

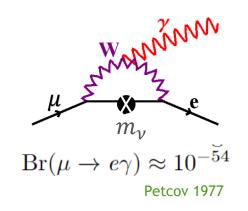
Gearing up for the next generation of LFV experiments, via on-shell methods

Mehmet Asım Gümüş, IPMU, 06.07.2022 arXiv:2112.12131 (with J. Elias-Miró, Clara Fernandez, Alex Pomarol)

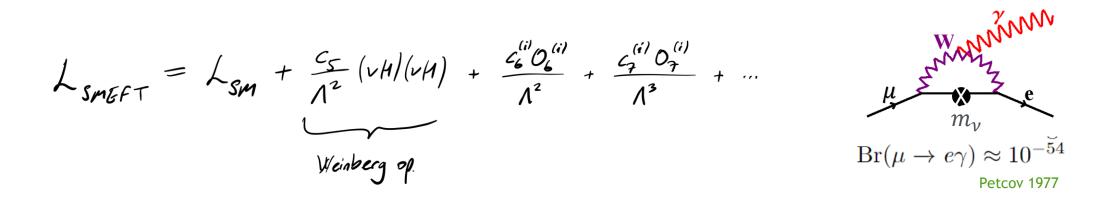
- ▶ LF is an accidental symmetry in SM.
- They are "clean" observables.

 ν oscillations + small $m_{\nu} \Rightarrow$ (almost) no LFV through the SM.

- Many BSMs suggests L_i without necessarily L.
- Try to understand from IR physics: SM EFT
 - For a heavy new physics sector at $\Lambda \gg E$ breaking L_i but not L, we will focus on dim-6 operators and renormalization group running effects above electroweak breaking scale $E \gg m_W$.
 - The RG analysis between m_W and m_μ can be found in Crivellin et al. 2017 1702.03020



Standard Model as an Effective Field Theory of a bigger UV complete theory.



- An expansion of operators of increasing mass dimension $d \ge 4$.
- Heavy new physics \rightarrow Small corrections to SM at low energies.

We will focus on three processes.

- $\blacktriangleright \quad \mu^- \to e^- \gamma$
- $\blacktriangleright \quad \mu^- \to e^- \; e^+ \; e^+$

▶ $\mu^- N \rightarrow e^- N$

Reaction	Present limit	C.L.	Experiment	Year
$\mu^+ \to e^+ \gamma$	$< 4.2 \times 10^{-13}$	90%	MEG at PSI	2016
$\mu^+ \rightarrow e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	90%	SINDRUM	1988
$\mu^- \mathrm{Ti} \to e^- \mathrm{Ti}^{\dagger}$	$< 6.1 \times 10^{-13}$	90%	SINDRUM II	1998
$\mu^- \mathrm{Pb} \to e^- \mathrm{Pb}^{\dagger}$	$< 4.6 \times 10^{-11}$	90%	SINDRUM II	1996
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}^{\dagger}$	$< 7.0 \times 10^{-13}$	90%	SINDRUM II	2006
$\mu^- \mathrm{Ti} \to e^+ \mathrm{Ca}^{* \dagger}$	$< 3.6 \times 10^{-11}$	90%	SINDRUM II	1998
$\mu^+e^- ightarrow \mu^-e^+$	$< 8.3 \times 10^{-11}$	90%	SINDRUM	1999
$\tau \to e \gamma$	$< 3.3 \times 10^{-8}$	90%	BaBar	2010
$ au ightarrow \mu \gamma$	$< 4.4 \times 10^{-8}$	90%	BaBar	2010
$\tau \rightarrow eee$	$< 2.7 \times 10^{-8}$	90%	Belle	2010
$ au o \mu \mu \mu$	$< 2.1 \times 10^{-8}$	90%	Belle	2010
$\tau \rightarrow \pi^0 e$	$< 8.0 imes 10^{-8}$	90%	Belle	2007
$\tau ightarrow \pi^0 \mu$	$< 1.1 \times 10^{-7}$	90%	BaBar	2007
$\tau \rightarrow \rho^0 e$	$< 1.8 \times 10^{-8}$	90%	Belle	2011
$ au o ho^0 \mu$	$< 1.2 \times 10^{-8}$	90%	Belle	2011
$\pi^0 \to \mu e$	$< 3.6 \times 10^{-10}$	90%	KTeV	2008
$K_L^0 \to \mu e$	$< 4.7 \times 10^{-12}$	90%	BNL E871	1998
$K_L^{\tilde{0}} \rightarrow \pi^0 \mu^+ e^-$	$< 7.6 \times 10^{-11}$	90%	KTeV	2008
$K^+ \to \pi^+ \mu^+ e^-$	$< 1.3 \times 10^{-11}$	90%	BNL E865	2005
$J/\psi \to \mu e$	$< 1.5 \times 10^{-7}$	90%	BESIII	2013
$J/\psi \to \tau e$	$< 8.3 \times 10^{-6}$	90%	BESII	2004
$J/\psi \to \tau \mu$	$< 2.0 \times 10^{-6}$	90%	BESII	2004
$B^0 \rightarrow \mu e$	$< 2.8 \times 10^{-9}$	90%	LHCb	2013
$B^0 \rightarrow \tau e$	$< 2.8 \times 10^{-5}$	90%	BaBar	2008
$B^0 \to \tau \mu$	$< 2.2 \times 10^{-5}$	90%	BaBar	2008
$B \to K \mu e^{\ddagger}$	$< 3.8 \times 10^{-8}$	90%	BaBar	2006
$B \to K^* \mu e^{\ddagger}$	$< 5.1 \times 10^{-7}$	90%	BaBar	2006
$B^+ \to K^+ \tau \mu$	$< 4.8 \times 10^{-5}$	90%	BaBar	2012
$B^+ \to K^+ \tau e$	$< 3.0 \times 10^{-5}$	90%	BaBar	2012
$B_s^0 \to \mu e$	$< 1.1 \times 10^{-8}$	90%	LHCb	2013
$\Upsilon(1s) \to \tau \mu$	$< 6.0 \times 10^{-6}$	95%	CLEO	2008
$\overline{Z \to \mu e}$	$< 7.5 \times 10^{-7}$	95%	LHC ATLAS	2014
$Z \rightarrow \tau e$	$< 9.8 \times 10^{-6}$	95%	LEP OPAL	1995
$Z ightarrow au \mu$	$< 1.2 \times 10^{-5}$	95%	LEP DELPHI	1997
$h ightarrow e \mu$	$< 3.5 \times 10^{-4}$	95%	LHC CMS	2016
$h ightarrow au \mu$	$< 2.5 \times 10^{-3}$	95%	LHC CMS	2017
$h \rightarrow \tau e$	$< 6.1 \times 10^{-3}$	95%	LHC CMS	2017

