Cosmic QCD epoch at large lepton flavour asymmetries

Isabel M. Oldengott

CP3 (UCLouvain), Louvain-la-Neuve

based on: *arXiv: 2106.11991, 2009.00036, 1807.10815*

with M. Middeldorf-Wygas, F. Gao, D. Bödeker, D. J. Schwarz

M. Stuke, D. Schwarz (2009)

Baryon asymmetry of Universe : $b = \frac{n_{\rm B}}{s} = (8.70 \pm 0.06) \times 10^{-11}$ (*Planck 2018*)

 \rightarrow well measured, but poorly understood...

Tiny, but why so big?

 \rightarrow Baryogenesis, Leptogenesis

Leptogenesis: 1.) Mechanism for creation of lepton asymmetry

2.) Sphaleron processes transfer lepton asymmetry to baryon asymmetry

 \rightarrow standard assumption:

lepton asymmetry \approx baryon asymmetry (i. e. <u>tiny</u>)

Possible caveats?

- sphaleron processes experimentally not confirmed
- suppress sphaleron processes? (S. Eijima, M. Shaposhnikov 2017; G. Barenboim, W. Park 2017;...)
- create large lepton asymmetry at later times, when sphaleron processes are inefficient (*Drewes et al. 2021; Canetti et al. 2012; Affleck-Dine mechanism; Barbieri & Dolgov 1991; ...*)

Lepton asymmetry = key parameter for origin of matter-antimatter asymmetry

What do we know about the lepton asymmetry of our Universe? charge neutrality: \rightarrow possibly <u>hidden</u> in cosmic neutrino background \rightarrow no direct measurement possible ($T_{\nu} = 1.9 \,\mathrm{K}$)

Any observational constraints?

Observational constraints?

- Primordial element abundances e.g. Pitrou et al. (2018), arXiv: 1801.08023
- CMB anisotropies e.g. IMO, D. Schwarz (2017), arXiv: 1706.01705

 \rightarrow very weak

Only total asymmetry constrained by BBN and CMB:

(A. D. Dolgov et al. (2002), arXiv: 0201287; Y.YY. Wong (2002), arXiv: 0203180;

G. Mangano et al. (2011), arXiv: 1110.4335)

Neutrino oscillations at $T\sim 10 \text{ MeV} \rightarrow \text{Equilibration}$ of lepton flavour asymmetries:

However, individual lepton flavour asymmetries before 10 MeV almost unconstrained

Agnostic point of view: lepton asymmetries = free parameters for cosmology

<u>QCD epoch</u>: How to compute the cosmic trajectory Some new-physics's scale where

lepton asymmetry gets produced

Conservation laws (at 10 MeV $< T < T_{BSM}$):

Free input parameters

Z

1.) Lepton number: $l_{\alpha}s = n_{\alpha} + n_{\nu_{\alpha}}, \ \alpha = e, \mu, \tau$

2.) Baryon number:
$$bs = \sum_{i} B_{i} n_{i} \overset{\circ}{} \overset{\circ}{}$$

3.) Electric charge: $qs = \sum_{i} Q_{i} n_{i}^{\circ} O(charge_{neutral})$

+ relations for chemical pot.: $\mu_{L_{\alpha}} = \mu_{\nu_{\alpha}},$ $\mu_{B} = \mu_{u} + 2\mu_{d},$ $\mu_{u} = \mu_{c}, \ \mu_{e} - \mu_{\nu_{e}} = \mu_{\mu} - \mu_{\nu_{\mu}}, \ etc.$ $\mu_{Q} = \mu_{u} - \mu_{d},$ 3 input parameters, 5 equations, 5 variables $\mu_{L_e}, \mu_{L_{\mu}}, \mu_{L_{\tau}}, \mu_{B}, \mu_{Q}$

Cosmic trajectory = solution for different temperatures T

Why should large lepton asymmetries induce large baryon chemical potentials?

 $l_{\alpha} = \frac{n_{\alpha} + n_{\nu_{\alpha}}}{s} \implies \text{large } l_{e} \text{ induce large electron asymmetry } (\rightarrow \text{large } \mu_{e})$ $q = 0 = \sum_{i} \frac{Q_{i} n_{i}}{s} \implies \text{needs to be compensated by asymmetry in quark sector } (\rightarrow \text{large } \mu_{u})$

 $\Rightarrow \mu_B = \mu_u + 2\mu_d$ large baryon chemical potential

How to compute the cosmic trajectory:

 Method I: Lattice QCD Middeldorf-Wygas, IMO, Schwarz, Bödeker (2018 + 2020), *Phys.Rev.Lett.* 121 (2018) 20, 201302, arXiv: 1807.10815; arXiv: 2009.00036

 <u>I) High temperatures:</u>

Ideal quark gas (equilibrium distributions)

