM lattice studies: geff ~ 0.8 in vicinity of EWPT for 
mH ~ 70 GeV *

* Kajantie et al, NPB 466 (1996) 189; hep/lat 9510020 [see sec 10.1]

Infrared sensitive 
near phase trans
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Power Counting & Resummations
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Can be O(1) near 
phase transition

Resum !
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Power Counting & Resummations

+ +…
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“Daisy” or “ring” resummation

⇠ �T
2

24
⇥ ⇣

2
(120)

V1(�c, T ) �! V1(�c, T ) +�Vring(�c, T ) (121)

�Vring(�c, T ) = � T

12⇡

X

k

nk

n⇥
m

2

k
(�c, T )

⇤3/2 �
⇥
m

2

k
(�c)

⇤3/2o
(122)

dN

dpe
/ (E0 � Ee)

2


1� m

2

⌫

(E0 � Ee)
2

�1/2
(123)

g�NN

g!NN

⇡ 1

2
(124)

KK̄ (125)

e = g sin ✓W (126)

J
EM

µ
=

X

f

Qf f̄�µf (127)

J
NC

µ
=

X

f

f̄�µ

⇣
g
f

V
+ g

f

A
�5

⌘
f (128)

J
NC

µ
=

X

f

f̄�µ

⇣
g
f

L
PL + g

f

R
PR

⌘
f (129)

g
f

V
= 2I

f

3
� 4Qf sin

2
✓W

g
f

A
= �2I

f

3

10

⇠ �T
2

24
⇥ ⇣

2
(120)

V1(�c, T ) �! V1(�c, T ) +�Vring(�c, T ) (121)

�Vring(�c, T ) = � T

12⇡

X

k

nk

n⇥
m

2

k
(�c, T )

⇤3/2 �
⇥
m

2

k
(�c)

⇤3/2o
(122)

dN

dpe
/ (E0 � Ee)

2


1� m

2

⌫

(E0 � Ee)
2

�1/2
(123)

g�NN

g!NN

⇡ 1

2
(124)

KK̄ (125)

e = g sin ✓W (126)

J
EM

µ
=

X

f

Qf f̄�µf (127)

J
NC

µ
=

X

f

f̄�µ

⇣
g
f

V
+ g

f

A
�5

⌘
f (128)

J
NC

µ
=

X

f

f̄�µ

⇣
g
f

L
PL + g

f

R
PR

⌘
f (129)

g
f

V
= 2I

f

3
� 4Qf sin

2
✓W

g
f

A
= �2I

f

3

10

Systematic resummation: dimensional reduced 3D EFT

Ad hoc…
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Challenges for Theory

• I.R. problem: poor 
convergence

• Thermal resummations

• Gauge Invariance 
(radiative barriers)

• RG invariance at T>0

Perturbation theory Non-perturbative (I.R.) 

• Computationally and labor 
intensive
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• I.R. problem: poor 
convergence

• Thermal resummations

• Gauge Invariance 
(radiative barriers)

• RG invariance at T>0
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Theory Meets Phenomenology

A. Non-perturbative

A. Perturbative

• Most reliable determination of character 
of EWPT & dependence on parameters

• Broad survey of scenarios & parameter 
space not viable

• Most feasible approach to survey broad 
ranges of models, analyze parameter 
space, & predict experimental signatures

• Quantitative reliability needs to be verified 



43

Theory Meets Phenomenology

A. Non-perturbative

B. Perturbative

• Most reliable determination of character 
of EWPT & dependence on parameters

• Broad survey of scenarios & parameter 
space not viable

• Most feasible approach to survey broad 
ranges of models, analyze parameter 
space, & predict experimental signatures

• Quantitative reliability needs to be verified 

Benchmark pert theory
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Challenges for Theory

• I.R. problem: poor 
convergence

• Thermal resummations

• Gauge Invariance 
(radiative barriers)

• RG invariance at T>0

Perturbation theory Non-perturbative (I.R.) 

• Computationally and labor 
intensive

Dimensionally 
reduced 3D EFT 
at T > 0

BSM proposals 
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Strategy

• Employ dimensionally-reduced 3D EFT in two regimes:

• Heavy BSM scalars à integrate out and 
“repurpose” existing lattice computations

• Light BSM scalars à perform new lattice 
simulations

• Compare with perturbative computations at 
benchmark parameter points in selected 
models
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Inputs from Thermal QFT: EFTs

• Phase diagram: 
first order EWPT?

• Latent heat: GW

Thermodynamics Dynamics

• Nucleation rate: transition 
occurs? TN ? Transition 
duration (GW) ?

