Non-Invertible Symmetries of \mathcal{N} =4 SYM and Twisted Compactification

Gabi Zafrir, Simons Center for Geometry and Physics

J. Kaidi, G.Z, Y. Zheng: 2205.01104

Motivation

- Recently there has been much interest in the study of novel symmetries.
- Such symmetries may put constraints on RG flows leading to new insights on the dynamics of field theories.
- Here we shall consider a class of such symmetries, dubbed noninvertible symmetries, and shall study their appearance in 4d \mathcal{N} =4 super Yang-Mills.
- Apply them to generate new RG flows using twisted compactification, leading to new 3d \mathcal{N} =6 SCFTs.

Outline

- 1. Introduction: non-invertible symmetries
- 2. Non-invertible symmetries in \mathcal{N} =4
- 3. Twisted compactification
- 4. Conclusions

Symmetries

- Symmetries play an important role in Physics:
 - Conservation laws, Ward identities.
 - Selection rules.
 - 't Hooft anomalies.
- Renewed interest in symmetries recently.

Symmetries = Topological operators

- Symmetries can be associated with topological operators.
- Example: U(1). Have conserved current: d * j = 0.
- Leads to conserved charge:
 - $Q = \int j_0 \, d^{d-1} x.$
- Can use this to build an operator:

 $U=e^{i\theta Q}=e^{i\theta\oint_{\mathcal{M}}*j}$

- Current conservation → Operator is topological.
- Works similarly for discrete symmetries.

Properties of topological operators

• Properties of the topological operators then imply properties of the associated symmetries.

$$U(\theta_1) \otimes U(\theta_2) = U(\theta_1 + \theta_2)$$

• Example: fusion rule \rightarrow group property.

Generalizations

- The topological operator viewpoint suggests several generalizations of the notion of symmetries.
- Topological operators of higher codimension → higher form symmetries (codimension p+1 operator → p-form symmetry).
- Non-invertible symmetries: symmetries that do not form a group.
- Elements don't necessarily possess an inverse.

$$a\otimes \bar{a}=1\oplus \ldots$$

Types of non-invertible symmetries

- There are various known ways to realize non-invertible symmetries:
 - Gauging non-abelian discrete symmetries [Bhardwaj, Tachikawa, 2017].
 - Gauging a symmetry with a mixed anomaly with another symmetry [Tachikawa, 2017; Kaidi, Ohmori, Zheng, 2021; Choi, Cordova, Hsin, Lam, Shao, 2021].
 - Symmetries under gauging [Kaidi, Ohmori, Zheng, 2021; Choi, Cordova, Hsin, Lam, Shao, 2021].
- Here we shall be mostly interested in the last case.
- Many other references [Roumpedakis, Seifnashri, Shao, 2022; Bhardwaj, Bottini, Schafer-Nameki, Tiwari, 2022; Hayashi, Tanizaki, 2022; Arias-Tamargo, Rodriguez-Gomez, 2022; ...]

Gauging of symmetries

- Recall that when we gauge a standard symmetry we sum over all possible holonomies.
- We can formulate the gauging of a symmetry also in the language of topological operators.
- For discrete symmetries, implemented by summing over all possible insertions of topological operators associated with the gauged symmetry.
- Can consider the case when a theory is invariant under the operation of gauging a discrete symmetry.

Gauging of symmetries

- Given a theory with a discrete (abelian) anomaly free 0-form symmetry *H*, can consider gauging this symmetry.
- In the resulting theory *H* is no longer a global symmetry and as such, naively we end up with a different theory.
- However, we get a d-2 form symmetry instead [Gaiotto, Kapustin, Seiberg, Willett, 2014]. In particular in d=2 we get a dual 0-form symmetry.
- As such, in d=2, theories can be self-dual under gauging.
- Gauging the dual d-2 form symmetry → brings us back to the original theory.
- Works similarly for higher form symmetries. Gauging a p form symmetry, we get a dual d-p-2 form symmetry.