Calibbi, Signorelli 2018, 1709.00294

We will focus on three processes.

- $\blacktriangleright \quad \mu^- \to e^- \gamma$
- $\blacktriangleright \quad \mu^- \to e^- \ e^+ \ e^+$
- ▶ $\mu^- N \rightarrow e^- N$

Reaction	Present limit	C.L.	Experiment	Year
$\mu^+ \to e^+ \gamma$	$< 4.2 \times 10^{-13}$	90%	MEG at PSI	2016
$\mu^+ \rightarrow e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	90%	SINDRUM	1988
$\mu^{-}\mathrm{Ti} \rightarrow e^{-}\mathrm{Ti}^{\dagger}$	$< 6.1 \times 10^{-13}$	90%	SINDRUM II	1998
$\mu^- \text{Pb} \rightarrow e^- \text{Pb}^{\dagger}$	$< 4.6 \times 10^{-11}$	90%	SINDRUM II	1996
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}^{\dagger}$	$< 7.0 \times 10^{-13}$	90%	SINDRUM II	2006
$\mu^{-}\mathrm{Ti} \rightarrow e^{+}\mathrm{Ca}^{*}^{\dagger}$	$< 3.6 \times 10^{-11}$	90%	SINDRUM II	1998
$\mu^+ e^- \rightarrow - +$	<u>+ 0 0 - 10 - 11</u>	000	SINDRUM	1999
$\tau \rightarrow e\gamma$ most	sensitive	ones	BaBar	2010
$\tau \rightarrow \mu \gamma$. SCHSICIVE	Unes	BaBar	2010
$\tau \rightarrow eee$	$< 2.7 \times 10^{-8}$	90%	Belle	2010
$ au o \mu \mu \mu$	$< 2.1 \times 10^{-8}$	90%	Belle	2010
$\tau \rightarrow \pi^0 e$	$< 8.0 imes 10^{-8}$	90%	Belle	2007
$\tau \rightarrow \pi^0 \mu$	$< 1.1 \times 10^{-7}$	90%	BaBar	2007
$\tau \rightarrow \rho^0 \dot{e}$	$< 1.8 \times 10^{-8}$	90%	Belle	2011
$ au ightarrow ho^0 \mu$	$< 1.2 \times 10^{-8}$	90%	Belle	2011
$\pi^0 \to \mu e$	$< 3.6 \times 10^{-10}$	90%	KTeV	2008
$K_L^0 \to \mu e$	$< 4.7 \times 10^{-12}$	90%	BNL E871	1998
$K_L^{\tilde{0}} \rightarrow \pi^0 \mu^+ e^-$	$< 7.6 \times 10^{-11}$	90%	KTeV	2008
$\tilde{K^+} \rightarrow \pi^+ \mu^+ e^-$	$< 1.3 \times 10^{-11}$	90%	BNL E865	2005
$J/\psi \to \mu e$	$< 1.5 \times 10^{-7}$	90%	BESIII	2013
$J/\psi \to \tau e$	$< 8.3 \times 10^{-6}$	90%	BESII	2004
$J/\psi ightarrow au\mu$	$< 2.0 \times 10^{-6}$	90%	BESII	2004
$B^0 \to \mu e$	$< 2.8 \times 10^{-9}$	90%	LHCb	2013
$B^0 \rightarrow \tau e$	$< 2.8 \times 10^{-5}$	90%	BaBar	2008
$B^0 \to \tau \mu$	$< 2.2 \times 10^{-5}$	90%	BaBar	2008
$B \to K \mu e^{\ddagger}$	$< 3.8 \times 10^{-8}$	90%	BaBar	2006
$B \to K^* \mu e^{\ddagger}$	$< 5.1 \times 10^{-7}$	90%	BaBar	2006
$B^+ \to K^+ \tau \mu$	$< 4.8 \times 10^{-5}$	90%	BaBar	2012
$B^+ \to K^+ \tau e$	$< 3.0 \times 10^{-5}$	90%	BaBar	2012
$B_s^0 \to \mu e$	$< 1.1 \times 10^{-8}$	90%	LHCb	2013
$\Upsilon(1s) \to \tau \mu$	$< 6.0 \times 10^{-6}$	95%	CLEO	2008
$\overline{Z \to \mu e}$	$< 7.5 \times 10^{-7}$	95%	LHC ATLAS	2014
$Z \rightarrow \tau e$	$< 9.8 \times 10^{-6}$	95%	LEP OPAL	1995
$Z \to \tau \mu$	$< 1.2 \times 10^{-5}$	95%	LEP DELPHI	1997
$h \rightarrow e \mu$	$< 3.5 \times 10^{-4}$	95%	LHC CMS	2016
$h ightarrow au \mu$	$< 2.5 \times 10^{-3}$	95%	LHC CMS	2017
$h \rightarrow \tau e$	$< 6.1 imes 10^{-3}$	95%	LHC CMS	2017

