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How do galaxies form?
z≈11

NASA/ESA/HUDF09/ 
Illingworth, Bouwens

z=0

Evolving Galaxies

Robertson et al. 2010



credit: Tumlinson, Peeples, & Werk (2017)



Baryons cycle in and out of galaxies through 
accretion, star formation, and outflows

… but the gas flows are difficult to observe
… especially at high redshifts, when gas flow rates  

and gas fractions were much higher

including heavy elements! 
^



Image credit: Paul Wallace

Preferred heavy element: oxygen



Core-collapse SNe 
(massive stars)

Preferred heavy element: oxygen

Image credit: Paul Wallace

1. Oxygen is relatively abundant & undepleted 
2. Traces short-timescale enrichment from stars 
3. Easiest to measure with emission line spectra



Metallicity as a probe of gas flows & galaxy formation
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gas in converted into stars

“Metallicity” = gas-phase oxygen abundance 
Solar value: 12 + log(O/H)⦿ = 8.69



Metallicity as a probe of gas flows & galaxy formation



The mass-metallicity relation

Tremonti et al. 2004

Galaxies with lower mass have 
lower gas-phase metallicity 
• At lower mass, a larger fraction of 

heavy elements are ejected in outflows 
• Shape of the relation is set by outflow 

mass loading factor 

At higher redshift: generally expect lower 
metallicity (at fixed mass) due to 
increased gas fractions, & large outflow 
mass loss rates 
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How do we measure gas-phase metallicities?

Density Temperature

1. Direct Te method 
• Calculate abundances from measurements of gas density and temperature 
• Relies on weak auroral emission lines (usually [O III] 4363)

2. Recombination line method 
• Relatively insensitive to temperature & density 

• Mostly sensitive to abundances! 
• But, lines are 100x weaker than auroral emission! 

Recombination



How do we measure gas-phase metallicities…  
at high redshifts?

Density Temperature

1. Direct Te method 
• Calculate abundances from measurements of gas density and temperature 
• Relies on weak auroral emission lines (usually [O III] 4363) 
• Limited samples at z>1, but they are expanding…

2. Indirect “strong line” method 
• Use ratios of strongest emission lines (100x brighter than auroral lines) 
• Calibrated to direct measurements at z=0

NB: this method must be carefully calibrated for high z! 
Physical conditions are different than at z~0.



Strong-line metallicity calibrations at z=0.8

Te metallicity vs. various emission line ratios 
• Consistent with a local z=0 sample of similar excitation properties

Jones et al. 2015, ApJ, 813, 126
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Strong-line metallicity calibrations at z=0.8

Te metallicity vs. various emission line ratios 
• Consistent with a local z=0 sample of similar excitation properties 
• Δlog(O/H) = 0.01 ± 0.03

Jones et al. 2015, ApJ, 813, 126
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Direct metallicity measurements at z>1

Te metallicity measurements of 19 
galaxies at z=1-4 (Sanders+2020a) 
• Drawn from MOSDEF survey with Keck/

MOSIRE, plus literature 
• Key takeaway: strong-line metallicities are 

consistent with “local high-z analog” samples

Sanders et al. 2020, MNRAS, 491, 1427



Direct metallicity measurements at z>1

Te metallicity measurements of 19 
galaxies at z=1-4 (Sanders+2020a) 
• Drawn from MOSDEF survey with Keck/

MOSIRE, plus literature 
• Key takeaway: strong-line metallicities are 

consistent with “local high-z analog” samples 
• It’s critical to use an appropriate 

calibration sample

Sanders et al. 2020, MNRAS, 491, 1427

High z & “local analogs”



credit: Tumlinson, Peeples, & Werk (2017)

Baryons cycle in and out of galaxies through 
accretion, star formation, and outflows
… but the gas flows are difficult to observe

… so we use metallicity to trace these processes!



Evolution in the mass-metallicity relation

Sanders et al. 2021, ApJ, 914, 19

Galaxies with lower mass have 
lower gas-phase metallicity 
• At lower mass, a larger fraction of 

heavy elements are ejected in outflows 
• Shape of the relation is set by outflow 

mass loading factor 

Galaxies at higher redshift have 
lower gas-phase metallicity 
• Slope of the relation is constant out to 

z~3.3 (12 Gyr ago) 
• Modest evolution at fixed stellar mass: 

 

NB: Careful metallicity 
calibrations are essential! 
• 1000s of galaxies at z>1 with strong 

lines, but only ~10 with direct 
measurements

dlog(O/H)
dz

= − 0.11 ± 0.02
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Evolution in the outflow properties

Mass loading factor  
• Ratio of outflow mass loss rate to star 

formation rate:  

 

Mass loading factor increases 
with redshift (at fixed stellar mass) 
• Gas and heavy elements are removed 

more efficiently at higher z 

Lower metallicities at high redshift 
are driven by: 
• Larger gas fractions (less production of 

metals by stars) 
• Larger mass loading factors (removal of 

heavy elements)

ηou t

ηou t =
·Mou t

SFR

Sanders et al. 2021, ApJ, 914, 19

Stellar mass



Buildup of heavy elements in the first billion years

z = 7.15 
t = 750 MyrHashimoto et al. 2019



Buildup of heavy elements in the first billion years

Hashimoto et al (2019): 
Strong [O III] emission 
from a galaxy at z=7.15 
(only 750 Myr after the 
Big Bang)!