Example: 2d critical Ising model

- Consider the 2d critical Ising model. Has two topological operators:
 - η : \mathbb{Z}_2 0-form symmetry. Spin flip.
 - \mathcal{K} : Half-space gauging of the \mathbb{Z}_2 O-form symmetry. Kramers-Wannier duality defect.

Symmetries under gauging behind 2d

- We have seen that in 2d we can have invariance under gauging of discrete 0-form symmetries. Here we lose the discrete symmetry we gauged but gain a new discrete symmetry.
- No longer expected to hold beyond 2d, as the new symmetry we gain is no longer a 0-form symmetry.
- However, in 4d if we gauge a 1-form symmetry, we gain a new 1-form symmetry.
- In 4d, possible to have self-duality under gauging a discrete 1-form symmetry. Recently, many examples of this type have been discovered [Kaidi, Ohmori, Zheng, 2021; Choi, Cordova, Hsin, Lam, Shao, 2021, 2022; Choi, Lam, Shao, 2022; Cordova, Ohmori, 2022; ...].
- Example: \mathcal{N} =4 SYM.

\mathcal{N} =4 SYM

- \mathcal{N} =4 SYM is defined first by a choice of gauge algebra g. Here for simplicity g = su(2).
- This does not fix the theory completely. Still have a choice of the precise group [Aharony, Seiberg, Tachikawa, 2013]:

	<i>SU</i> (2)	<i>SO</i> (3) ₊	<i>SO</i> (3)_
Fundamental Wilson line	Exist Z ₂ 1-form	None	None
Fundamental 't Hooft line	None	Exist Z ₂ 1-form	None
Fundamental dyonic line	None	None	Exist Z ₂ 1-form

• We can move between the different global structures by gauging the 1-form symmetry. Example: $SU(2) \rightarrow SO(3)_+$, by gauging the \mathbb{Z}_2 1-form symmetry.

S-duality

- $\mathcal{N}=4$ SYM possesses the $SL(2,\mathbb{Z})$ duality relating theories with different values of τ_{YM} S: $\tau_{YM} \rightarrow -\frac{1}{\tau_{YM}}$, T: $\tau_{YM} \rightarrow \tau_{YM} + 1$
- The different global structures are transferred to one another by S-duality [Aharony, Seiberg, Tachikawa, 2013]:

- The case of $SO(3)_{-}$ at $\tau_{YM} = i$ is self-dual under S. As such, at that point the S-transformation becomes a symmetry.
- What about SU(2) and $SO(3)_+$ at $\tau_{YM} = i$?

Non-invertible symmetries in \mathcal{N} =4 SYM

• Can still get a symmetry in these cases by gauging the 1-form symmetry.

$$SU(2)[\tau_{\rm YM}] \qquad SO(3)_+[\tau_{\rm YM}] \qquad SU(2)[-\frac{1}{\tau_{\rm YM}}] \qquad \longrightarrow \qquad SU(2)[\tau_{\rm YM}] \qquad SU(2)[-\frac{1}{\tau_{\rm YM}}]$$

 σ : half-space gauging of the 1-form symmetry , S: S-duality interface , $\mathcal{N} = \sigma$ S

[Kaidi, Ohmori, Zheng, 2021]

Non-invertible symmetries in \mathcal{N} =4 SYM

$$\mathcal{N}^2 \sim \sum_{\Sigma \in H_2(M_3, \mathbb{Z}_2)} L_{\Sigma}$$

 L_{Σ} top operator of \mathbb{Z}_2 1-form symmetry wrapped on the 2-cycle Σ

• Price \rightarrow symmetry become non-invertible.

[Kaidi, Ohmori, Zheng, 2021]

Non-invertible symmetries in \mathcal{N} =4 SYM

- The invertible S-duality symmetry in the $SO(3)_{-}$ theory at $\tau_{YM} = i$ becomes a non-invertible symmetry in SU(2) and $SO(3)_{+}$.
- Are there other such symmetries? Can there be non-invertible symmetries that are not related to an invertible one?
- We can try to systematically search for such symmetries by studying the transformation properties of \mathcal{N} =4 SYM under both S-duality and gauging of the 1-form symmetry.