▶ Tree-level analysis within SM EFT.

Br(p-jer) ~ Coipole = /r. /H>=V Dipole operator <u>c⁽⁶⁾</u>. ey, · V or V F_mM

► Tree-level analysis within SM EFT.

► Tree-level analysis within SM EFT.

A full list of operators we are interested in.

	$\psi^2 FH$		$\overline{\psi}\psi H^2 D$
$\mathcal{O}^{\mu e}_{DW}$	$y_{\mu}g\overline{L}_{L}^{(2)}\tau^{a}\sigma^{\mu\nu}e_{R}^{(1)}HW_{\mu\nu}^{a}$	${\cal O}_L^{\mu e}$	$(H^{\dagger}i\overleftarrow{D_{\mu}}H)(\overline{L}_{L}^{(2)}\gamma^{\mu}L_{L}^{(1)})$
$\mathcal{O}^{\mu e}_{DB}$	$y_{\mu}g'\overline{L}_{L}^{(2)}\sigma^{\mu\nu}e_{R}^{(1)}HB_{\mu\nu}$	$\mathcal{O}_{L3}^{\mu e}$	$(H^{\dagger}i\overleftrightarrow{D_{\mu}}\tau^{a}H)(\overline{L}_{L}^{(2)}\gamma^{\mu}\tau^{a}L_{L}^{(1)})$
		$\mathcal{O}^{\mu e}_R$	$(H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\overline{e}_{R}^{(2)}\gamma^{\mu}e_{R}^{(1)})$
	$\overline{\psi}^2\psi^2$		$\psi^4, \psi^2 H^3$
$\mathcal{O}_{LL}^{\mu \mathit{eff}}$	$(\overline{L}_L^{(2)}\gamma^{\mu}L_L^{(1)})(\overline{F}_L\gamma_{\mu}F_L)$	$\mathcal{O}_{LuQe}^{\mu eqq}$	$y_{\mu}(\overline{L}_{L}^{(2)}u_{R})(\overline{Q}_{L}e_{R}^{(1)})$
$\mathcal{O}_{LL3}^{\mu e\!f\!f}$	$(\overline{L}_L^{(2)}\gamma^\mu au^a L_L^{(1)})(\overline{F}_L\gamma_\mu au^a F_L)$	$\mathcal{O}_{LeQu}^{\mu eqq}$	$y_{\mu}(\overline{L}_{L}^{(2)}e_{R}^{(1)})(\overline{Q}_{L}u_{R})$
$\mathcal{O}_{RR}^{\mu e\!f\!f}$	$(\overline{e}_R^{(2)}\gamma^{\mu}e_R^{(1)})(\overline{f}_R\gamma_{\mu}f_R)$		
$\mathcal{O}_{LR}^{\mu e\!f\!f}$	$(\overline{L}_L^{(2)}\gamma^{\mu}L_L^{(1)})(\overline{f}_R\gamma_{\mu}f_R)$	$\mathcal{O}_y^{\mu e}$	$y_{\mu}(H^{\dagger}H)(\overline{L}_{L}^{(2)}e_{R}^{(1)}H)$

Remember the names in the first row. We will need them later.

Also notice:

 $C_{\text{Oipole}}^{(pe)} = C_{\text{DW}}^{(pe)} - C_{\text{OB}}^{(pe)}$ since Fpr = sin Ow Wpr - cos Ow Bpr

Great advances in precision limit in future on the experimental side.

	${\rm BR}(\mu \to e \gamma)$	$\mathrm{BR}(\mu \to eee)$	$R(\mu N \to eN)$	$\mathrm{BR}(h \to \mu e)$
Current	$4.2 \cdot 10^{-13} \ [28]$	$1\cdot 10^{-12}$ [29]	$7\cdot 10^{-13}$ [30]	$6.1\cdot 10^{-5}$ [31]
Future	$6.0\cdot 10^{-14}$ [32]	$1\cdot 10^{-16}$ [33]	$8\cdot 10^{-17}$ [34]	
	$\times 10^{1}$	$ imes 10^4 ext{ imp}$	rovement!	

