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Introductory part



Introduction

We consider N = 2 superconformal field theories in four dimensions.

It is believed that all these theories have a Coulomb branch.

We are interested in operators whose vacuum expectation values
parametrize the Coulomb branch

⟨ffir (x)⟩Coulomb = u :

The operator ffir has U(1) charge and conformal dimension r .

More precisely, we want to compute their OPE coefficients

ffia(x)× ffib(0) ∼ –a b c ffic(0) + · · ·
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Methods
I will show two methods to approach this problem

1. Supersymmetric localization
The partition function Z can be computed in terms of a finite
dimensional integral. This can be used to compute correlators

⟨ffir ffir ⟩ =
1

ZS4

Z
da
`
u(a)2r + unmixing

´
|ZΩ - background|2 :

2. Conformal bootstrap
Use the axioms of unitarity, operator product expansion and crossing
to constrain a four-point function

ffi

ffi

ffi

ffi

|–ffiffiffi2 |2
=

ffi

ffi

ffi

ffi

=⇒ L ≤ |–ffiffiffi2 |2 ≤ U :



Methods
I will show two methods to approach this problem

1. Supersymmetric localization
The partition function Z can be computed in terms of a finite
dimensional integral. This can be used to compute correlators

⟨ffir ffir ⟩ =
1

ZS4

Z
da
`
u(a)2r + unmixing

´
|ZΩ - background|2 :

2. Conformal bootstrap
Use the axioms of unitarity, operator product expansion and crossing
to constrain a four-point function

ffi

ffi

ffi

ffi

|–ffiffiffi2 |2
=

ffi

ffi

ffi

ffi

=⇒ L ≤ |–ffiffiffi2 |2 ≤ U :



Note on normalizations

In a conformal field theory two-point functions are completely fixed
(provided we normalize operators appropriately)

⟨Oi (x1)Oj(x2)⟩ =
‹i j

(x212)
∆
;

The dynamical information then completely resides in the three-point
functions, which are fixed up to a constant

⟨Oi (x1)Oj(x2)Ok(x3)⟩ =
–i jk

x∆1+∆2−∆3
12 x∆1+∆3−∆2

13 x∆2+∆3−∆1
23

:
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Note on normalizations (cont.d)

With chiral operators people typically set –i jk = 1 so the dynamical data
is transferred to the two-point functions

⟨Oi (x1)Oj(x2)⟩ =
Gi ‹i j

(x212)
∆
;

with the relation

–i jk =

s
Gk
Gi Gj

:

This is why we are going to compute two-point functions with
localization and compare (the above ratio) with tree-point functions from
the bootstrap.
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Conformal bootstrap
Three simple principles go into the conformal bootstrap

1. Operator product expansion (OPE)
The OPE of two operators is convergent away from other insertions

⟨O1O2O3 · · · ⟩ =
X
k

–12k

h 1
2

k
i
(x12; @1) ⟨OkO3 · · · ⟩ ;

2. Crossing
Taking the OPE in different channels in a four-point function should
not matter

X
k

1

2

4

3

k
=

X
k ′

1

2

4

3

k ′

3. Unitarity

The OPE coefficients are real thus their squares are positive.
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Conformal bootstrap (cont.d)
Taking the OPE twice leads to the conformal block expansion

⟨O(x1)O(x2)O(x3)O(x4)⟩ =
1

(x212x
2
34)

∆O

X
∆;‘

a∆;‘ g∆;‘(u; v) ;

where g∆;‘, the conformal blocks, are known kinematic functions,
a∆;‘ = –2OOO∆;‘

are (positive) OPE coefficients squared and

u =
x212x

2
34

x213x
2
24

; v =
x214x

2
23

x213x
2
24

; xi j = xi − xj ;

Crossing leads to a sum ruleX
∆;‘

a∆;‘
`
v2g∆;‘(u; v)− u2g∆;‘(v; u)

´
= 0 ;

on which we can act with a functional ¸ of the form

¸[F ] =
X
n;m

¸n;m @
n
u@

m
v F (u; v)|u=v=1=4 :
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Bounds on OPE coefficients
Let us denote as F∆;‘ = v2g∆;‘(u; v)− (u ↔ v). The action of ¸ readsX

∆;‘̸=(0;0);(∆?;‘?)

a∆;‘ ¸
ˆ
F∆;‘

˜
+ ¸

ˆ
F0;0

˜
= −a∆?;‘?¸

ˆ
F∆?;‘?

