New constraints on accretion from fast optical and X-ray timing of X-ray binaries

IPMU Astrophysics/Cosmology Series Seminar 2010 May 25

Collaborators

K. Makishima, A. Kubota (Japan) <u>T. Marsh, V. Dhillon</u>, A.C. Fabian (UK) M. Durant, T. Shahbaz (Spain) J. Miller (USA) H. Spruit (Germany) J. Malzac (France)

This talk

- Brief introduction
- Coordinated multi-wavelength timing of GX 339-4 and Swift J1753
- Analyzing the fast and slow variability in detail
- Implications and future prospects

X-ray binaries

Accretion disc \ X-ray heating

Hot spot

Jet

Accretion stream

Companion

star

.R. Aynes 2001

- One of the strongest Galactic BH candidates
 M>6 M_{sun} (Hynes+03); d~8 kpc (Zdziarski+04)
- Binary separation ~25 light-seconds
 => θ ~ 6 μas (GAIA, SIM?)

Timing studies of Galactic black holes

Rapid aperiodic flickering commonly seen in X-rays

Timing studies of binaries

Rapid aperiodic X-ray flickering over large frequency ranges

What is the source of the optical power of X-ray binaries?

Reprocessing of X-rays→optical?

Irradiative heating of accretion discs

Optical and X-ray simultaneous timing

Speedy optical variations in X-ray binaries

C. Motch et al.: Fast Optical Activity of GX 339-4

(GX 339-4: Motch+82)

ULTRACAM: ultra-fast, triple-beam CCD camera

- High-speed light-weight camera
- Frame-transfer CCDs with negligible dead-time
- Speeds ~ 500 frames / sec
- 3 simultaneous optical filters
- Absolute timing ~ 1 ms

JLTRACAM Mounted on Visitor Focus of MELIPAL

JLTRACAM @VL1

http://www.shef.ac.uk/physics/people/vdhillon/ultracam

Frame transfer CCDs Very low dead time; low read noise

Frame-transfer EMCCD

Frame transfer CCD actual size

(Dhillon+07)

Observations

<u>GX 339-4</u>

<u>ULTRACAM</u>

T=0.00s

Swift J1753.5-0127

T=0.00s

Simultaneous light curves

Optical and X-ray simultaneous timing

Sub-second X-O Cross Correlation Function (CCF)

Speedy optical variations in X-ray binaries

1. Small time delay

2. Anti-correlation

GX 339-4: Simultaneous light curves

Swift J1753.5-0127: Simultaneous light curves

Time (s)

3. Small optical coherence times

Optical ACFs narrower than X-ray ACF for two sources

Speedy optical variability: scales and power

• Fastest flares have timescales <~ 20-50 ms. => R <~ 10⁴ km <~ 10³ R_G

• Brightness temperature => $T_{\rm B}$ >~ 10^7 K

Models for XTE J1118+480

> Optical (cyclo)synchrotron.

Interaction between components.

- Merloni+00
- Esin+01
- Markoff+01
- Malzac+04
- Yuan+05

Magnetic corona

Advection flow (ADAF)

Pure jet

Magnetic 'reservoir' jet/corona

ADAF+jet

"The physical origin of the variability Is likely to be complicated."

CCFs characteristic times => interacting components

X-ray <u>coronal</u> flares lead to reordering of jet poloidal field (~ tens x $t_{dynamical}$ ~ 100 ms; Livio+03; Malzac+04)

Propagation of perturbations : from <u>disc/corona</u> to jet (150 ms \Leftrightarrow 50 R_G @ Alvenic speed, or 5000 R_G @ lightspeed)

Complex optical/X-ray correlations

Anything special about these binaries?

Summary

Rapid optical flaring in low/hard state observations
 of several binaries.

 Optical not reprocessed simply.

Complex CCF
 => jet/corona/disk interaction.

Testing variability models : flux dependence

Measure variability of light curve sections => r.m.s. amplitude increases with flux

(Gandhi 2009, Uttley et al. 2001...2005)

Additive shot models Superposition of independent shots

=> Equal variability power at all fluxes

Ruled out in X-rays (Uttley et al. 2001...2005) and now optical (Gandhi 2009)

rms-flux relation in several binaries

(**Gandhi** 2009)

Testing non-linearity => log-normal distribution

Multiplicative Coupling:

$$f(t) \propto \prod_{i} x_i(t)$$

 $x_i(t) \propto A_i \sin(2\pi v_i t + \varphi_i)$

=> log(light-curve amplitude) has normal distribution

$$\log[f(t)] \propto \sum_{i} \log[x_{i}(t)] \equiv N(\overline{f}, \sigma_{f})$$
(Uttley et al. 2005)

Flare amplitudes should be drawn from an *exponential* variate distribution

 $\log[f(t)] \equiv N(\overline{f}, \sigma_f)$

 $=> f(t) \equiv \exp[N(f, \sigma_f)]$

(**Uttley et al**. 2005)

Variability correlations in the Solar corona

Solar flares + coronal loops

RMS-flux relation in the Solar corona

Image: NASA Stereo

Future

Suzaku (p-sum mode)

VLT/FORS High Time Res mode

Gran Tel. Canarias 10.4 m CIRCE Fast infrared

SALTICAM

'Lucky' speckle camera

Next step: infrared?

(Casella+10)

Next step : tracking CCFs dynamically

Summary

- Optical timing constraints to X-ray timing.
- How "close in" can optical timing take us?