Great advances in precision limit in future on the experimental side.

Dipole observable is extremely sensitive. Let us crack in some numbers:

$$Br(\mu \rightarrow e \gamma) \lesssim 10^{-13}$$
 translates to $\frac{|c_{\mu\nu} - c_{\mu\beta}|^2}{\Lambda^4} \lesssim \frac{1}{10^{12} \text{ Tev}^4}$

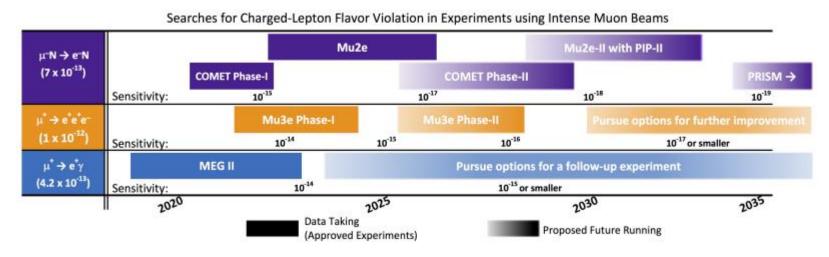
If there is an operator mixing with the dipole during RG flow, even with a two-loop suppression. i.e.

$$\frac{C_i}{(14\pi^2)^2} \cdot \ln\left(\frac{\Lambda}{m_W}\right) \longrightarrow C_{DW} - C_{DB} \quad \text{would translate to}$$

$$\frac{|c_i|^2}{\Lambda^4} \lesssim \frac{1}{(6 \text{ TeV})^4}$$

Great advances in precision limit in future on the experimental side.

Experimental road map:

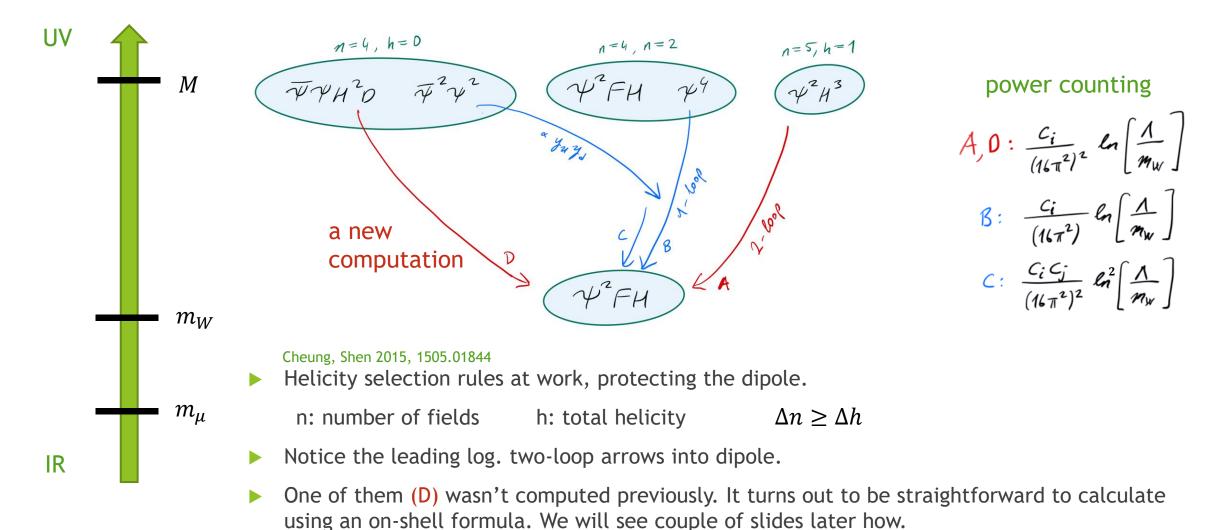


Baldini et al. 2018 From a report for the 2020 update of European Strategy for Particle Physics 1812.06540

- MEG updates first, then Mu3e follows.
 - \Rightarrow There is a time window to exploit high sensitivity on $\mu \rightarrow e \gamma$.

To put direct bounds on c_{DW-DB} and indirect bounds on $c_{L,L3,R}$ through RG mixing.

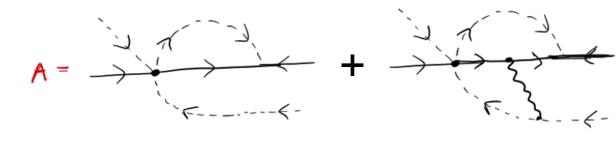
Running of LFV Operators

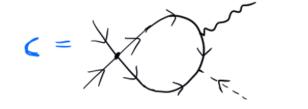


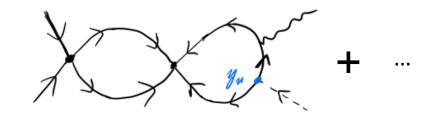
Running of LFV Operators

Let us approach the same problem diagrammatically.

