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The Riemann zeta function

* Introduced by Bernhard Riemann in 1859, a particular function of a
single complex variable:

=1
((z) = 2 —

for Re(z) > 1. Extend to the rest of the complex plane by analytic
continuation.

* Many interesting properties, with deep connections to the distribution
of the primes:

((z) = H 1—1p—z (Euler)

p prime

log((z) = z/OOO x(;(x_) 1)dx for w(x) = (# primes < x)
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The Riemann zeta function

* The zeta function has been the subject of 150 years of mathematical
Interest, and its properties have been intensively investigated.
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trivial zeros at z = —2n
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 Functional equation: ((z) = 2*7* 'sin(nz/2)T'(1 — 2)((1 — 2)
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The Riemann zeta function

 Zooming out, we find a collection of additional zeros that all seem to

lie on the “critical line” where Re(z) = 1 )\\

¢ (4 % i) =0
1y ~ 14.135
11y ~ 21.022

(We take Re(u,,) > 0
throughout.)
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Riemann hypothesis

The Riemann hypothesis asserts that all the nontrivial zeros do indeed lie

1

on the critical line with Re(z) = =.

If true it would have various nice number theory consequences, e.g.,

Tode 1
7T(33‘) — / — < —\/Elogx for x > 2057  Schoenfeld (1976)
0 logt 87T

One of Hilbert’s 23 problems and a Millennium Problem
Currently verified through the first 12 trillion zeros Ppiatt, Trudgian [2004.09765]
Other open questions:

* Are all the zeros simple ones?

 What can be be proven about the statistical properties of the zeros?
* What is the asymptotic behavior of ( on the critical line?
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Connections to physics

* There is a long history of ideas connecting the Riemann zeta function to
physics.

e Hilbert-Polya conjecture (attributed to remark of Landau to Polya in 1914):

| a Does there exist a quantum Hamiltonian
\*" - whose eigenvalues correspond to the
. imaginary parts of the nontrivial zeros of zeta?

* Montgomery’s pair correlation conjecture: vontgomery (1973)
The correlation function for the normalized spacings of the nontrivial zeros

IS: . (sinwu)Q s

U

This is the same as the two-point function for a Gaussian unitary ensemble. byson

e Other work in quantum chaotic nonrelativistic scattering includes
Gutzwiller (1983); Bhaduri, Khare, Law [chaodyn/9406006]; see also Srednicki [1105.2342]
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What about amplitudes?

* Rather than try to prove the Riemann hypothesis, can we gain any insight if we
somehow recast the zeta function as a relativistic scattering amplitude?

* Indeed, the Veneziano amplitude itself can be written in terms of (: Freund, witten (1987)

As(s,t,u) = B(=a(s), —a(t)) + B(=a(t), —a(u)) + B(=a(s), —a(w) =[] ngaig)v)»

r=s,t,u

However, this is somewhat illusory: the nontrivial zeros cancel out entirely.
He, Jejjala, Minic [1501.01975]

C(1+ z2) _ itz I (_g)
((=2) r(5*)
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Zeta/amplitudes correspondence

* Rather than try to prove the Riemann hypothesis, can we gain any insight if we
somehow recast the zeta function as a relativistic scattering amplitude?

M(s,t) ((2)

Poles at s,u = m? for m,, real Riemann hypothesis

Locality (simple poles) Meromorphicity
Universal coupling Simple zero conjecture
Dispersive bounds from analyticity /unitarity Positive odd moments of u, % sequence

On-shell constructibility Hadamard product expansion

[TT1T]

CPT invariance Reflection of zeros across critical line
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Bottom-up approach

 Most important feature: ¢ has nontrivial zeros that (appear to) all lie on a line

Connection with amplitudes: poles all lie on lines corresponding to real
kinematics, s, t,u = m?

* Let’s use this as a guiding principle to design our zeta-amplitude. We’ll start by
trying to build a forward amplitude (¢t = 0) with poles corresponding to zeros of (.

s = —(p1 +p2)2
t = —(p1 + p3)?
u=—(p1+ps)’=—s5—t
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e Suppose M(s,t) = A(s) + A(u) is described by s- and u-channel exchange,
with poles corresponding to the zeros of the zeta function.



Bottom-up approach

e Suppose M(s,t) = A(s) + A(u) is described by s- and u-channel exchange,
with poles corresponding to the zeros of the zeta function.

e What can A(s) be?