˜
:

We can obtain two-sided bounds as follows [Caracciolo, Castedo Echeverri,
Harling, Serone (2014)]

¨ Upper bound: maximize ¸
ˆ
F0;0

˜
over the space ¸m;n subject to

1. ¸
ˆ
F∆;‘

˜
≥ 0

2. ¸
ˆ
F∆?;‘?

˜
= 1

=⇒ a∆?;‘? ≤ −¸
ˆ
F0;0

˜

¨ Lower bound: maximize ¸
ˆ
F0;0

˜
over the space ¸m;n subject to

1. ¸
ˆ
F∆;‘

˜
≥ 0

2. ¸
ˆ
F∆?;‘?

˜
= −1

=⇒ a∆?;‘? ≥ ¸
ˆ
F0;0

˜



Bounds on OPE coefficients
Let us denote as F∆;‘ = v2g∆;‘(u; v)− (u ↔ v). The action of ¸ readsX

∆;‘̸=(0;0);(∆?;‘?)

a∆;‘ ¸
ˆ
F∆;‘

˜
+ ¸

ˆ
F0;0

˜
= −a∆?;‘?¸

ˆ
F∆?;‘?

˜
:

We can obtain two-sided bounds as follows [Caracciolo, Castedo Echeverri,
Harling, Serone (2014)]

¨ Upper bound: maximize ¸
ˆ
F0;0

˜
over the space ¸m;n subject to

1. ¸
ˆ
F∆;‘

˜
≥ 0

2. ¸
ˆ
F∆?;‘?

˜
= 1

=⇒ a∆?;‘? ≤ −¸
ˆ
F0;0

˜

¨ Lower bound: maximize ¸
ˆ
F0;0

˜
over the space ¸m;n subject to

1. ¸
ˆ
F∆;‘

˜
≥ 0

2. ¸
ˆ
F∆?;‘?

˜
= −1

=⇒ a∆?;‘? ≥ ¸
ˆ
F0;0

˜



Bounds on OPE coefficients
Let us denote as F∆;‘ = v2g∆;‘(u; v)− (u ↔ v). The action of ¸ readsX

∆;‘̸=(0;0);(∆?;‘?)

a∆;‘ ¸
ˆ
F∆;‘

˜
+ ¸

ˆ
F0;0

˜
= −a∆?;‘?¸

ˆ
F∆?;‘?

˜
:

We can obtain two-sided bounds as follows [Caracciolo, Castedo Echeverri,
Harling, Serone (2014)]

¨ Upper bound: maximize ¸
ˆ
F0;0

˜
over the space ¸m;n subject to

1. ¸
ˆ
F∆;‘

˜
≥ 0

2. ¸
ˆ
F∆?;‘?

˜
= 1

=⇒ a∆?;‘? ≤ −¸
ˆ
F0;0

˜
¨ Lower bound: maximize ¸

ˆ
F0;0

˜
over the space ¸m;n subject to

1. ¸
ˆ
F∆;‘

˜
≥ 0

2. ¸
ˆ
F∆?;‘?