II) around the QCD transition

Taylor expansion + lattice QCD susceptibilities: chem:

$$p^{\text{QCD}}(T,\mu) = p^{\text{QCD}}(T,0) + \frac{1}{2}\mu_a \chi_{ab}(T)\mu_b + \mathcal{O}(\mu^4)$$

$$n_a(T,\mu) = \frac{\partial p^{\text{QCD}}(T,\mu)}{\partial \mu_a} = \chi_{ab}\mu_b + \mathcal{O}(\mu^3) \quad (\text{Hot QCD coll. 2012 \& 2014})$$

III) Low temperatures:

Hadron resonance gas (equilbrium distributions for hadrons)

Equal lepton flavour asymmetries

 \rightarrow Lepton asymmetry induces large baryon and charge chemical potentials.

 \rightarrow Need to include charm quark in order to smoothly connect different phases.

Modifications of equation of state: Impact on primordial black hole formation (D. Bödeker, F. Kühnel, IMO, D. Schwarz , arXiv: 2011.07283)

Unequal lepton flavour asymmetries

Method II: Functional QCD

(F. Gao, IMO (2021), Phys.Rev.Lett. 128 (2022) 13, 131301, arXiv: 2106.11991)

Thermodynamic quantities derived from Dyson-Schwinger equations in the rainbowladder(RL) truncation:

F. Gao, J. Chen, Y.-X. Liu, S.-X. Qin, C. D. Roberts, S. M. Schmidt (2015), <u>arXiv:1507.00875</u> Include thermodynamic quantities into calculation of cosmic trajectory:

Consider here:
$$l_e=0, l_{\mu}=-l_{\tau} \leftarrow$$
 fullfils CMB/BBN requirement $l=0$

Discontinuity between l_{μ} =-0.06 and l_{μ} =-0.07

 \rightarrow 1st order transition !

To predict when a first-order transition happens add as an additional constraint to system of equations:

$$\mu_{u/d} \ge \mu_{CEP}$$
 at $T = T_{CEP}$

 \rightarrow 6 equations, eliminates one degree of freedom

(i) $l_e = l_\mu = l_\tau = \frac{l}{3}$ (ii) $l_e = 0, l_\mu = -l_\tau$ (iii) $l_e = -l_\tau, l_\mu = 0$ solutions (iv) $l_e = -l_{\mu}, l_{\tau} = 0$ (v) $l_e = l_{\mu}, l_{\tau} = -2l_e$ (vi) $l_e = l_{\tau}, l_{\mu} = -2l_e$ (vii) $l_e = -2l_\mu, l_\mu = l_\tau$

described by 1 dof \rightarrow no further input

	$\mu_u \ge 111 \text{ MeV}$	$\mu_d \ge 111 \text{ MeV}$
(i)	$l \ge 1.10 \times 10^{-1}$	$l \le -1.03 \times 10^{-1}$
(ii)	$l_{\mu} \ge 7.43 \times 10^{-2}$	$l_{\mu} \le -6.85 \times 10^{-2}$
(iii)	$l_e \ge 7.14 \times 10^{-2}$	$l_e \le -6.59 \times 10^{-2}$
(iv)	$l_e \ge 1.36 \times 10^{-3}$	no solution
(v)	$l_e \ge 3.46 \times 10^{-2}$	$l_e \le -3.23 \times 10^{-2}$
(vi)	$l_e \le -1.20 \times 10^{-1}$	$l_e \ge 1.02 \times 10^{-1}$
(vii)	$l_e \le -1.14 \times 10^{-1}$	$l_e \ge 9.43 \times 10^{-2}$

- Confirms interpretation of 1st order transition.
- (i) is already excluded by CMB/BBN constraints, all others are unconstrained observationally.

• High T: works quite well

• High T: works quite well

• Around T_{QCD} : same trend but not really matching

- High T: works quite well
- Around T_{OCD}: same trend but not really matching
 - Low T: does not really match

- High T: works quite well
- Around T_{QCD} : same trend but not really matching
 - Low T: does not really match -

<u>Sneak preview (preliminary):</u> Improved truncation scheme can significantly improve this

- Lepton flavour asymmetries before ~ 10 MeV are almost unconstrained and have an impact on the cosmic trajectory during the QCD epoch.
- \rightarrow Two different methods to calculate cosmic trajectory:
- I) Lattice QCD susceptibilitiesII) functional QCD
- For small values of the lepton asymmetries method I) is more reliable but cannot be extended to region of 1st order transition → method II)
- Method II) reveals that the cosmic QCD transition can be first order IF lepton flavour asymmetries are unequal.

$$\delta s(T,\mu) = s(T,\mu) - s(T,\mu=0) = \int_0^\mu \frac{\partial n(T,\mu')}{\partial T} d\mu'$$