

Towards detecting neutrino mass using non-linear cosmic structure

Adrian Bayer University of California, Berkeley

APEC Seminar (21 April 2022)

Kavli Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo

Outline

- Introduction
- Cosmological simulations with massive neutrinos
- Non-linear information in the matter field
- Towards optimal constraints
- Where does neutrino mass information come from?

INTRODUCTION

Evidence for massive neutrinos

SOLAR NETRINOS:

Only 1/3 of expected solar neutrinos are electron neutrinos

ATMOSPHERIC NETRINOS:

Neutrino flux different in upward and downward direction

- Implies neutrinos can change flavor (oscillate)
- Requires neutrinos to have mass

Measuring neutrino mass using beta decay

n

- Massive neutrinos change maximum electron energy in beta decay
- Upper bound from **KATRIN**: $m_{\overline{\nu}_e}^{eff} < 0.8 \text{eV}$ (90% CL).
- Lower bound from **theory**: $M_{\nu} > 0.06 \text{eV}$
- Can **cosmology** bridge the gap?

D

 v_e

Why cosmology?

- Neutrinos produced in Big Bang
- Neutrinos have low mass and thus high thermal velocities compared to cold dark matter
- Difficult for gravity to make neutrinos cluster
- Neutrino mass causes reduction of structure formation on small scales

Cold Dark Matter

Neutrinos

Cosmological correlation function

 Measure correlation between overdensity at different points in space

$$\delta(x) = \frac{\rho(x) - \bar{\rho}}{\bar{\rho}}$$

$$\xi_2(|\mathbf{x}_1-\mathbf{x}_2|)=\langle\delta(\mathbf{x}_1)\delta(\mathbf{x}_2)
angle$$

• Massive neutrino effect will be seen on small scales

Linear theory

MASSIVE NEUTRINOS suppress small scale power

LINEAR CONSTRAINTS:

- Planck 2018 (95%): 0.26 eV,
 - + BAO: 0.13 eV,

+ CMB lensing: 0.12 eV.

• CMB STAGE IV + LSST: 0.02 eV

BUT

- Gravity causes non-linearities on small scales
- Is there more information in the **nonlinear regime**?

smaller scales more non-linearity

Many galaxy surveys will probe small scales

DESI

- Retrofitted onto the Mayall Telescope on top of Kitt Peak in the Sonoran Desert, Arizona
- 14,000 square degrees over 5 years
- 35 million galaxies and quasars up to z~3.5
- Began taking data in 2021

COSMOLOGICAL SIMULATIONS

Simulating non-linear structure formation

• Initialize particles at high redshift where perturbations are approximately linear, then allow particles to evolve under gravity, then compute observables

Neutrino

Blending Neutrino and Dark Matter

Dark Matter

Cropping Neutrino and Dark Matter

Including neutrinos in N-body simulations

- Using particles suffers from shot noise, which is inversely related to the number of neutrino particles
- Cheap way to reduce shot noise Banerjee+2018, Bayer+2021
- Various other methods:

Semi-linear approximations (Bird+2012), Hybrid approach (Bird+2018), Poisson-Vlassov (Yoshikawa+2020)

Shot noise arises from randomness

• The origin of shot noise is the **random** sampling of the Fermi-Dirac distribution for the initial velocities

Reducing shot noise

Bayer, Banerjee, Feng (2021)

- Use "ordered" sampling (Banerjee+2018)
- Can extend to small scales by spreading out neutrino particles

Reducing shot noise

Bayer, Banerjee, Feng (2021)

Implemented in FastPM

Bayer, Banerjee, Feng (2021)

NON-LINEAR INFORMATION IN THE MATTER FIELD

Information from non-linearities

Gaussian density field Fully described by the power spectrum

Non-Gaussian density field Mathematically "intractable" P(k), B(k), peaks, voids, ...

Fisher Information

$$\mathbf{F}_{\alpha\beta} = \frac{\partial \vec{d}}{\partial \theta_{\alpha}} C^{-1} \frac{\partial \vec{d}}{\partial \theta_{\beta}}$$

 \vec{d} is the vector with the data $\vec{d} = \{P(k_0), P(k_1), P(k_2) \dots P(k_n), \dots\}$

 $\vec{\theta}$ is the vector with the model parameters $\vec{\theta} = \{\Omega_m, \Omega_b, h, n_s, \sigma_8, M_\nu\}$

$$\delta \theta_{\alpha} \geq \frac{1}{\sqrt{(F^{-1})_{\alpha \alpha}}}$$

The Quijote Simulations

Villaescusa-Navarro, et al. (2020)

