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Outline
• Background Geometry and Topology

➢Minkowski functionals (Euler characteristic/genus)
➢Homology
➢Hierarchical homology (persistent homology)

• Topological characteristics of CMB fluctuations
➢Temperature 

➢Full sky
➢Hemispheres

➢Polarization (full sky)

• Conclusion

• (Structure identification through topology)



Minkowski Functionals

• Predominantly Geometric quantities : include the notion of Volume, surface area, contour 
length of a manifold 𝑀.

• (D+1) quantifiers for D-dimensional sets

• Go by various names and orderings: quermassintegrals, Dehn and Steiner functionals, curvature 
integrals, intrinsic volumes, Minkowski functionals, and Lipschitz-Killing curvatures.

•We need only MFs and LKCs for our purpose, which when properly defined are related by
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Pranav et al, MNRAS, 485 (3), 4167-4208



Minkowski Functionals

• A useful way of defining these quantities is via the Steiner formula or Weyl’s tube formula :
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• The set in the LHS is known as the “tube around 𝑀”, and 𝜌 is small.

• Trivial to check 𝑄( and ℒ" measure 𝐷-dimensional volume (set 𝜌 = 0 above). 

• 𝑄)and 2ℒ& measure surface area. 

• Other functionals are harder to define, but always a true and deep result that:

𝜒 𝑀 = ℒ( 𝑀 =
1

𝐷!𝜔"
𝑄"(𝑀).

• In 3D, this only leaves 𝑄& and ℒ). If the manifold 𝑀 is convex, ℒ) 𝑀 = 𝑄&(𝑀)/2𝜋 is twice
the caliper diameter of 𝑀.

Pranav et al, MNRAS, 485 (3), 4167-4208, 2019



Geometry and Topology

• Theorema Egrerium (latin for remarkable theorem) of Gauss states that the
Gaussian curvature of a surface is an intrinsic invariant, meaning it is a constant
irrespective of how the surface is bent (or twisted) in space

• Leads to the Gauss-Bonnet theorem

• K : Gaussian curvature of M, kg: geodesic curvature of the boundary of M

• The theorem is remarkable because it links and proves that a topological invariant
(EC) can be computed purely from geometrical properties.

Pranav et al, MNRAS, 485 (3), 4167-4208, 2019



Euler characteristic
•Originally defined for polyhedra

•Modern definition through algebraic
topology, specifically Homology

Tetrahedron 
V = 4, E = 6, F = 4

Cube 
V = 8, E = 12, F = 6

octahedron 
V = 6, E = 12, F = 8



Genus

• For a connected, orientable surface, the Genus has a linear
relationship with the maximal number of independent simple
closed curves that can be drawn on the surface without
rendering it disconnected

• Number of handles attached to a surface



Why the Euler characteristic?

ALGEBRAIC TOPOLOGY
Homology, homotopy,
dimensions of groups,
Betti numbers, persistence

DIFFERENTIAL TOPOLOGY
Curvature, forms, Betti numbers,
Morse theory, integration,
Lipschitz-Killing curvatures

INTEGRAL GEOMETRY
Convexity, convex ring 
kinematic formulae 
Minkowski functionals

SIMPLICIAL TOPOLOGY
Simplices, complexes,
cycles, numbers of simplices,
Betti numbers
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Beyond the Genus, EC and MFs

• The genus is defined only for connected and closed 2-dimensional
surfaces, and has no generalizations in higher or lower dimensions.

• The Euler-Poincare formula states that the Euler characteristic is an
alternating sum of another topological invariant called the Betti
numbers

• A formalism capable of expressing topology in a hierarchical fashion
would present an interesting and powerful extension for describing the
hierarchical structures in the cosmos.



Genus,  Euler  &   Betti
• Euler – Poincare formula 

Relationship between Betti Numbers & Euler Characteristic 𝜒:

Pranav et al, MNRAS, 465 (4), 4281-4310, 2017



Homology
Topology:
Study of connectivity and spatial relations that remain invariant under homeomorphisms (= 
continuous mapping between two topological objects)

Homology:
• Description of topology of a space in terms of cycles/boundaries.
• Fundamental lemma : Boundary of a boundary is necessarily empty.

p-chain:   sum of p-simplices
p-cycle:   boundary of (p+1) chain
0-cycle:    closed component
1-cycle:    closed loop of edges,

or finite union
2-cycle:    closed surface, 

or finite union 

Mutually homologous                      p-class
p-cycles                              

collection of independent p-classes : 
Homology group  Hp 

Betti numbers denote the rank of the 
groups

Torus:    one  0-cycle:        rank group H0:    1 :

two  1-cycles:      rank group H1:    2
one  2-cycle         rank group H2:    1



Topological cycles and holes

0 dimensional holes : 
gaps between 
connected objects

1 dimensional holes : 
loops/tunnels 2 dimensional holes : 

voids

• intuitive interpretation



Critical points and filtration
birth and death of topological cycles

• Study the change in topology of a manifold w.r.t. the growing excursion
sets of the function f

• Topology only changes at critical points of the function
• Addition of a critical point with index k, either creates a k-dimensional
hole, or it destroys a (k-1)-dimensional hole

∅ = 𝑀0 ⊆ 𝑀1 ⊆ SSS ⊆ 𝑀







• Representation of multi-scale
topology

• Dots in the diagram record birth
and death

• A diagram for each ambient
dimension of the manifold
• 0-dimensional diagram:
representation of merger of
isolated objects (merger trees)

• 1-dimensional diagrams:
formation and filling up of loops
(percolation)

• 2-dimensional diagrams:
formation and destruction of
topological voids (voids)

Birth, death and life-time(persistence): hierarchical topology

Pranav et al, MNRAS, 465 (4), 4281-4310, 2017



Computation



Topology and Geometry of 3D 
Gaussian fields

Pranav et. al. MNRAS, 485(3), 4167 (2019)



Gaussian Random fields
•Given a spatial location s, a Gaussian random field is a random 
function X(s) on R3 such that, when restricted to any finite set, one has 
a multivariate normal distribution.