Bottom-up approach

e What about A(s) =1/¢ (5 +is)?

x Poles with opposite-sign residues: tachyons




Bottom-up approach

/1 (1 .
e What about A(s) = 2((12 :Zj; ?
2

X No more poles

M(s,0)
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Bottom-up approach

/
e What about A(s) = i ¢(3+ivs )
25 (5 V)
x Still have extra poles in the wrong places: s = 4n+1"
Re M(s, O

0.6

1

—0.2}: N\

041 | [ :

0.6 M i: . E

pole at s = i



A Riemann zeta amplitude

* To cancel all the wrong poles, we compute their residues and add terms to
remove them. Also adding a term to make the forward amplitude real, we find:

---0-----
l---o E EN BN BN BN BN BN BN Em

---g

I

~0.05

* Polesat s = 2



A Riemann zeta amplitude

* To cancel all the wrong poles, we compute their residues and add terms to
remove them. Also adding a term to make the forward amplitude real, we find:

Digamma function: ¢ (z) = T'(2)/T'(2)
Poles at )(—n) cancel trivial zeros at ((—2n)for integer n > 0
Pole at 1(0) canceled by 1/ (s + 1) term

No branch cuts: lim A(s + ie) — A(s —i€) =0

e—0
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remove them. Also adding a term to make the forward amplitude real, we find:
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A Riemann zeta amplitude

* To cancel all the wrong poles, we compute their residues and add terms to
remove them. Also adding a term to make the forward amplitude real, we find:

* |In terms of the Landau-Riemann xi functions,
=(z) =¢ (% -+ ZZ)
£(2) = 32(z = )70 (5) C(2)

A(s) can be written very compactly as:

M(s,t) = A(s) + A(u)



A Riemann zeta amplitude

Mis the simplest possible amplitude corresponding to the Riemann zeta function
and satisfying three physical properties:
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A Riemann zeta amplitude

* Were the square roots necessary?

Yes: If we send s — s%in M(s,0) to eliminate the square roots,
then the forward amplitude scales with s* at small momentum.

This violates the s* scaling required by dispersion relations. Adams et al. [hep-th/0602178]

1000

0.001
1076

1079




Properties of A(s)

e Connection between low-momentum behavior and the zeros of zeta:

co . T ¢" (5 )_1 @ 2
g—hmA(S) 44 = +G+2C(§) 8(’Y—I—2—I—log87r)

s—0 8 L
Catalan’s constant G = Z /(2k +1)?

k=0
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e Connection between low-momentum behavior and the zeros of zeta:

= 2
o= Y = 4.6210 x 1072

n=1

using the Hadamard product form of the zeta function (more on this later).

* Poles corresponding to the nontrivial zeros: ¢ (5 % ip,) =0

The poles have the correct (positive) residue required by unitarity.
Specifically, if the zero z,, = 1 +iu,, has order g, ((z) ~ (z — z,)?", then:
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Properties of A(s)

e Connection between low-momentum behavior and the zeros of zeta:

oo

Y
o= Y = 4.6210 x 1072

n=1

using the Hadamard product form of the zeta function (more on this later).

* Poles corresponding to the nontrivial zeros: ¢ (5 % ip,) =0

 Can parameterize any g,, # 1by allowing degeneracies among the p,
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Properties of A(s)

* Locality: All poles are simple ones.

A(s) ~ 1/(=s + pz)

* Higher-degree poles would correspond to kinetic terms with too many
derivatives: a failure of locality. For example,

1

2\ k N
(D_m)¢ /(—S—sz)k

* Nonlocality in A(s) ~ 1/(—s + u2)¥ for k> 1 would correspond to an
essential singularity in the Riemann zeta function,

(6%

C(z) ~ € (z—zp)k—1




Properties of A(s)
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e Certain signs or magnitudes of couplings violate fundamental physics principles:
e Unitarity
e Causality
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“infrared consistency”
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Which theories are possible?