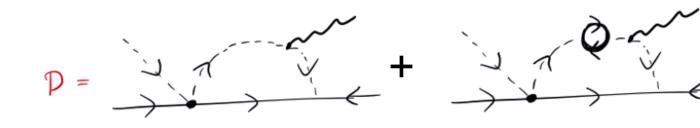
╋

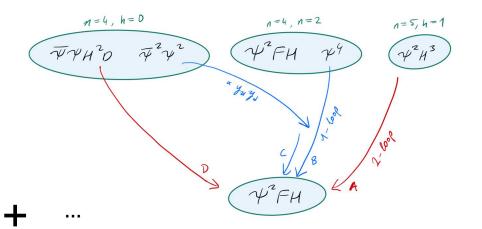






...





- One-loop terms has no divergent contributions.
- Could we anticipate them? Is it possible to see such cases without doing a loop computation?

▶ The answer is yes! We will need form factors (FF), so let us define it.

$$F_{O}(1,2,...,n|q) = \int d^{d}x \langle 123...n|O(x)|0\rangle e^{iqx}$$

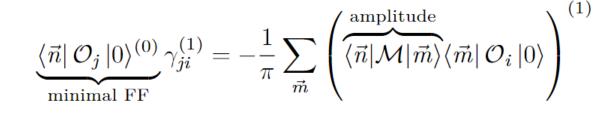
We need in particular their Fourier transform at zero momentum. In this form, it resembles a scattering amplitude with an operator insertion.

$$F_{O}(1,2,...,n|q) \xrightarrow{q \to 0} \langle 123...n| \int d^{d}x O(x) |0\rangle \equiv \langle \vec{n} | O | 0 \rangle$$

The beautiful formula connecting RG equations and on-shell amplitudes:

$$\underbrace{\langle \vec{n} | \mathcal{O}_{j} | 0 \rangle^{(0)}}_{\text{minimal FF}} \gamma_{ji}^{(1)} = -\frac{1}{\pi} \sum_{\vec{m}} \left(\underbrace{\langle \vec{n} | \mathcal{M} | \vec{m} \rangle}_{\vec{m}} \langle \vec{m} | \mathcal{O}_{i} | 0 \rangle \right)^{(1)}_{\begin{array}{c} \text{Caron-Huot, Wilhelm 2017} \\ 1607.06448 \end{array}} \right)^{(1)}$$

- Sum is over the phase space of particles $\vec{m} = \{1, 2, ..., m\}$. Minimal FF means all couplings are turned off. Superscript (i) means i-th non-vanishing log. order.
- If time permits, we will go through an alternative derivation given in 2005.06983



- But let us give ourselves quick intuition why it works.
- LHS is a local expression (=a polynomial in momenta) times γ_{ji} .
- At the leading log. order, one can read γ_{ji} from the coefficient in front of $1/\epsilon$ in dimensional regularization. It is also the same coefficient in front of the log.

$$\frac{1}{100} = \gamma \cdot \left(\frac{1}{\xi} + \log\left(\frac{\mu^2}{5^2}\right)\right)$$

$$\frac{1}{100} \left(\frac{1}{\xi} + \log\left(\frac{\mu^2}{5^2}\right)\right)$$

$$\frac{1}{100} \left(\frac{1}{\xi} + \log\left(\frac{\mu^2}{5^2}\right)\right)$$

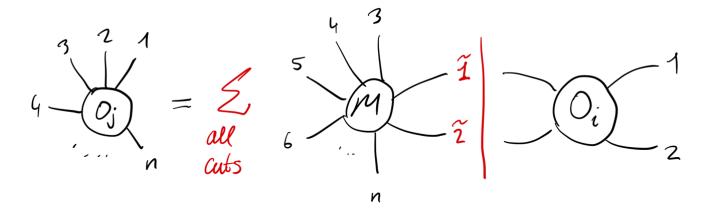
$$\frac{1}{100} \left(\frac{1}{\xi} + \log\left(\frac{\mu^2}{5^2}\right)\right)$$

$$\frac{1}{100} \left(\frac{1}{\xi} + \log\left(\frac{\mu^2}{5^2}\right)\right)$$

- One can also detect γ_{ji} by finding the discontinuity of FF in complex s-plane.
- It amounts to put some internal propagators on-shell. (Optical Theorem)
- Notice that a complicated RHS should turn out to give a local expression.

So we can have graphic way to represent the formula:

$$\underbrace{\langle \vec{n} | \mathcal{O}_j | 0 \rangle^{(0)}}_{\text{minimal FF}} \gamma_{ji}^{(1)} = -\frac{1}{\pi} \sum_{\vec{m}} \left(\underbrace{\langle \vec{n} | \mathcal{M} | \vec{m} \rangle}_{\vec{m}} \langle \vec{m} | \mathcal{O}_i | 0 \rangle \right)^{(1)}$$



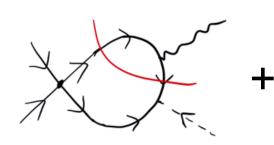
{1,2,...,n,1,2} are all on-shell momenta.

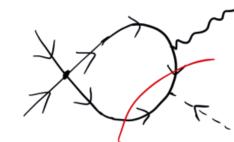
Let us see how we can use it, go back to the mixing diagram examples.

