

"Semiconductor Field Emission Electron Source for Application in Sensors and X-ray Sources"

Prof. Dr. Rupert Schreiner Ostbayerische Technische Hochschule Regensburg Applied Natural Sciences and Cultural Studies Seybothstr. 2, 93053 Regensburg

- 1. Introduction
- 2. Field emission & field enhancement
- 3. Si-tip-cathodes: fabrication & characterization
- 4. FE-Electron-source

1. Introduction

- 2. Field emission & field enhancement
- 3. Si-tip-cathodes: fabrication & characterization
- 4. FE electron souce

1. Introduction

Strong focus on engineering (> 70%)

1959 Johannes Kepler Polytechikum (623 students)1971 University of Applied Sciences2013 OTH Regensburg (now >11000 students)

ALLGEMEINWISSENSCHAFTEN UND MIKROSYSTEMTECHNIK

1. Introduction

AΜ

TECHNISCHE HOCHSCHULE REGENSBURG

ALLGEMEINWISSENSCHAFTEN UND MIKROSYSTEMTECHNIK

1. Introduction

Nothing is like a vacuum...

Electrons in a vacuum travel unperturbed from cathode to anode (no scattering, no power-loss, no deceleration)

→ Vacuum tubes can operate at **higher frequencies** and **higher power** than equivalent solid-state semiconductor devices

→ Semiconductor electronics replaced vacuum tubes, not because of their superior technical performance, but because of their reliability, size and cost!

HIFI tube amplifier (Marriola)

Vacuum nanoelectronics: FE electron source (OTH)

S. 6

1. Introduction

Scanning Electron Microscopy:

1. Introduction

Ion-Mobility Spectrometry

1. Introduction

1. Introduction

2. Field emission & field enhancement

- 3. Si-tip-cathodes: fabrication & characterization
- 4. FE electron souce

Field emission: How does it work?

2. Field emission & field enhancement

 \rightarrow E> 10⁸ V/m !

Tunneling through a rectangular barrier:

→ Nanostructures

2. Field emission & field enhancement

Tip geometry: Simulation

FEM simulations of the field enhancement factor β by Comsol Multiphysics

a) Influence of aspect ratio v=H/R on β : "rounded whisker shape" (A=0, α =0)

 \rightarrow in agreement with analytic models

- S. Podenok, M. Sveningsson, K. Hansen, E. Campbell, "Electric field enhancement factors around a metallic, end-capped cylinder", NANO 1 (1), S. 87-93 (2006).
- R. Forbes, C.J. Edgcombe, U. Valdrè, "Some comments on models for field enhancement", Ultramicroscopy 95 (1-4), S. 57-65 (2003).

2. Field emission & field enhancement

Tip geometry: Simulation

b) Influence of aperture angle α on β : "rounded cone shape" (A=0)

- →Influence of the elliptic curvature can be neglected
- → our Si structures can be described in good approximation by the rounded cone shape model

2. Field emission & field enhancement

Theory: Fowler-Nordheim-tunneling:

$$j(E) = \frac{A(E^2)}{\Phi} \cdot \exp\left[\frac{B \Phi^{\frac{3}{2}}}{E}\right]$$

Experiment:

FN-behavior of one conical <u>single</u> <u>Si-tip (n-doped)</u>:

- 1. Introduction
- 2. Field emission & field enhancement

4. FE electron souce

Experiments

→ homogeneous emission over large areas

Mo coating (20 nm): currents up to several µA with only 16 tips

FESM measurements and FE-Electron-Spectroscopy (@ Uni Wuppertal, Prof. Müller)

Integral measurements (@ OTH Regensburg)

Arrays of 271 Si-tips Integral Measurements

Photo-enhanced field emission

diode laser (650nm, 100mW) coupled into optical fiber

Laser Intensity	PEFE current
Without illumination	1μΑ
25% laser illumination	2uA
50% laser illumination	5μΑ
100% laser illumination	10μΑ

Improved cathode design:

Silicon tips with high aspect ratio

R. Lawrowski et al., in *Vacuum Nanoelectronics Conference (IVNC), 2014 27th International*, 2014, pp. 193–194. C. Langer et al., in *Vacuum Nanoelectronics Conference (IVNC), 2014 27th International*, 2014, pp. 222–223.

• Black silicon (on top of pillars)

C. Langer et al., in Vacuum Nanoelectronics Conference (IVNC), 2015 28th International, 2015, pp. 104-105.

 \rightarrow low onset fields: 6 V/µm

• Silicon tips with an integrated gate electrode

C. Prommesberger et al., in Vacuum Nanoelectronics Conference (IVNC), 2015 28th International, 2015, pp. 164-165.

p-Si cathodes with integrated gate structures (Triode configuration)

p-Si: 1..10 $\Omega cm,$ Array with 16 tips, Ugrid=400V, Ugate=0V cathode – anode distance: 50 μm

- 1. Introduction
- 2. Field emission & field enhancement
- 3. Si-tip-cathodes: fabrication & characterization

4. FE electron souce

4. FE-Electron-source

4. FE-Electron-source

FIG. 5. Modular electron source setup consisting of the FE cathode, the spacer (mica film), and the extraction grid assembled in the aluminum framework inserted in the ultrahigh vacuum system. An optional anode needle is placed above the extraction grid for transmission measurements.

4. FE-Electron-source

FIG. 7. Schematic drawing of the measurement setup used for characterization of the electron source.

10⁻⁴ sample A 0 sample B sample C 10⁻⁶ cathode current I_C (A) sample D **FN-fits** 10⁻⁸ -24 In((I_C/V²_{FE})/(A/ -28 10⁻¹⁰ -32 -36 4 6 2 8 $(1/V_{\rm F})/(1/V) \times 10^{-3}$ 10⁻¹² 200 100 300 400 500 0 voltage V_{FE} (V)

FIG. 9. Representative I–V curves (up- and down-cycle) of the investigated samples and their resulting FN-plots (inset) with the FN-fits: sample A (circles), sample B (asterisks), sample C (x-marks), and sample D (plus-signs).

4. FE-Electron-source

). Photograph of the emission pattern of sample B using a luminescent The circles indicate the positions of the emitters.

4. FE-Electron-source

ALLGEMEINWISSENSCHAFTEN UND MIKROSYSTEMTECHNIK

4. FE-Electron-source

Unregulated operation:

I(t)-plots of the individual emitters (I_1-I_4) and of the total grid current (I_G) of a constant current measurement

Semi-logarithmic plot of the current fluctuations as a function of the individual currents with a linear fit

(measured for various total emission currents I_G)

4. FE-Electron-source

I-V-plots of the individual emitters (I_1-I_4) and of the grid (I_G) with individual regulated emitter currents (1.0 µA,

ALLGEMEINWISSENSCHAFTEN UND MIKROSYSTEMTECHNIK

SPONSORED BY THE

1 ALLGEMEINWISSENSCHAFTEN UND MIKROSYSTEMTECHNIK

Appendix

Application in an ionisation vacuum gauge

Measurement results

Ion collector current $I_{IC} = I_A * S * p$

Anode current of 1.3 μ A led to an ion current I_{IC} of 7 fA (@ 3 x 10-7) and of 0.8 pA (@ 4 x 10-5 mbar)