S-duality and the σ and τ operations

- We can consider two families of operations on $su(2) \mathcal{N}=4$ SYM.
- The S-duality transformations:

S:
$$\tau_{YM} \rightarrow -\frac{1}{\tau_{YM}}$$

T: $\tau_{YM} \rightarrow \tau_{YM} + 1$

- These form $(P)SL(2, \mathbb{Z}): S^2 = (ST)^3 = 1$.
- The σ and τ operations:
 - σ : gauging the \mathbb{Z}_2 1-form symmetry.
 - τ : stacking with an invertible phase $\frac{\pi}{2} \int \mathcal{P}(B)$.
- These form $SL(2, \mathbb{Z}_2)$: $\sigma^2 = \tau^2 = (\sigma \tau)^3 = 1$. [Witten, 2003; Gaiotto, Kapustin, Seiberg, Willett, 2014]

B: background gauge field for the 1-form symmetry. $\mathcal{P}(B)$: Pontryagin square of B. Analogue of $B \wedge B$ for forms valued in \mathbb{Z}_2 .

The orbit σ \blacktriangleright SO(3) $> SO(3)_{-1}$ **⋩**SO(3). SU(

- Can determine the orbit under the S, T, σ and τ transformations.
- Limiting τ_{YM} to the fundamental domain, possible symmetries are:
 - \mathbb{Z}_2 at $\tau_{YM} = i$, given by the S transformation.
 - \mathbb{Z}_3 at $\tau_{YM} = e^{\frac{2\pi i}{3}}$, given by the ST transformation.
- Need to combine with σ and τ to actually form a symmetry.

The possible non-invertible symmetries

Theory	Defect	<i>n</i> -ality
$SU(2)_m, SO(3)_{+,m}$	$\tau^m\sigmaS\tau^{-m}$	2
$SO(3)_{-,m}$	$ au^m au S au^{-m}$	1

(Non-)invertible symmetries of $\mathfrak{su}(2)$ at $\tau_{\rm YM} = i$.

Theory	Defect	<i>n</i> -ality
$SU(2)_m, SO(3)_{-,m}$	$\tau^m \sigma \tau ST \tau^{-m}$	3
$SO(3)_{+,m}$	$ au^m au \sigma ST au^{-m}$	3

Non-invertible symmetries of $\mathfrak{su}(2)$ at $\tau_{\rm YM} = e^{2\pi i/3}$.

• Can use the orbit to determine the possible non-invertible symmetries.

The possible non-invertible symmetries

Theory	Defect	<i>n</i> -ality
$Spin(N)_m, PSO(N)_{0,m}$	$ au^m \sigma^3 \mathrm{S} au^{-m}$	2
$PSO(N)_{2,m}, SO(N)_{-,m}$	$ au^{2+m}\sigma^3\mathbf{S} au^{2-m}$	2
$PSO(N)_{n,m}, n = 1, 3$	$\tau^m \sigma \tau^n \sigma \tau^{-n} \sigma S \tau^{-m}$	2

Non-invertible symmetries of $\mathfrak{so}(N)$ with $N \in 4\mathbb{Z} + 2$ at $\tau_{YM} = i$.

Theory	Defect	n-ality
$Spin(N)_m, PSO(N)_{3,m}$	$\tau^m \sigma \tau^{-1} ST \tau^{-m}$	3
$PSO(N)_{0,m}$	$ au^{m} au^{-1}\sigma ST au^{-m}$	3
$PSO(N)_{1,m}, SO(N)_{-,m}$	$ au^{m+2} \sigma au^{-1} ST au^{-m}$	3
$PSO(N)_{2,m}$	$ au^{m-1}\sigma au^2ST au^{-m}$	3

Non-invertible symmetries of $\mathfrak{so}(N)$ with $N \in 4\mathbb{Z} + 2$ at $\tau_{YM} = e^{2\pi i/3}$.