• m-point joint distribution function:

• Mean:

• Covariance matrix:
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Gaussian fields: Minkowski Functionals

Pranav et. al. MNRAS, 485(3), 4167 (2019)



Gaussian fields: Betti Topology

• Shape of Betti numbers dependent on  power spectrum; EC 
and MF are not

• Gott et. al. (1986): Sponge-like topology of the LSS

Pranav et. al. MNRAS, 485(3), 4167 (2019)



Topology of the CMB



Relative Homology



Planck Data

• Specified on S2, as the
deviation from the
background average
(HEALPIX format)

• Measurement unreliable in
some parts: foregrounds

• Unreliable parts masked

• Field converted to N (0,1)
using unmasked pixels
only



Temperature
Full Sky



Masked degraded maps (multi-scale analysis)

• Maps degraded to N_side = 2048, 1024, 512, 256, 128, 64, 32 and 16 (not shown), corresponding to 
FWHM = 5’, 10’, 20’, 40’, 80’, 160’, 320’, 640'

• Binary Mask degraded similarly (converts it to non-binary) – reconverted to binary by setting the 
threshold 0.9 (as done by Planck coll.)
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P.Pranav, A&A 659, A115 (2022)
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P.Pranav, A&A 659, A115 (2022)



CMB Loops



Statistical tests
• The data consists of topological summaries (b0, b1, EC) obtained from simulations, and observed CMB 

field
• Goal: estimate the probability that the physical model that produced the simulations would produce 

quantities consistent with those from the  observed CMB field
• Let x_i \in \R^m$, $i=1,\ be a sample of i.i.d. $m$-dimensional  vectors,  drawn from a distribution F. 

Let  $\y \in \R^   be another sample point, assumed to be drawn from a distribution G. 
• Test the (null) hypothesis that F=G

• p-values compute the probability that y is `consistent' with this hypothesis. 

• Two methods : 
Ø Mahalanobis Distance or chi^2 test : parametric (Prasanta Chandra Mahalanobis, 1936)
Ø Tukey depth : non-parametric (John Tukey, 1974)



Mahalanobis distance or χ2-test:
• Mean :

• Variance:

• Mahalanobis
distance: 

• If F is assumed to be Gaussian and n is large,  then under the hypothesis that G=F the squared Mahalanobis
distance is approximately distributed as a chi^2 distribution with m degrees of freedom. Thus the 
corresponding  p-value is



Tukey depth
• F may not always conform to elliptical contours and therefore may not be Gaussian. In such a setting,  $p$-values 

computed using the Mahalanobis distance may not be reliable.

• The Tukey half-space depth provides a general metric  for identifying outliers  in a flexible manner and in a non-
parametric setting.

• Take x_i, i=1,...,n and  y as before, making no assumptions on the structure of F and G, and let z be any point in Rm.  

• Half-space depth ddep(xj; x1,…, xn) of z within the sample of the xi is the smallest fraction of the n points 
$x1,…,xn$ to either side of any hyperplane passing through z

• Points that have the same depth constitute a non-parametric estimate of the  isolevel contour of the distribution F.

• To evaluate a p-value for y, compute dj = ddep(xj; x_1,…,xn) for every point xj, (j=1,…,n), yielding an empirical 
distribution of depth.  p-value is the proportion of points whose depth is lower than that of y:



P.Pranav, A&A 659, A115 (2022)



Temperature
Hemispheres





• b0 for the temperature
maps (NPIPE and FFP10
dataset) Northern (top two
rows) and the southern
hemisphere (bottom two
rows).

• The graphs present the 
normalized differences, 
and each panel presents the 
graphs for a range of 
degradation and smoothing 
scales. 

• PR3 temperature common 
mask. 





• b1 for the temperature
maps (NPIPE and FFP10
dataset) Northern (top two
rows) and the southern
hemisphere (bottom two
rows).





• Minkowski functionals and
skeleton length (WMAP)

Eriksen et al 2004



Polarization



Experimental set up
• Use full sky to generate alms

from TQU maps (prevents E/B
leakage)

• Use the grad and curl-like like
elements to synthesize the E and
B maps

• Mask : PR3 common mask (+ b)



E-mode maps 
Isolated objects (betti 0)

NPIPE : Planck 2018 common Mask



E-mode maps
Loops(betti 1)

NPIPE : Planck 2018 common Mask



B-mode maps 
Isolated objects (betti 0)

NPIPE : Planck 2018 common Mask



B-mode maps
Loops(betti 1)

NPIPE : Planck 2018 common Mask



B-mode maps 
Isolated objects (betti 0)

NPIPE : Planck 2018 common Mask + galcut 60



B-mode maps
Loops(betti 1)

NPIPE : Planck 2018 common Mask + galcut 60





Q maps 
Isolated objects (betti 0)



Q maps 
Loops(betti 1)



U maps 
Isolated objects (betti 0)



U maps 
Loops(betti 1)
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Conclusions
• Topology and geometry powerful means of characterizing data.

• CMB data exhibits mild to significant anomaly in both temperature 
and polarization data.
• Temperature: full sky (large-scale); hemisphere (Degree-scale)
• Polarization: full-sky (degree-scale)

• Results are based on legitimate mathematical foundations, and not a 
case of over-exploitation of data through tailor-made statistics.

• Hints of violation of cosmological principal, or other late time 
mechanisms at play (including doppler boosting/dipolar 
modulation)? 