˜
= −1

=⇒ a∆?;‘? ≥ ¸
ˆ
F0;0

˜



Supersymmetric localization
Suppose we want to compute the path integral of an observable O(Φ;Ψ)

Z =

Z
DΨDΦO(Φ;Ψ) ;

which is invariant under some supersymmetry transformation

‹QO = 0 ; with ‹QΦ = Ψ ; ‹QΨ = V (Φ) ; ‹2Q = 0 :

We can deform this integral by adding a Q-exact term

Z(t) =

Z
DΨDΦO(Φ;Ψ) e−t ‹QW (Φ;Ψ) ; Z(0) = Z :

However, the above function is actually independent on t

Z′(t) = −
Z
‹QW O e−t ‹QW = −

Z
‹Q

“
W O e−t ‹QW

”
= 0 ;

therefore we can compute limt→∞ Z(t) = Z(0) instead.
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Supersymmetric localization (cont.d)
If W = V (Φ) ·Ψ then the dominant field configuration in the t → ∞
limit will satisfy V (Φ) = 0.

With an appropriate choice of Q the theory can be put on S4 and the
relevant configurations are Coulomb branch vacua

vector multiplet : ffi = diag(a1; : : : ; ar ) ;

hypermultiplets : Qi = 0 ;

plus all (anti)instanton configurations at the North (South) pole.

All in all we have [Pestun (2012); Gerchkovitz, Gomis, Ishtiaque, Karasik,
Komargodski, Pufu (2017)]

ZS4 =

Z
h
d ra |e−SΩ;cl(a)ZΩ;1-loop(a;m; q; R)ZΩ;inst(a;m; q; R)

˛̨2
:

ZΩ;1-loop is known exactly and ZΩ;inst is the Nekrasov partition
function [Nekrasov (2003)] known as a power series in q = e2ıifi .
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Seiberg-Witten basics
The low energy dynamics of four dimensional N = 2 theories can be
described in terms of periods of algebraic curves.

Example: SU(2) SQCD with one flavor.

Σ : y2 + (x2 − u)y +
Λ3

4
(x −m) = 0 ;

with Λ the dynamically generated scale and m the mass of the hyper.
This curve comes with a one-form

– = x
dy

y
:

y−(x) y+(x)

B

A
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Seiberg-Witten basics (cont.d)

The curve can be used to compute a and aD (the masses of monopole
and dyon in the IR) as a function of u

a =
1

2ıi

I
A
– ; aD =

1

2ıi

I
B
– :

When both of these go to zero simultaneously, we reach a CFT in the IR
known as the Argyres-Douglas (AD) fixed point. In this case it is the
(A1; A2) theory [Argyres, Douglas (1995)].

Define the Seiberg-Witten (SW) prepotential F0 as

aD = − 1

2ıi

@F0

@a
:
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What does SW have to do with localization?

The partition function can be reorganized as an expansion in 1=R (the
radius of the S4)

|ZΩ(a;m; q; R)| = expR2

„
F0(a;m; q) +

X
g≥1

Fg (a;m; q)R−2g

«
:

Each term in the expansion contains the contribution of all instantons.

The term F0 is precisely the SW prepotential [Russo (2014)]. Furthermore,
the AD point is a saddle

aD
˛̨
AD fixed point

= 0 = − 1

2ıi

@F0

@a
:

Therefore we can expand around the AD point.
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The term F1

Also F1 can be obtained purely from SW data [Shapere, Tachikawa (2008)]
(set Λ = 1 for brevity now)

F1 = −1

2
log

»
det

„
@a

@u

«–
+

1

12
log ∆ ;

where ∆ is the discriminant of the curve.

Elliptic curves 101

Given a curve y 2 + p(x)y + q(x) = 0, the solution y(x) has branch points given
by the zeros of

w(x)2 = p(x)2 − 4q(x) ≡
Y
i

(x − ei ) :

The discriminant is defined to have zeros where the branch points collide

∆(x) =
Y
i<j

(ei − ej)
2 :
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Main part



Plan

X Pedagogical introduction to the conformal bootstrap

X Very limited introduction to localization and SW geometry

1. Localization approach

2. Bootstrap approach

3. Relation with the large charge expansion



Summary for those who just joined in
We want to compute OPE coefficients of Coulomb branch operators for
strongly interacting N = 2 SCFTs in 4d

ffia(x)× ffib(0) ∼ –ab c ffic(0) + · · ·

We are going to use two approaches
1. Supersymmetric localization −→ approximation

⟨ffir ffir ⟩ =
1

ZS4

Z
da
`
u(a)2r + unmixing

´
|ZΩ - background|2 :

2. Conformal bootstrap −→ rigorous upper and lower bounds

ffi

ffi

ffi

ffi

|–ffiffiffi2 |2
=

ffi

ffi

ffi

ffi

=⇒ L ≤ |–ffiffiffi2 |2 ≤ U :
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Summary for those who just joined in (cont.)