Hashimoto et al. 2019



Metallicity with infrared [O III] lines

Optical strong lines: 
highly sensitive to 
Temperature

IR lines: 
scale with abundance! 
(insensitive to T)

Recombination 
lines:  
insensitive to T, 
but weak



ALMA detections of [O III] lines at z>7

Inoue et al. (2016); Carniani et al. (2017); Hashimoto et al. (2018, 2019); Tamura et al. (2019)



Aside: verifying the method with a z=0 sample

Jones et al. 2020, ApJ, 903, 150

Methodology: combine [O III] 88 µm flux and SFR 
• O++ abundance from [O III] emission 
• H+ abundance estimated from SFR (proxy for H I recombination flux) 
• Range of values considered for density, temperature, ionization, etc 

• Conservative range results in ~0.4 dex systematic uncertainty in O/H 
• Validated with z~0 galaxy samples which show only 0.2 dex scatter! 

• JWST will provide ~0.1 dex precision at z>6!! (Cycle 1 program ID 01657, 
PIs: Harikane & Sanders)
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(Madden et al. 2013)

Good agreement! 
0.2 dex scatter (1σ) 
10% outliers



Chemical evolution up to z=8 !!

Jones et al. 2020, ApJ, 903, 150

All data points are 
based on direct (Te) 

measurements

Dashed lines are predicted 
from theory/simulations 

(Ma et al. 2016)



Chemical evolution up to z=8 !!

Jones et al. 2020, ApJ, 903, 150

Te metallicity measurements of 6 galaxies at z = 7 - 9 
• Metallicity shows little evolution at z>3, at fixed mass 

• (but currently there is considerable systematic uncertainty) 
• (some do not have reliable stellar masses — awaiting JWST) 

• In agreement with simulations, where small evolution results from relatively 
constant gas fractions 

• Metallicities > 10% solar imply previous enrichment over ~100 Myr or more

Dashed lines are predicted 
from theory/simulations 

(Ma et al. 2016)



Recap: chemical evolution up to z=8
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Large samples Direct measurements

Chemical evolution probes galaxy assembly & baryon cycle 
• Scaling of gas inflows & outflows, with large samples up to z<4  

Growing sample of direct Te metallicity measurements at z=1-4 
• Challenging, but essential for reliable chemical evolution results! 

• JWST Cycle 1 programs will dramatically enlarge current samples 

First glimpse of metallicity (with direct Te method!) at z>7 
• Metallicity from IR [O III] lines from ALMA; little evolution from z=3 to 8 
• Chemical enrichment suggests significant past star formation (z>10)



What is the true metallicity scale? 
How many heavy elements are there in the universe?
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Recombination line method

Direct measurements of 
metallicity with different methods 
give different results 
• This is the ADF = abundance 

discrepancy factor 
• RL metallicities are higher by a factor of 

nearly 2! 
• Relatively small scatter, but large 

systematic offset 

NB: relative measurements are still 
reliable. Chemical evolution results 
shown previously are still valid!
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Recombination line method

Direct measurements of 
metallicity with different methods 
give different results 
• This is the ADF = abundance 

discrepancy factor 
• RL metallicities are higher by a factor of 

nearly 2! 
• Relatively small scatter, but large 

systematic offset 

NB: relative measurements are still 
reliable. Chemical evolution results 
shown previously are still valid!

Key test: [O III] infrared lines are insensitive to temperature. 
These enable a “Te” measurement, but without the potential bias from 
temperature fluctuations. [O III] 52 µm line is the best tracer of metallicity!

Credit: NASA/Jim Ross
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Recombination line method

Credit: NASA/Jim Ross

Hypothesis 
• If temperature fluctuations cause the 

ADF, then far-IR based measurements 
should be higher than Te method (from 
optical), and in agreement with RL result  

• RL measurements would be correct, 
and CEL biased low 

• Far-IR lines should accurately trace the 
true gas-phase metallicity



Credits: NASA, ESA, K. Kuntz (JHU), F. Bresolin (University of Hawaii), J. Trauger (Jet Propulsion Lab), J. Mould (NOAO), Y.-H. 
Chu (University of Illinois, Urbana) and STScI



Credits: NASA, ESA, K. Kuntz (JHU), F. Bresolin (University of Hawaii), J. Trauger (Jet Propulsion Lab), J. Mould (NOAO), Y.-H. 
Chu (University of Illinois, Urbana) and STScI

NGC 5461 
SOFIA / FIFI-LS  

[O III] 52µm emission

(not to scale)



Example target: NGC 2363

Keck/KCWI SOFIA/FIFI-LS Herschel/PACS



Example target: NGC 2363

Prelim
inary!

Initial results do not reconcile the different methods.  
We are looking into further possible systematics…



Summary
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Galaxy assembly revealed by chemical evolution at high z 
• Gas content, inflow and outflow rates with large samples 

• … including the first glimpse at z=8 
• Modest and growing samples of direct (Te) measurements at z = 0.8 - 4 
• Appropriate strong-line calibrations validated for use at high z 

Prospects for establishing the absolute abundance scale 
• Far-IR lines enable a critical test of systematic uncertainties 
• Distinguish between the Te vs recombination line methods 

• … and use results to calibrate all methods to same absolute scale 

Chemical evolution (z=0-4) Te measurements (z=0-8) ADF (z=0)