1 (Gpc/h) ³	Quijote Simulations								
512 ³ particles	Name	Ω_m	Ω_b	h	n_s	σ_8	$M_{\nu}(\mathrm{eV})$	ICs	Realizations
-	Fiducial	0.3175	0.049	0.6711	0.9624	0.834	0.0	2LPT	15,000
	Fiducial ZA	0.3175	0.049	0.6711	0.9624	0.834	0.0	Zel'dovich	500
	Ω_m^+	0.3275	0.049	0.6711	0.9624	0.834	0.0	2 LPT	500
	Ω_m^-	0.3075	0.049	0.6711	0.9624	0.834	0.0	2 LPT	500
	Ω_b^{++}	0.3175	0.051	0.6711	0.9624	0.834	0.0	2 LPT	500
	$\Omega_b^{}$	0.3175	0.047	0.6711	0.9624	0.834	0.0	2 LPT	500
	h^+	0.3175	0.049	0.6911	0.9624	0.834	0.0	2 LPT	500
	h^-	0.3175	0.049	0.6511	0.9624	0.834	0.0	2LPT	500
	n_s^+	0.3175	0.049	0.6711	0.9824	0.834	0.0	2 LPT	500
	n_s^-	0.3175	0.049	0.6711	0.9424	0.834	0.0	2LPT	500
	σ_8^+	0.3175	0.049	0.6711	0.9624	0.849	0.0	2 LPT	500
	σ_8^-	0.3175	0.049	0.6711	0.9624	0.819	0.0	2 LPT	500
	$M_{ u}^+$	0.3175	0.049	0.6711	0.9624	0.834	$\underline{0.1}$	Zel'dovich	500
	M_{ν}^{++}	0.3175	0.049	0.6711	0.9624	0.834	$\underline{0.2}$	Zel'dovich	500
	M_{ν}^{+++}	0.3175	0.049	0.6711	0.9624	0.834	$\underline{0.4}$	Zel'dovich	500

Can study specific non-linear statistics

HMF (Halo Mass Function)

VSF (Void Size Function)

Both have been used with real data to constrain cosmology

HALOS: 0.95 dH16 (SPT-SZ+ Y_X + Y_X priors) This work (SPT-SZ+WL+ Y_X) 0.90 0.85 σ_8 0.80 2019 0.75 Bocquet et al. 0.70 0.16 0.20 0.24 0.28 0.32 0.36 0.40 Ω_{m}

What do they look like?

Fisher Analysis

Bayer, Villaescusa-Navarro, Massara, Liu, Spergel, et al. (2021)

- Combine matter clustering, halos, and voids
- Consider 6d parameter space: $\{\Omega_m, \Omega_b, h, n_s, \sigma_8, M_\nu\}^{-2}$
- Strong degeneracy breaking
- For 1 (Gpc/h)³
 - 0.77 eV using power spectrum only
 - 0.018 eV from combination
 - Factor 43 improvement!

$$\begin{array}{ll} P_m & : \ k_{\max} = 0.5 \ h \mathrm{Mpc}^{-1} \\ & \mathrm{HMF} \ : \ M \! \in \! (2.0 \times 10^{13}, 4.6 \times 10^{15}) \ h^{-1} M_{\odot} \\ & \mathrm{VSF} & : \ R \! \in \! (10.4, 29.9) \ h^{-1} \mathrm{Mpc} \\ & P_m + \mathrm{HMF} + \mathrm{VSF} \end{array}$$

The power of small scales

Bayer, Villaescusa-Navarro, Massara, Liu, Spergel, et al. (2021)

- Power spectrum saturates, but other probes do not
- Caveats:
 - Halos, lensing
 - Baryonic effects
 - Systematic noise
 - Super-sample variance

Many proposals for higher order statistics

- Lensing bispectrum (Coulton+2018)
- Lensing Minkowski functionals (Marques+2018)
- Lensing peak counts (Li+2018, Ajani+2020)
- Lensing probability density function (Liu+2020)
- Matter probability density function (Uhlemann+2020)
- Redshift-space bispectrum (Hahn+2020)
- Marked power spectrum (Massara+2021)
- Wavelets (Cheng+2021, Valogiannis+2021)
- Voids (Bayer+2021, Kreisch+2021)

• ...

Many proposals for higher order statistics

- Lensing bispectrum (Coulton+2018)
- Lensing Minkowski functionals (Marques+2018)
- Lensing peak counts (Li+2018, Ajani+2020)
- Lensing probability density function (Liu+2020)
- Matter probability density function (Uhlemann+2020)
- Redshift-space bispectrum (Hahn+2020)
- Marked power spectrum (Massara+2021)
- Wavelets (Cheng+2021, Valogiannis+2021)
- Voids (Bayer+2021, Kreisch+2021)

• ...