Typically in localization one normalizes to 1 the OPE coefficients and in
the bootstrap the two-point functions.

Gi j = Gi‹i j

–i jk = 1
or

Gi j = ‹i j

–i jk =

s
Gk
GiGj

This is why we are going to compute two-point functions with
localization and compare (the above ratio) with tree-point functions from
the bootstrap.
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Summary for those who just joined in (cont.)

The partition function can be expanded in 1=R = ›1 = ›2

|ZΩ(a;m; q; R)| = expR2

„
F0(a;m; q) +

X
g≥1

Fg (a;m; q)R−2g

«
;

with F0 being the Seiberg-Witten prepotential, and F1 being known

F0 = −ıi
rankX
s=1

as(u) a
s
D(u) ;

F1 = −1

2
log

»
det

„
@as
@un

«–
+

1

12
log∆(u) :

Here ∆(u) is the discriminant of the Seiberg-Witten curve.



Localization approach



Rank one
Rank one is the easiest and most under control case. There are six
examples of AD-type theories [Argyres, Plesser, Seiberg, Witten (1996);
Minahan, Nemeschansky (1997)]

H0 H1 H2 E6 E7 E8

r 6/5 4/3 3/2 3 4 6

H0 is (A1; A2).

For now, let us ignore the Fg>1 terms (we will return to them later). We
thus need to compute the integralZ

da

˛̨̨̨
exp

„
R2F0(u(a))−

1

2
log

@a

@u
+

1

12
log∆(u(a))

«˛̨̨̨2
:

The function u(a), while calculable, is a complicated object. However,
the coefficient in F1 is just right so thatZ

du
˛̨̨
∆(u)

1
6 e2R

2F0(u)
˛̨̨
:
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thus need to compute the integralZ

da

˛̨̨̨
exp

„
R2F0(u(a))−

1

2
log

@a

@u
+

1

12
log∆(u(a))

«˛̨̨̨2
:

The function u(a), while calculable, is a complicated object. However,
the coefficient in F1 is just right so thatZ

du
˛̨̨
∆(u)

1
6 e2R

2F0(u)
˛̨̨
:
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Rank one (cont.d)

Expanding around the AD point u∗ we find

∆(u) = (u − u∗)
12
r
(r−1) ; F0(u) = f∗ −

c20
2
(u − u∗)

2
r :

For H0;1;2, 12
r (r − 1) is also Nf + 1 where Nf is the number of flavor of

the UV theory.

After changing integration variable to ũ = u − u∗ (recall u = ⟨ffir ⟩) the
localization integral becomes

Ci j ≡ ⟨ffiir (N)ffi jr (S)⟩ =
e2R

2f∗

ZS4
R

Z ∞

0

du e−R
2c20 ũ

2
r ũ i+j+

2
r
(r−1) :

In particular, it only depends on r ! (c0 gives an overall factor.)
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Unmixing

We were expecting a diagonal matrix of two-point functions
⟨ffiir ffi

j
r ⟩ = ‹i jGj=R

2r j and instead we got Ci j .

This is because the operators on the sphere mix with operators of lower
dimension to create the correct eigenstates

‹i jGi
(no

P
i )
= Ci j −

X
m;n<max(i ;j)

Cim (C−1)mn Cnj ;

where the sum is over operators of dimensions less than ffiir and ffijr .

