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Outline
● What model are we discussing and why?

● How is this model traditionally approached?

● Why may this approach be problematic?

● How are we testing the problem?

● Results, conclusions, and limitations
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The model

● Scalar field dark matter

– Produces a cutoff length scale for 
structure formation 

Changing mass of 
DM particle
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How is this model traditionally approached?
● “Ultralight” implies:

– Large occupation numbers

– Non thermal production 
mechanism (e.g. misalignment)
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How is this model traditionally approached?
● “Ultralight” implies

● Initial conditions described by a 
coherent state with large parameter

● Expectations values are large 
compared to fluctuations

● (nonrelativistic) Classical field is 
used

● Computational complexity of mean 
field theory is dramatically smaller

C-nums needed
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Why might this approach be problematic?
● Mean field theory is the following approximation

– Exact when the quantum state is a coherent state
Will no longer be 

true on some 
timescale
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Why might this approach be problematic?
● In reality the spread of the wavefunction may eventually introduce significant 

quantum corrections

● How long does the classical description of scalar field dark matter survive?
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How can this question be approached?

Other approaches
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● Classical description remains accurate due to large occupation numbers per 
deBroglie wavelength

Guth, A. H., Hertzberg, M. P., & Prescod-Weinstein, C. (n.d.). Do Dark Matter Axions Form a Condensate with Long-Range Correlation?

How can this question be approached?
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● Classical description is extended due to “log(n) enhancement”

Hertzberg, M. P. (2016). Quantum and classical behavior in interacting bosonic systems.

How can this question be approached?
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● Non-classical diagrams are inefficient

Dvali, G., & Zell, S. (2018). Classicality and quantum break-time for cosmic axions.

How can this question be approached?
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● Classical description fails on dynamical timescale (for number eigenstates)

Sikivie, P., & Todarello, E. M. (2017). Duration of classicality in highly degenerate interacting Bosonic systems. 

How can this question be approached?
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● Classical state efficiently undergoes quantum squeezing

Kopp, M., Fragkos, V., & Pikovski, I. (2021). Nonclassicality of axion-like dark matter through gravitational self-interactions.

How can this question be approached?
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● Classical state admits quantum corrections during nonlinear growth due to 
inter-particle correlations 

Lentz, E. W., Quinn, T. R., & Rosenberg, L. J. (2019). Axion structure formation – I: The co-motion picture. 

How can this question be approached?
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Our approach
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How can this question be approached?
● Study the behavior of quantum corrections as total particle number is 

increased

Spread of wavefunction
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Our method: small systems
● For small systems direct integration is 

possible 
Total Hilbert space:

● The total relevant Hilbert 
space is quite large

● We can partition it into many 
(often thousands) subspaces 
using the conserved 
quantities of the Hamiltonian

● The evolution of the state 
component in each subspace 
is independent of the other 
spaces and can be done in 
entirely in parallel

Small Systems:

CPU

CPUCPU
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Results: small systems
● Ran increasing total occupation keeping 

the classical solution fixed and compared 
quantum and classical evolution

Small Systems:
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Results: small systems
● Ran increasing total occupation keeping the classical solution fixed and 

compared quantum and classical evolution

● In general we see that the quantum solution converges as occupations are 
increased
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Results
● Ran increasing total occupation keeping the classical solution fixed and compared quantum 

and classical evolution

● In general we see that the quantum solution converges as occupations are increased

● However number eigenstates initial conditions do not converge 
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Results
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Sikivie, P., & Todarello, E. M. (2017). Duration of classicality in highly degenerate interacting Bosonic systems. 
Chakrabarty, S. S., et al. (2018). Gravitational self-interactions of a degenerate quantum scalar field.
Chakrabarty, S. S. (2021). Density perturbations in axion-like particles: classical vs quantum field treatment.
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Results: small systems
● We can study the rate of this convergence 

using our classicallity criteria

● PO criterion has power law scaling with 
occupation number

● log(n) enhancement in time it takes 
wavefunction to spread 
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Results
● Study the behavior of quantum corrections as total particle number is 

increased

Small Systems: Large Systems:

2108.08849
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Our method: Large systems
● Extension should be more accurate than 

mean field theory until the quantum 
breaktime assuming:

– The system is initially well described 
by mean field theory

– Central moment growth is hierarchical

Large Systems:

Mean
Root 

covariance
Root 

coskewness
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Method: Large systems
● FME is generally able to accurate predict quantum corrections until our 

breaktime 

0.0

0.2

0.4

0.6

0.8

fr
ac

ti
on

al
er

ro
r

Λ0 = 0.001 , M = 1 Λ0 = 0.1, M = 5 Λ0 = −0.1, M = 5 C = −0.033, M = 5

1 2
t [tbr]

0.0

0.2

0.4

0.6

0.8

Q

MFT

Exact

FME

0 1 2
t [tbr]

0 1 2
t [tbr]

0 1 2
t [tbr]

Kerr oscillator contact interactions gravity



   62

Results: Large systems
● Calculate the breaktime for a common cosmo test problem 

G
ravita tional c ollapse of 

overden sity
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Breaktimes for a given 
total particle number 
holding the mean field 
evolution fixed
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● “Logarithmic enhancement” with 
particle number 
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past the collapse (shell crossing) 
time
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Results: Large systems
● Calculate the breaktime for a more 

reasonable cosmological system

● Quantum corrections enter more 
quickly during nonlinear growth

● “Logarithmic enhancement” with 
particle number

● Behavior abruptly changes at just past 
the collapse (shell crossing) time

● During nonlinear growth we expect 
quantum corrections to start becoming 
non-subleading at ~300 Myr  
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Conclusions
● Quantum corrections introduced in 

some systems on a timescale less 
than the age of the universe 
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Limitations

● Let’s look at an analogous system Cs
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Future work

● Estimate the decoherence time and 
pointer states numerically
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Future work

● Estimate the decoherence time and 
pointer states numerically

● More realistic systems (3D) / higher 
order approximation
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Questions?
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