Can any Lagrangian be a consistent EFT?

e Certain signs or magnitudes of couplings violate fundamental physics principles:
e Unitarity
e Causality
* Analyticity
* Thermodynamics

* Examples:
e Standard Model EFT GR, Rodd [1908.09845] & (2022, forthcoming)
 Flavor physics GR, Rodd [2004.02885, 2010.04723]
- Bellazzini, Cheung, GR [1509.00851]; Cheung, GR [1608.02942];
* Higher-curvature terms . >0, Kieban (2006
* Massive gravity Cheung, GR [1601.04068]
° Einstein-MaxweII theory Cheung, GR [1407.7865]; Cheung, Liu, GR [1801.08546, 1903.09156];

Arkani-Hamed, Huang, Liu, GR [2109.13937]

e Scalar theories Adams et al. (2006); |
e a-theorem Chandrasekaran, GR, Shahbazi-Moghaddam [1804.03153]

Komargodski, Schwimmer (2011); Elvang et al. (2012)



Which theories are possible?

Can any Lagrangian be a consistent EFT?

e Certain signs or magnitudes of couplings violate fundamental physics principles:
e Unitarity
e Causality
* Analyticity
* Thermodynamics

e Our M(s,t) built from the zeta function will by definition satisfy the requirements
of analyticity and unitarity for scattering amplitudes.

e Question: What happens if we run M(s, t) through the mechanics of analytic
dispersion relations?



Example theory

We'll first briefly review how infrared consistency bounds the coefficients of an EFT,
based on analyticity, unitarity, and causality. Adams et al. [nep-th/0602178]

Example EFT. massless scalar with shift symmetry
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Example theory

We'll first briefly review how infrared consistency bounds the coefficients of an EFT,
based on analyticity, unitarity, and causality. Adams et al. [nep-th/0602178]

Example EFT: massless scalar with shift symmetry

_ _1 2 C 4
Two-to-two scattering amplitude:

M(s,t) = —— (52 + 12 + u?) "2

M4 s’ RS

Forward amplitude (in state = out state):

402

M(s,0) = 7S



Analyticity and unitarity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:
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Analyticity and unitarity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:
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Analyticity and unitarity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:
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Analyticity and unitarity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:

7 N s de 1 M( 0
- = S
/ ‘. M* 2w ), 53
/
1
/ \
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I \\ T omi o 33M(S )
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\ C / 27TZ
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S p Km o isc M(s,0)
Y 7 crossing symmetry: M(s,0) = M(—s,0)




Analyticity and unitarity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:
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Analyticity and unitarity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:

L7 s N
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Analyticity and unitarity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:
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Analyticity and unitarity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:

L7 RN ‘3_ o
, N 4c 1 ds__.
// \\ W — E . EDISCM(S,O)
! ) 1 [~ ds
/ \ . . .
I o 1 \ — E 0 8_3 ll_I)I(l)[M(S + 1€, O) o M(S — 1€, O)]
SIS E S AU SN 1 [ ds
g g 1 40 an ~ ) TN L Ve 2 X . . . . *
‘\ C“*--" I’ — E 0 8_3 ll_rf(l)[M(S + 1€, O) - (M(S + 1€, O)) ]
\ / 2 [*d
\ / _ _/ —Im M(s, 0)
\\ / ™ Jo S
\\ // 2 o0 dS
~ P = —/ —0(8)
0 S

using the optical theorem (unitarity):
Im M(s,0) = so(s)

— c>0 Adams et al. [hep-th/0602178]



Analyticity and unitarity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:

/// \\ ‘S_ 00
% N 4c 1 ds__.
7 \\\ i 0 S—SDlsC/\/l(S,O)
/
/ \ 1 > ds . . .
,I o \\ “n) # t11_1&1(1)[./\/1(5 + 1€,0) — M(s — i€, 0)]
—_— - _——— ," ~‘ PPN e — 00
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\ / o0
\ / _ 3/ 45 1 M(s,0)
\\ / TC 0 83
\\ // 2 /OO dS ( )
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~_ | _- T ), 2

using the optical theorem (unitarity):
Im M(s,0) = so(s)

More generally, - Adams et al. [nep-th/0602178]
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e Let’s now apply the dispersion relation formalism to our zeta amplitude.
Define a power series of the forward amplitude at small momentum:
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e Let’s now apply the dispersion relation formalism to our zeta amplitude.
Define a power series of the forward amplitude at small momentum:

©.@)

M(s,0) = Z Cop 52T

k=0

* Extract the Wilson coefficient with a contour integral,
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Wilson coefficients for the zeta amplitude

e Let’s now apply the dispersion relation formalism to our zeta amplitude.
Define a power series of the forward amplitude at small momentum:

©.@)