Only for rank one it is possible to write a general expression [Gerchkovitz,
Gomis, Ishtiaque, Karasik, Komargodski, Pufu (2017)]

Gn =
deti ;j≤n Ci j
deti ;j≤n−1 Ci j

:
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Higher rank

The mixing problem at higher rank can always be solved up to any given
order, but not in general.

The problem is that the CB dimensions are rational and thus there are
nontrivial degeneracies. For exampleˆ

tr(ffi2)
˜2 mixes with tr ffi4 ;ˆ

Op=q

˜p′ mixes with
ˆ
Op′=q

˜p

We only compute a few OPE coefficients for rank-two so we do not need
to solve this problem in full generality.

Other authors deal with it by only considering a subset of operators such
as
ˆ
tr(ffi2)

˜n [Beccaria, Galvagno, Hasan (2020)].
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Pure gauge theories
The easiest examples are given by pure gauge SU(N) theories. They give
rise to the (A1; AN−1) AD theory.

The Seiberg-Witten curve is given by [Eguchi, Hori, Ito, Yang (1996)]

Σ : y2 + y PN(x) +
1

4
Λ2N = 0 ;

with PN(x) = xN − u2x
N−2 − u3x

N−3 − : : :− uN :

And the Coulomb branch dimensions are

rn = [un] =
2n

N + 2
;

N

2
+ 1 < n ≤ N :

In particular we consider only rank two, namely (A1; A4) and (A1; A5)

(A1; A4) (A1; A5)

r1 8/7 5/4
r2 10/7 3/2
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Expanding around the AD point
If we again ignore the Fg>1 we can obtain a result in terms of the
Seiberg-Witten data only.

The curve at the Argyres-Douglas point is expanded as follows for  ≪ 1

u1;:::;N−2 = 0 ; uN−1 = uN−1 ; uN = v N + ΛN ;

x = x̃ ; P 2
N − Λ2N = −2(Λ)Nw̃2

We readily obtain for N = 5 and 6

w̃(x̃)2 ∼ x̃N − ux̃ − v + O(N) ;

– = w̃(x̃)dx̃ :

Denote the roots of w̃(x̃) as ei

w̃(x̃)2 =
NY
i=1

(x̃ − ei ) :
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Choice of cycles
Given a choice of cycles we can compute as(u; v), asD(u; v) and thus the
potentials F0(u; v) and F1(u; v)

as =

I
¸s

– ; asD =

I
˛s

– :

We need a basis with diagonal intersection matrix

(¸s ; ˛s) : ¸s ∩ ˛s ′ = ‹ss ′ ; s; s ′ = 1; 2 :

For N = 6 we can do:

For N = 5 it’s a bit trickier.

¸2

¸1

˛2

˛1

x̃

e6

e5
e4

e3

e2e1
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Final result
The trick is to expand the one form – in powers of u

– = dx̃
∞X
n=0

Γ
`
3
2

´
n!Γ
`
3
2 − n

´(−x̃ u)n(x̃N − v)
1
2
−n :

Then the periods (‚i is either ¸s or ˛s) are easy to computeI
‚i

– = 2

Z ei+1

ei

– ; ei = v
1
N e

2ıi
N :

The result is an integral that can be performed numerically

Cumvn(A1; A4) =

Z
d»dV |55 + 44»5|

1
6 e−V

7
5 f (»)»m V n+

4
5
m+ 22

15 ;

Cumvn(A1; A5) =

Z
d»dV |66 − 55»6|

1
6 e−V

4
3 f (»)»m V n+

5
6
m+ 5

3 ;

for V ∝ v , » ∝ uv−r1=r2 , f (») = −2V −2=r2ReF0.
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Results

For rank one we find

SCFT H0 H1 H2 E6 E7 E8

–2u u u2 2.098 2.241 2.421 4.514 6.755 15.12
–2u u2 u3 3.300 3.674 4.175 12.05 24.01 95.33
–2u2 u2 u4 7.206 8.624 10.72 67.01 222.2 2443.4

Whereas for rank two

SCFT (A1; A4) (A1; A5)

–2u u u2 1.87 1.93
–2u v uv 1.04 1.04
–2v v v2 2.23 2.20
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Bootstrap approach



General strategy

The bootstrap approach lets us put upper and lower bounds on the OPE
coefficients of isolated operators.