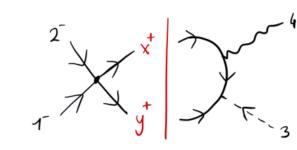
For (A)

$$\frac{3}{2} + \frac{3}{4} + \frac{3}$$

► For (C)

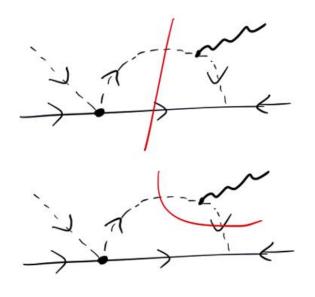


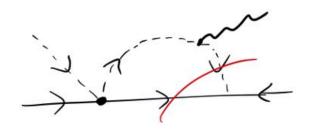




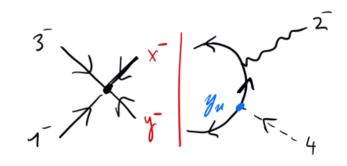
+ $\frac{1}{\pi} \int duPs(x^{+}, y^{+}) \langle 34^{-} | x^{+}y^{+} \rangle \langle x^{+}y^{+} | 2^{-} | 0_{y^{2} \overline{y}^{2}} | 0 \rangle$ zero ╋ zero varishes in SM

► For (D)





A non-vanishing example finally, take (B).



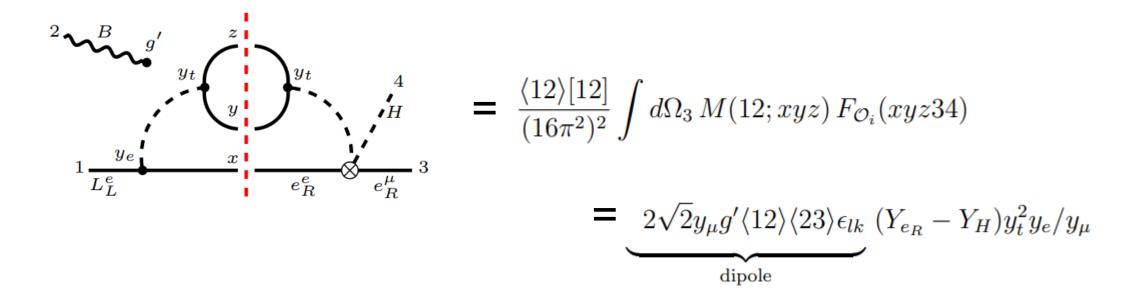
$$= -\frac{1}{\pi} \int dLIPS(x,y) M(24 \leftarrow xy) F_{\gamma 4}(xy13)$$

$$= \frac{1}{8\pi^{2}} \int dS_{2} \cdot \sqrt{2} (-y_{\mu}) \cdot \left(Y_{\mu k} \frac{[xy]^{2}}{[x2][y2]} + Y_{\mu} \frac{[xy][4x]}{[42][x2]} \right) \times \langle 1y \rangle \langle x_{3} \rangle$$

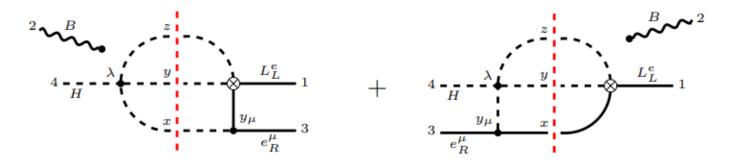
$$= 2 \cdot \sqrt{2} \cdot \langle 12 \rangle \langle 23 \rangle \cdot \gamma_{\mu} \frac{N_{c}/2}{(4\pi^{2})} (2\gamma_{\mu k} - \gamma_{\mu})$$

 $= F_{F\gamma^{2}H}(1\overline{2}\overline{3}4) \cdot \gamma_{\gamma^{4}} \rightarrow F\gamma^{2}H$

- Now we are warmed up to go bigger. Let us look at the new computation as promised.
- Next terms in (D) were two-loop diagrams, providing the leading log. since one-loop was 0 as we saw.
- **•** Top Yukawa contribution:



Higgs quartic contribution at two-loop:



$$\operatorname{cut} 1 = \frac{12\sqrt{2\lambda}y_{\mu}g'Y_{H}}{(16\pi^{2})^{2}}\frac{\langle 12\rangle}{[32]}s_{24}\left[1 + 2\frac{s_{34}}{s_{32}} + 2\frac{s_{34}}{s_{32}}\left(\frac{s_{34} + s_{32}}{s_{32}}\right)\ln\left(\frac{s_{34}}{s_{34} + s_{32}}\right)\right]\epsilon_{lk}$$

$$\operatorname{cut} 2 = \frac{12\sqrt{2}\lambda y_{\mu}g'Y_{H}}{(16\pi^{2})^{2}} \frac{\langle 12 \rangle}{[32]} s_{34} \left[1 - 2\frac{s_{13}}{s_{32}} + 2\frac{s_{13}^{2}}{s_{32}^{2}} \ln\left(\frac{s_{13} + s_{32}}{s_{13}}\right) \right] \epsilon_{lk}$$
 notice non-local pieces

$$\operatorname{cut} 1 + \operatorname{cut} 2 = \underbrace{2\sqrt{2}y_{\mu}g'\langle 12\rangle\langle 23\rangle\epsilon_{lk}}_{\text{dipole}} \frac{6\lambda Y_H}{(16\pi^2)^2}$$