• EW sphaleron rate: baryon 
number preserved? EFT 1

EFT 2

EFT 3
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High-T EFT: Dimensional Reduction
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DR 3dEFT: Scales

• p T 

• MBSM

• g T

• MNUC

• g2 T 

Non-zero Matsubara modes

BSM mass scale: can be > or <  p T 

Thermal masses 

Nucleation scale ~ 1/rbubble

Light scale 

EFT 1

EFT 2
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EFT 1: Thermodynamics

Meeting ground: 3-D high-T effective theory
2

light g
2
T

heavy gT

superheavy ⇡T

Lfull

L3

L3

Integrate out n > 0 modes

Integrate out A0 field

FIG. 1. Scale hierarcy of the finite-T system to which dimen-
sional reduction is based.

B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
�,3, �3, µ

2
⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)

L (3)
temporal = 1
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†
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2
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0A
b

0) + �
0
3(⌃

a
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a

0)(⌃b
A

b

0).(2)

The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
�,3�

†
� + µ̄

2
⌃,3⌃

a⌃a + �̄3(�
†
�)2

+
b̄4,3

4
(⌃a⌃a)2 +

ā2,3

2
�
†
�⌃a⌃a

. (3)

Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
�̄3

ḡ2
3

, y =
µ̄

2
�,3

ḡ4
3

. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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EFT 1: Thermodynamics

Matching: Two Elements

Dimensional Reduction

Thermal Loops

t �! i⌧ (55)
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5

All integrals are 3D with prefactor T  à Rescale fields, couplings…

• j 24d = T j 23d
• T l 4d = l 3d  

Equate Greens functions

Field Quartic coupling
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EFT 1: Thermodynamics

Meeting ground: 3-D high-T effective theory
2
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2
T

heavy gT

superheavy ⇡T

Lfull
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Integrate out n > 0 modes

Integrate out A0 field

FIG. 1. Scale hierarcy of the finite-T system to which dimen-
sional reduction is based.

B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
�,3, �3, µ

2
⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)

L (3)
temporal = 1
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
�,3�

†
� + µ̄

2
⌃,3⌃

a⌃a + �̄3(�
†
�)2

+
b̄4,3

4
(⌃a⌃a)2 +

ā2,3

2
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. (3)

Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
�̄3

ḡ2
3

, y =
µ̄

2
�,3

ḡ4
3

. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

Thermal resummations: 
systematically implemented
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EFT 1: Thermodynamics

Meeting ground: 3-D high-T effective theory
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FIG. 1. Scale hierarcy of the finite-T system to which dimen-
sional reduction is based.

B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
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2
⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†
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3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
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2
⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
�,3�

†
� + µ̄

2
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+
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
�̄3

ḡ2
3

, y =
µ̄

2
�,3

ḡ4
3

. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

Lattice simulations exist

When L full contains BSM 
interactions, l3 and µf,3 can 
accommodate first order 
EWPT and mh =125 GeV
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
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⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�
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�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
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ḡ2
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, y =
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2
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ḡ4
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. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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FIG. 1. Scale hierarcy of the finite-T system to which dimen-
sional reduction is based.

B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
�,3, �3, µ

2
⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
�,3�

†
� + µ̄

2
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+
b̄4,3
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(⌃a⌃a)2 +
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. (3)

Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
�̄3

ḡ2
3

, y =
µ̄

2
�,3

ḡ4
3

. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

Lattice simulations exist

“Repurpose” lattice results



54

EFT 1: Thermodynamics

Meeting ground: 3-D high-T effective theory
2

light g
2
T

heavy gT

superheavy ⇡T

Lfull

L3

L3

Integrate out n > 0 modes

Integrate out A0 field

FIG. 1. Scale hierarcy of the finite-T system to which dimen-
sional reduction is based.

B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
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⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
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ā2,3

2
�
†
�⌃a⌃a

. (3)

Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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FIG. 1. Scale hierarcy of the finite-T system to which dimen-
sional reduction is based.

B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
�,3, �3, µ

2
⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
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+
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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ḡ2
3
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

• Assume BSM fields are 
“heavy” or “supeheavy” : 
integrate out

• Effective “SM-like” theory 
parameters are functions of 
BSM parameters

• Use existing lattice 
computations for SM-like 
effective theory & matching 
onto full theory to determine 
FOEWPT-viable parameter 
space regions

Lattice simulations exist (e.g., Kajantie et al ‘95)
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
�,3, �3, µ

2
⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)

L (3)
temporal = 1

2 (DrA
a

0)2 + 1
2m

2
D

A
a

0A
a

0 + 1
2 (@rB0)2

+ 1
2m

02
D

B
2
0 + 1

2 (@rC0)2 + 1
2m

002
D

C
2
0

+ 1
43(Aa

0A
a

0)2 + 1
4

0
3B

4
0 + 1

4
00
3A

a

0A
a

0B
2
0

+ h3�
†
�A

a

0A
a

0 + h
0
3�

†
�B

2
0 + h

00
3B0�

† ~A0 · ~⌧�

+ !3�
†
�C

2
0 + �3(⌃a⌃a)(Ab

0A
b

0) + �
0
3(⌃

a
A

a

0)(⌃b
A

b

0).(2)

The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄
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the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.
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ā2,3

2
�
†
�⌃a⌃a

. (3)

Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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ḡ4
3

. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†
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3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄
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This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†
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3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄
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the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <
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Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†
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3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.
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B. Three-dimensional e↵ective theories
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
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the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†
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3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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B. Three-dimensional e↵ective theories
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄
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the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
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by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†
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3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

2

light g
2
T

heavy gT

superheavy ⇡T

Lfull

L3

L3

Integrate out n > 0 modes

Integrate out A0 field

FIG. 1. Scale hierarcy of the finite-T system to which dimen-
sional reduction is based.