We consider four-point functions of the form

⟨ffir (x1)ffir (x2)ffir (x3)ffir (x4)⟩ =
f (z; z̄)

(x212)
r (x234)

r
;

with x2i j = |xi − xj |2 and

x212x
2
34

x213x
2
24

= u = zz̄ ;
x214x

2
23

x213x
2
24

= v = (1− z)(1− z̄) :

Here r is a chiral primary with U(1)r charge and conformal dimension r .

This setup was studied in [Beem, Lemos, Liendo, Rastelli, Rees (2016); Lemos,
Liendo (2016)].
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General strategy (cont.d)

The OPE coefficients –2ffirffirO appear in the superconformal block
expansion of f (z; z̄).

In order to obtain the OPE coefficients –2ffir1ffir2O (r1 ̸= r2) we need to
consider a system of mixed correlators which also includes

⟨ffir1(x1)ffir1(x2)ffir2(x3)ffir2(x4)⟩ :

The idea is the same, just more complicated, thus I will not discuss it.
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Supermultiplets in the OPE
The following multiplets are exchanged in the OPE

ffir × ffir ‘ = 0
∆0

A2A2

2

LL

‘ > 0
∆‘+ 2

LL

ffir × ffir ‘ = 0
∆

B1L

2r

B1L
(2)

2r + 2

LL(4)

‘ = 1
∆

B1L
(1)

2r + 1

A2L
(3)

2r + 3

LL(4)

‘ > 1
∆

AtL
(2)

2r + ‘

A1L
(3)

2r + ‘+ 2

LL(4)

The operator in the rectangle is the one whose OPE we want to bound.
The number in parentheses e.g. LL̄(4) is the order of the lowest
super-descendant which contributes to the four-point function.
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Superconformal blocks
The exchange of each operator in the diagram of before corresponds to a
superconformal block contributing to the four-point function.

⟨ffir (x1)ffir (x2)ffir (x3)ffir (x4)⟩ =
X

(∆;‘)∈ffi×ffi

–2
ffiffiO∆;‘

G∆;‘(z; z̄) ;

=
X

(∆;‘)∈ffi×ffi
|–ffiffiÕ∆;‘

|2 g∆;‘(1− z; 1− z̄) :

As it is always the case for chiral operators, the superblocks are usual
scalar blocks with some shifts

G∆;‘(z; z̄) = (zz̄)−1g∆+2;‘(z; z̄) :

In the crossed channels they are literally just scalar blocks.
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Bounds on OPE coefficients

The crossing equations can be recast into a vector formX
∆;‘

|–ffiffiÕ|
2 ~V charged

∆;‘ +
X
∆;‘

(–ffiffiO)
2 ~V neutral

∆;‘ = −~V neutral
0;0 − r2

6c
~V neutral
2;0 ;

where the entries of V :::∆;‘ are ± combinations of a block and its crossed.

We look for functionals ¸ =
P
¸n;m@

n
z @

m
z̄ |z=z̄=1=2 that solve the problem

Fix c , then maximize (minimize) B± ≡ ¸
h
~V neut:
0;0 + r2

6c
~V neut:
2;0

i
subject to

1. ¸[~V charged
2r;0 ] = ±1

2. ¸[others] ≥ 0
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Bounds on neutral sector

One could also assume a specific value of –ffiffiffi2 and c and put an upper
bound on the gap between the stress tensor and the first neutral
unprotected operator.