Results: The anomalous dimensions matrices, given by

$$(\gamma_{C_{DB}^{e\mu}}, \gamma_{C_{DW}^{e\mu}})^{T} = \gamma_{D1} \cdot (C_{L}^{e\mu}, C_{L3}^{e\mu}, C_{R}^{e\mu})^{T}$$
$$\gamma_{D1} = \frac{N_{c} y_{t}^{2}}{(16\pi^{2})^{2}} \begin{pmatrix} 0 & 0 & -3y_{e}/(2y_{\mu}) \\ 1 & -1 & y_{e}/(2y_{\mu}) \end{pmatrix} + \frac{\lambda}{(16\pi^{2})^{2}} \begin{pmatrix} 3 & 3 & 3y_{e}/y_{\mu} \\ 1 & 3 & y_{e}/y_{\mu} \end{pmatrix}$$

and

$$(\gamma_{C_{DB}^{\mu e}}, \gamma_{C_{DW}^{\mu e}})^{T} = \gamma_{D2} \cdot (C_{L}^{\mu e}, C_{L3}^{\mu e}, C_{R}^{\mu e})^{T}$$
$$\gamma_{D2} = \frac{N_{c} y_{t}^{2}}{(16\pi^{2})^{2}} \begin{pmatrix} 0 & 0 & -3/2 \\ y_{e}/y_{\mu} & -y_{e}/y_{\mu} & 1/2 \end{pmatrix} + \frac{\lambda}{(16\pi^{2})^{2}} \begin{pmatrix} 3y_{e}/y_{\mu} & 3y_{e}/y_{\mu} & 3 \\ y_{e}/y_{\mu} & 3y_{e}/y_{\mu} & 1 \end{pmatrix}$$

Putting in some numbers: We turn on one-by-one the operators that enter into LFV observables, taking into account RG mixing relations up to two-loops.

	$\mu \to e \gamma$	$\mu \rightarrow eee$	$\mu N \to eN$	$h \rightarrow \mu e$
$C_{DB}^{\mu e} - C_{DW}^{\mu e}$	$951 { m ~TeV}$	$218 { m TeV}$	$208 { m TeV}$	
	(1547 TeV)	(2183 TeV)	(1812 TeV)	
$C_{DB}^{\mu e} + C_{DW}^{\mu e}$	$127 { m ~TeV}$	$26 { m TeV}$	$24 { m TeV}$	
	(214 TeV)	(309 TeV)	$(253 { m TeV})$	
$C_R^{\mu e}$	$35 { m TeV}$	$160 { m TeV}$	$225 { m TeV}$	
	(59 TeV)	(1602 TeV)	(1535 TeV)	
$C_L^{\mu e} + C_{L3}^{\mu e}$	$4 { m TeV}$	$164 { m TeV}$	$225 { m TeV}$	
	(7 TeV)	(1642 TeV)	(1535 TeV)	
$C_L^{\mu e} - C_{L3}^{\mu e}$	$24 { m TeV}$	$35 { m TeV}$	$50 { m ~TeV}$	
	(41 TeV)	(421 TeV)	(395 TeV)	
$C_y^{\mu e}$	4 TeV	1 TeV	1 TeV	$0.3 { m TeV}$
	(6 TeV)	(9 TeV)	(7 TeV)	

Present (Future) bounds Black: tree-level Blue: one-loop Red: two-loop

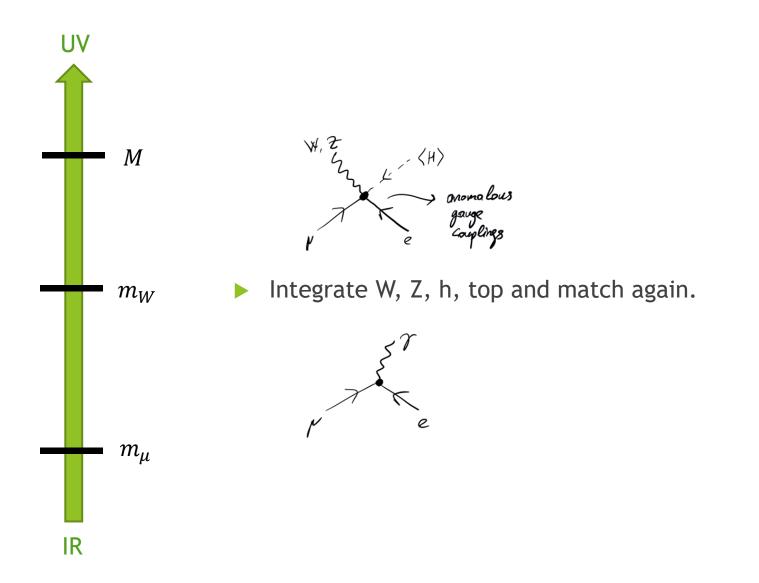
Consider a vector-like fermion with mass $M \gg m_w$. Yukawa-like coupled to 1st and 2nd generation leptons. $\Delta \mathcal{L}_S = (y_S^{(1)} \bar{L}_L^{(1)} + y_S^{(2)} \bar{L}_L^{(2)}) S_R i \tau_2 H^* + \text{h.c.},$ $\Delta \mathcal{L}_E = (y_E^{(1)} \bar{L}_L^{(1)} + y_E^{(2)} \bar{L}_L^{(2)}) E_R H + \text{h.c.},$ $\Delta \mathcal{L}_D = (y_D^{*(1)} \bar{e}_B^{(1)} + y_D^{*(2)} \bar{e}_B^{(2)}) D_L H^{\dagger} + \text{h.c.}.$ We considered 3 different representations: m_W S_R : SM singlet E_R : has hypercharge = -1 D_L : SU(2) doublet