B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
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2
⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
�,3�

†
� + µ̄

2
⌃,3⌃

a⌃a + �̄3(�
†
�)2

+
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4
(⌃a⌃a)2 +
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2
�
†
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. (3)

Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
�̄3

ḡ2
3

, y =
µ̄

2
�,3

ḡ4
3

. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

• Assume BSM fields are 
“heavy” or “supeheavy” : 
integrate out

• Effective “SM-like” theory 
parameters are functions of 
BSM parameters

• Use existing lattice 
computations for SM-like 
effective theory & matching 
onto full theory to determine 
FOEWPT-viable parameter 
space regions

Lattice simulations exist (e.g., Kajantie et al ’95)
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Simple Higgs portal models:

• Real gauge singlet (SM + 1)

• Real EW triplet (SM + 3)
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Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,

1

2
m2

H >
1

2

a2
b4

!
1

2
a2v

2
0 !m2

!

"
; (8)

which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.

100 120 140 160 180 200
0.0

0.5

1.0

1.5

2.0

m

b 4

mH 125 GeV, a2 1.07

EW vacuum
unstable

AB

2 1 0 1 2

0.0

0.5

1.0

1.5

2.0
m

b 4

mH 125 GeV 150 GeV,

a2

EW vacuum
unstable

A B

FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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• One-step: thermal loops
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Super Heavy Triplet: EFT 1

Niemi, R-M, Tenkanen, Weir 2005.11332

Full theory potential

Matching: 
heavy theory

Allows for first order EWPT with l (L) 
consistent with mh = 125 GeV
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Real Triplet: One-Step EWPT

Niemi, Patel, R-M, Tenkanen, Weir 1802.10500
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Real Triplet: One-Step EWPT

Niemi, Patel, R-M, Tenkanen, Weir 1802.10500
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Dynamical Real Triplet: EFT 1

Niemi, R-M, Tenkanen, Weir 2005.11332

Full theory potential

Light theory

Matching: 
heavy theory
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Real Triplet & EWPT: Novel EWSB

Niemi, R-M, Tenkanen, Weir 2005.11332
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Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,
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H >
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which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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Real Triplet: Crossover vs 2nd Order 

Niemi, R-M, Tenkanen, Weir 2005.11332
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Real Triplet & EWPT: Benchmark PT

Niemi, R-M, Tenkanen, Weir 2005.11332

Lattice: Doublet

Lattice: Triplet
2-loop PT: Doublet

2-loop PT: Triplet

Discontinuities: 
First order EWPT

Lattice: Smooth Crossover: 
No phase transition

PT Discontinuities: 
First order EWPT
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Simple Higgs portal models:

• Real gauge singlet (SM + 1)

• Real EW triplet (SM + 3)
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Heavy Real Singlet:  EWPT & GW

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604
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Other Selected Recent Work

• Gauge invariance in GN (EFT2) : radiative barriers

• RGE at T> 0

• Nucleation: EFT2

• Arunasalam, MJRM: 2105.07588
• Lofgren, MJRM, Schicho, Tenkanen 2112.05472
• Hirvonen, Lofgren, MJRM, Schicho, Tenkanen 2112.08912

• Gould, Tenkanen 2104.04399

• Gould, Hirvonen 2108.04377
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IV. Outlook - 1
• Determining the thermal history of EWSB is field 

theoretically interesting in its own right and of practical 
importance for baryogenesis and GW 

• The scale TEW à any new physics that modifies the SM 
crossover transition to a first order transition must live at M 
< 1 TeV and couple with sufficient strength to yield (in 
principle) observable shifts in Higgs boson properties  

• Searches for new scalars and precision Higgs 
measurements at the LHC and prospective next 
generation colliders could conclusively determine the 
nature of the EWSB transition
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IV. Outlook - 2
• Realizing this opportunity requires a new generation of 

robust theoretical computations, using EFT & non-
perturbative methods, to benchmark perturbative 
calculations

• There are exciting opportunities for talented and ambitious 
theorists to make significant contributions to this growing 
frontier
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Temperature Dependence of V(f)
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KMS:
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Temperature Dependence of V(f)
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Temperature Dependence of V(f)
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“Matsubara frequencies” 
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Periodic BC’s

Antiperiodic BC’s
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Power Counting & Resummations

+ +…

ff

f

ff

f

ff

f +

“Daisy” or “ring” resummation

• Nonanalytic in fc

• Origin of barrier in 
VEFF

• Susceptible to higher 
order ring diagrams: 
“screening”