This is done by doing a binary search on ∆gap while solving the problem

There exists an ¸ such that

1. ¸
h
~V neutral
0;0 + |–ffiffiffi2 |2 ~V

charged
2r;0 + r2

6c
~V neutral
2;0

i
= 1

2. ¸[~V neutral
∆;0 ] ≥ 0 ∀ ∆ ≥ ∆gap > 2

3. ¸[others] ≥ 0
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Results for OPE coefficients
For rank one we find (some were previously known from [Lemos, Liendo
(2016); Gimenez-Grau, Liendo (2020)]). Red numbers disallow the
approximate localization result

H0 H1 H2 H0 (localization)

–2u u u2
2.167 2.359 2.698 2.0982.142 2.215 2.298

–2u u2 u3
3.637 4.445
3.192 3.217

While for higher rank

(A1; A4) (A1; A5) (A1; A4) (loc.) (A1; A5) (loc.)

–2u u u2
2.102 2.231 1.87 1.932.024 2.055

–2u v uv
1.125 1.233
0.981 0.960

–2v v v2
2.533 2.709
2.181 2.195
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Improving the OPE results
For higher rank we can improve the results and bound the 3d region
{–uuu2 ; –vvv2 ; –uv uv}

This is done by assuming a value of –uuu2 and –vvv2 inside the window
and putting upper and lower bounds on –uv uv .
See for instance (A1; A4)
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Results for neutral unprotected sector

Take the theories H1 and H2. Fixing –uuu2 we find the upper bounds
(red is disallowed)
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It seems that the true theory favors a large gap as compared to the free
theory value, as expected from their strongly coupled nature.
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Large charge expansion



Why does the approximation work at all?

We have dropped infinitely many terms from

|ZΩ(a;m; q; R)| = expR2

„
F0(a;m; q) +

X
g≥1

Fg (a;m; q)R−2g

«
:

In the CFT point they should all be contributing at the same order since
R can be rescaled away from the integral

Fg (u) ∼ cFg (a− a∗)
2−2g

`
× logR(a− a∗) if g = 1

´
:

So just take a→ a∗ + y=R.

Yet somehow throwing most of them away still gives reasonably good
results: there has to be a sense in which this is an expansion.
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Why does the approximation work at all? (cont.d)

For rank one we have integrals of the form

Ci j =

Z ∞

0
dy y r(i+j+3)−3e−y

2
exp

„
−cF2

y2
− cF3

y4
− : : :

«
:

For large i ; j ∼ n the integral localizes in the positive solution of

d

dy

`
(r(n + 3)− 3) log y − y2

´
= 0 :

which grows like
√
n. Therefore all terms 1=yk are suppressed by powers

of n.

Note: this is hand wavy because to get Gn we need to take a ratio of
determinants where all Ci j ’s enter.
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Comparison
Indeed we can compare the OPE coefficients of heavy operators obtained
from localization with the asymptotic formula [Hellerman, Maeda (2017);
Hellerman, Maeda, Orlando, Reffert, Watanabe (2019)]

Gn ∼
n→∞

Ỹ Γ(nr + 1)

„
NO
2ıR

«2nr

(nr)¸ + O

„
1

n#

«
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Possible future developments

We did this comparison numerically but it would be interesting to see if
both the asymptotics and the corrections can be derived by studying the
integral

Gn =
deti ;j≤n Ci j
deti ;j≤n−1 Ci j

; with

Ci j =

Z ∞

0
dy y r(i+j+3)−3e−y

2
exp

„
−cF2

y2
− cF3

y4
− : : :

«
:

Conversely, could we use this to put bounds on the cFg ’s? A simple
Laurent expansion around y ∼

√
n shows that at any given order in 1=n

only finitely many cFg contribute.
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Conclusions



Conclusions

¨ I discussed the computation of OPE coefficients of Coulomb branch
operators in Argyres-Douglas theories

¨ I showed two complementary approaches: localization and bootstrap

¨ The localization result could also be used as input in the bootstrap
problem

¨ I argued that the localization method works well because the large
charge expansion unexplainably works well even at low dimensions

¨ I left with some open questions on how to make the link more
precise (w.i.p.)



Thank you!
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