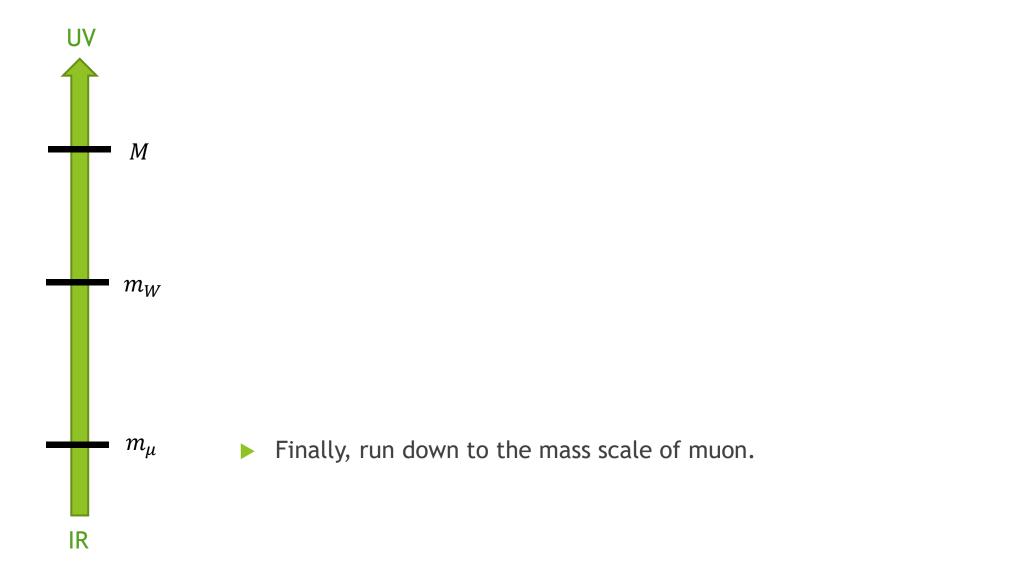
UV

М

 m_{μ}







In total, the RG equation for dipole looks like:

$$\begin{aligned} d_{e\mu}(m_W) &\simeq \frac{e}{2} \frac{v^2}{M^2} \left[\Delta d_{e\mu}(m_W) + \left(C_{DW}^{e\mu}(M) - C_{DB}^{e\mu}(M) \right) \left(1 - N_c y_t^2 \frac{\ln(M/m_W)}{16\pi^2} \right) \right. \\ &+ \left. \left(\left(-N_c y_t^2 + 2\lambda \right) C_L^{e\mu}(M) + N_c y_t^2 C_{L3}^{e\mu}(M) - \frac{5}{8} g'^2 C_y^{e\mu}(M) \right) \frac{\ln(M/m_W)}{(16\pi^2)^2} \right] \\ d_{\mu e}(m_W) &\simeq \left. \frac{e}{2} \frac{v^2}{M^2} \left[\Delta d_{\mu e}(m_W) + \left(C_{DW}^{\mu e}(M) - C_{DB}^{\mu e}(M) \right) \left(1 - N_c y_t^2 \frac{\ln(M/m_W)}{16\pi^2} \right) \right. \\ &+ \left. \left(\left(-2N_c y_t^2 + 2\lambda \right) C_R^{\mu e}(M) - \frac{5}{8} g'^2 C_y^{\mu e}(M) \right) \frac{\ln(M/m_W)}{(16\pi^2)^2} \right]. \end{aligned}$$

Taking y⁽ⁱ⁾_{S,E,D} ~ O(1) bounds on the dipole implies that
 For singlet case: M ≥ 40 TeV and RG contribution is 20%
 For doublet case: M ≥ 50 TeV and RG contribution is 25%

UV

М

 m_W

 m_{μ}

Conclusions

- LFV observables at low-energies provides us a clean handle on new physics parametrized by high-dimensional operators in an EFT setting.
- Upcoming experiments are touching two-loop sensitivity. We are getting ready for the results from theory side.
 - > As an EFT, our framework can capture signs of heavy new physics e.g. heavy vector-likes.
 - $(C_L C_{L3})^{\mu e}$ and $C_y^{\mu e}$ can be well-bounded via dipole in general.
 - ▶ $C_{\nu}^{\mu e}$ bound is competitive with accelerator searches of $h \rightarrow \mu e$.
- Power of on-shell methods:
 - Complicated looking leading log. loop calculations rendered very simple.
 - Makes transparent the selection rules, such as helicity and angular momentum, provides a better understanding for vanishing anomalous dimensions.

Thank you!