IS THERE AN OPTIMAL WAY TO DO THIS?
 CAN WE MEASURE IT IN SURVEYS?

e-Scale Structure

N. Spergel^{2,3}

TOWARDS OPTIMAL CONSTRAINTS

Bayesian Inference

• Given data d, infer parameters θ

 $p(\theta|d) \propto p(d|\theta) p(\theta)$ posterior likelihood prior

- Maximum a posteriori (MAP) gives estimate of θ
- Shape (width) of posterior gives error on $\boldsymbol{\theta}$

Towards Optimal Constraints

Seljak+2017, Modi+2018, 2020, Böhm+2020

- **Reconstruction**: formulate as a Bayesian inference problem at the field level
- Given field data, *d*, and forward model, *f*, infer parameters:
 - Initial modes: s
 - Forward model (e.g. cosmological) parameters: λ

$$-2 \log p(\mathbf{s}, \lambda | d) = [d - f(\mathbf{s}, \lambda)]^{\dagger} N^{-1} [d - f(\mathbf{s}, \lambda)] + \mathbf{s}^{\dagger} S^{-1} \mathbf{s}$$
posterior likelihood prior

- Need fast forward model (FastPM; Feng+2017)
- Need differentiable forward model using GPUs (FlowPM; Modi+2020)

Reconstruction from halo field (fixed cosmo)

 $-2\log p(s|d) = [d - f(s)]^{\dagger} N^{-1} [d - f(s)] + s^{\dagger} S^{-1} s$

Reconstruction from halo field (fixed cosmo)

2 MAIN CHALLENGES:

- Great agreement on large scales, computationally expensive to push to small scales
- Expensive to sample posterior

Varying cosmological parameters

Bayer, Modi, Seljak (in prep)

WHERE DOES NEUTRINO MASS INFORMATION COME FROM?

Non-linear neutrino mass information

- Run two N-body simulations using matched linear physics at z=0: 1. δ with massive neutrinos (real) 2. δ with<u>out</u> massive neutrinos (fake)
- Can the **nonlinear** effects of massive neutrinos be **faked by CDM**?
- Differing phases implies information beyond the power spectrum
 $$\begin{split} \delta &= |\delta| e^{i\varphi} \\ P_{\delta\delta} &= \langle \delta^* \delta \rangle = \langle |\delta|^2 \rangle \\ P_{\delta\tilde{\delta}} &= \langle \delta^* \tilde{\delta} \rangle = \langle |\delta| |\tilde{\delta}| \ e^{-i(\varphi - \tilde{\varphi})} \rangle \end{split}$$

$$\delta_m = (1 - f_\nu)\delta_{cb} + f_\nu\delta_\nu$$

$$\delta_m = (1 - f_\nu)\delta_{cb} + f_\nu \delta_\nu$$

Bayer, Banerjee, Seljak (2021)

$$\delta_m = (1 - f_\nu) \delta_{cb} + f_\nu \delta_\nu$$

• Halos/Galaxies:

$$\delta_g = b_1 \delta_{cb}$$

Bayer, Banerjee, Seljak (2021)

$$\delta_m = (1 - f_\nu)\delta_{cb} + f_\nu\delta_\nu$$

• Halos/Galaxies: $\delta_g = b_1 \delta_{cb}$

$$\kappa(\chi_*, \hat{\boldsymbol{n}}) = \frac{3H_0^2 \Omega_m}{2c^2} \int_0^{\chi_*} d\chi \ \frac{\chi}{a(\chi)} \left(1 - \frac{\chi}{\chi_*}\right) \delta_m(\chi \hat{\boldsymbol{n}})$$

Is non-linear information fake vs?

Is non-linear information fake ν s?

What about the halo field?

Velocity to the rescue?

Combining different probes will be important

- With bias cancelling method can get constraints of $M_{\nu} \sim 0.02 \text{eV}$ from linear analysis of LSST + Stage IV CMB (Schmittfull, Seljak (2017))
- Will there be more information in the non-linear regime?

Conclusions

Much information in matter field, but not as much in galaxy or lensing fields at single redshift

Will be degraded further by **baryonic effects**, **systematic noise**, and **super-sample covariance**

Velocity / redshift space adds information

Combining multiple redshifts (tomography) and **multiple tracers** important to break degeneracies

Future Work: Apply full reconstruction framework on redshift space galaxies and weak lensing

Thank you!

Adrian Bayer (abayer@berkeley.edu) University of California, Berkeley