M(s,0) = Z Cop 52T

k=0

* Extract the Wilson coefficient with a contour integral,

Cof = QLm ) Siilf\/l(s,O)
* Boundary term:
L » e M(5,0

4k+2

Nonzero ¢2*) would mean that =(z) grows at least as fast as ¢**
(i.e., growth order 4k + 2), contradicting known growth order 1. Titchmarsh (1951)

— cc(f)k) =0



Wilson coefficients for the zeta amplitude

e Let’s now apply the dispersion relation formalism to our zeta amplitude.
Define a power series of the forward amplitude at small momentum:

©.@)

M(s,0) = Z Cop 52T

k=0

* The properties we have proven for M(s,t) give a beautiful relation between the
Wilson coefficients and the nontrivial zeros:

e.g.,

— 2
2= Z 16 Riemann hypothesis — ¢ > 0



Wilson coefficients for the zeta amplitude

For example, the s coefficient gives us the remarkable identity:

1 d?
Cy — 5 ;1_1}(1) @M(S,O)
1
=128+ 0 (1) = ¢ (3)
9
3¢ (Hed)-7;¢3)E0)

1 1
+ 76 ()G (3) 36 ()G i)
1 1
()6 () + 6 ()
2
— 1,6
n=1""
using the shorthand ¢, (z) = ¢™(2)/{(2)
Ca(2) = [Cu(2)]"



Wilson coefficients for the zeta amplitude

For example, the s coefficient gives us the remarkable identity:

~ i € 509
©2 = 281—I>I(1) ds? >
— _19R 2h(B) (1Y _ 6 (1)

Can prove (with great effort!) by computing analytic expressions for derivatives of
((z) at z = % using polygamma identities and the product form of the zeta function,

((z) = Q(Zl_ 0 (me?)?/? E (1 + %) L= 2 /2k 11 (1 D i)

zn nontrivial zeros

which comes from the Hadamard expansion of the xi function,

e)=¢0) - T1 (1—5)

zn nontrivial zeros

What is remarkable is that our amplitude construction allows for much
simpler, physical derivations of such identities!

using the shorthand (,(z) = (\"/(2)/¢(2)

HORNAO



Wilson coefficients for the zeta amplitude
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Wilson coefficients for the zeta amplitude

T T T T T T T T T T T T T T T T T T T T T T T

- — 0(s2 .
00581 (&) o~ 4.6210 x 1072
I 4 1
0.056 - O(s7) T 3 ~2.8835 x 1077
oosa — O(s°) 1y~ 6.4273 x 10712
(B ~ 1.5807 x 1071'°
0.052 B O(S ) N C6 _21
DU c1o =~ 9.8805 x 10
- M(87 O) - h
0.048 - ]
0046 }l I I I | I I | | | | | | | | | | | | | | I I I | I I I | I xE
0 20 40 60 80 100 120 140

Numerical tests of ¢, g 5 19 confirm prediction to within relative error of 107°Y.



Other properties




What sort of theory is this?

e QOur amplitude M(s,t) describes a theory of two types of massless scalars,
®1 and ¢s, exchanging a tower of massive states X in the s and u channels for
the process:

P12 — P1P2
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What sort of theory is this?

e QOur amplitude M(s,t) describes a theory of two types of massless scalars,
®1 and ¢s, exchanging a tower of massive states X in the s and u channels for
the process:

P12 — P12

e We alternatively could have defined M(s,t) as A(s) + A(t) + A(u) to have full
Bose symmetry, in which case our amplitude would describe single-scalar
scattering ¢ — ¢¢

e The spectrum of X is given by m? = u?

b1 P1 ¢1 ¢1



On-shell constructibility

* Based on the properties of A(s), our Riemann zeta amplitude is on-shell
constructible from the UV amplitudes ¢1¢2 — X:

M(s,t) = ZM¢1¢2—>X(Z?17P2) 2 Mg, ¢, x (D3, P4)
X mn

1
1
—u—l— M¢1¢2—>X(p37p2)

+ ZM¢1¢2—>X(plap4) M2
X n
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e Universal coupling: M, 4,—x(p1,p2) = constant for all X (= 1 in our units)



On-shell constructibility

* Based on the properties of A(s), our Riemann zeta amplitude is on-shell
constructible from the UV amplitudes ¢1¢2 — X:

M(s,t) = ZM¢1¢2—>X(Z?1,]?2) 2 Mg, ¢, x (D3, P4)
X n

1

—S +
1
-+ Z M¢1¢2—>X (p17p4) —u+ Ile M¢1¢2_>X (pg,pQ)
X n

e Universal coupling: Mg, 4,—x(p1,p2) = constant for all X (= 1 in our units)

* We thus have the elegant result:




On-shell constructibility

* Based on the properties of A(s), our Riemann zeta amplitude is on-shell
constructible from the UV amplitudes ¢1¢2 — X:

M(s,t) = ZM¢1¢2—>X(p1,p2) 2 Mg, ¢, x (D3, P4)
X mn

1
—S +

1
4 AL%M¢1¢2_>X (p37p2)
* Universal coupling: Mg, 4, x(p1,p2) = constant for all X (= 1 in our units)

* We thus have the elegant result:
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On-shell constructibility

e Proof:

Let A(s) = A(s) — Z e 41_ 2 where A(s) = _d longS(\/E) .

We have previously shown that A(s) has zeros only at s = ;2 and (if we allow the
possibility of degenerate ;) all of the residues are 1.
— A(s) is entire.

Expand A(s) in a Laurent series about s = oco.
The definition of A(s) and the absence of a pole at infinity in A(s) imply:

A(s) is bounded.
Liouville’s theorem — A(s) is constant.

By our evaluation of ¢y, A(0) =0 = A(s)vanishes everywhere.



Hadamard product

* Integrating our result

d lo
A(s) = — g Z—s—l—,u

gives the product form for the Riemann-Landau xi function:

2

2(z) = 2(0) [ (1 ~ Z—)

- T



Hadamard product

* Integrating our result

d lo
A(s) = — g Z—s—l—,u

gives the product form for the Riemann-Landau xi function:

() =¢0) ] (1—1) =i,

- 2
zn, nontrivial zeros

)= onr (/) ()

2) 2,




Hadamard product

* Integrating our result

d lo
A(s) = — g Z—s—l—,u

gives the product form for the Riemann-Landau xi function:

z 1 .
-0 I (1-2) a-txim
zn, nontrivial zeros n

)= onr (/) ()

2) 2,

—Yz o 1
* Using the Weierstrass product I'(z) = : (1 + i) e*/m
along with ¢(0) = —1, we have... AR




Hadamard product

* Integrating our result

d lo
A(s) = — g Z—s—l—,u

gives the product form for the Riemann-Landau xi function:

z 1 .
-0 I (1-2) a-txim
zn, nontrivial zeros n

)= onr (/) ()

2) 2,

* The Hadamard product:

meV)? /2 2\ _./ok 2z
C(Z):(z(z—)nH(H%)e / H(“;)

k:]_ Z'n,

On-shell constructibility of amplitude <— Hadamard product of zeta function



Reflection symmetry and CPT

 Functional equation ((z) = 2°7* 'sin(rz/2)T'(1 — 2)¢(1 — 2)
and Schwarz reflection ((z*) = [((2)]”
together imply that the nontrivial zeros enjoy a four-fold symmetry:
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Reflection symmetry and CPT

 Functional equation ((z) = 2°7* 'sin(rz/2)T'(1 — 2)¢(1 — 2)
and Schwarz reflection ((z*) = [((2)]"
together imply that the nontrivial zeros enjoy a two-fold symmetry (if RH, i € R):
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Reflection symmetry and CPT

 Functional equation ((z) = 2°7* 'sin(rz/2)T'(1 — 2)¢(1 — 2)
and Schwarz reflection ((z*) = [((2)]”
together imply that the nontrivial zeros enjoy a four-fold symmetry.

—> Im M(s,0) is nonzero only because of the Feynman ie deformation in propagator,

ImM(s,0) = 27'('5 +s5 — u?)

e Symmetry of zeros <— Momentum conservation in optical theorem:
o # 0 only for on-shell X.

° 1, =M — W, violating RH, gives extra Im M(s,0) xc W for W < M
Symmetry of zeros: come in pairs =W <— Growing/decaying modes (CPT)

e Zero-counting: N(T') = ‘{Z|C(z) =0&0<Im(z) <T}

zifoﬁa(s)ds

T
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e Open question: What dynamics gives rise to M(s,t)?



Outlook

e Open question: What dynamics gives rise to M(s,t)?

e Other future directions:
e Different couplings or spin for massive states?
e Zeta function universality

e Dirichlet L-functions