- Can similarly do this for other gauge groups (example SO(N = 4n + 2)).
- Provides an extensive understanding of non-invertible symmetries in \mathcal{N} =4 SYM.

Twisted compactification with non-invertible symmetries

- Given a symmetry we can consider inserting a holonomy around a cycle.
- In the context of circle reduction: twisted compactification. Take $R^d \rightarrow R^{d-1} \times S^1$ and enforce $\mathcal{O}(\theta + 2\pi) \rightarrow g \cdot \mathcal{O}(\theta)$, where g is the symmetry operation.
- In the language of topological operators: insert the operator localized on the S¹.

Twisted compactification with non-invertible symmetries

- Expect to also be able to perform twisted compactifications with noninvertible symmetries.
- Generically analyzing compactification of strongly interacting theories is difficult.
- \mathcal{N} =4 SYM provides a good case study due to ample SUSY.
- However, this only helps us if the compactification preserves SUSY. Want to determine how much SUSY can be preserved by the noninvertible symmetries we discussed.

Preserving supersymmetry

- Consider the 4 operations we mentioned previously. How do these act on the supercharges?
- σ , τ : only act non-trivially on extended operators. Should act trivially on the supercharges.
- S, T: have non-trivial action on the supercharges [Kapustin, Witten, 2006]

$$\tau_{YM} \rightarrow \frac{a \, \tau_{YM} + b}{c \, \tau_{YM} + d}$$
, $Q \rightarrow e^{-\frac{i \, \vartheta}{2}}Q$, $\vartheta = \arg(c \, \tau_{YM} + d)$

• As such the non-invertible symmetries built from these operations will not preserve any SUSY.

Conjecturing the resulting theories

• Can preserve some SUSY by combining with an SU(4) R-symmetry transformation [Ganor, Hong, 2008].

$$\begin{pmatrix} e^{i\phi_1} & 0 & 0 & 0 \\ 0 & e^{i\phi_2} & 0 & 0 \\ 0 & 0 & e^{i\phi_3} & 0 \\ 0 & 0 & 0 & e^{i\phi_4} \end{pmatrix} \qquad \sum_i \phi_i = 0$$

- Under the combined action: $Q_i \rightarrow e^{i(\phi_i \frac{\vartheta}{2})}Q_i$. If we take $\phi_1 = \phi_2 = \phi_3 = \frac{\vartheta}{2}$, can preserve 12 supercharges.
- Here the phases are going to be \mathbb{Z}_k with k related to the order of the transformation (n-ality in the non-invertible case).

Conjecturing the resulting theories

- We expect the resulting 3d theory to be an \mathcal{N} =6 SCFT.
- We can get more information by considering what happens to the moduli space.
- In 4d \mathcal{N} =4 SCFTs, the moduli space is spanned by vevs of the adjoint scalars. These can be described schematically as the vevs of the independent gauge invariants $u_n = Tr(\Phi^n)$.
- Their number is given by the rank of the gauge group, and their dimensions are given in terms of the dimensions of invariant polynomials of the group.
- For the $\mathcal{N}=4$ SCFTs considered here, the moduli space is freely generated by these basic invariants.

Conjecturing the resulting theories

- Consider the action of the symmetry on the u_n operators.
- These are invariant under S-duality and gauging the 1-form symmetry, but not under the R-symmetry transformation were we have:

 $u_n \to e^{\frac{2\pi i n}{k}} u_n.$

- When performing the twisted compactification, non-invariant u_n operators would be projected out.
- As such we expect to get a 3d \mathcal{N} =6 SCFT whose moduli space is freely generated by the subset of the invariant u_n .
- Can use these to formulate conjectures on the identity of these SCFTs. In many cases these appear to be ABJM and ABJ type theories [Aharony, Bergman, Jafferis, Maldacena, 2008; Aharony, Bergman, Jafferis, 2008].

New \mathcal{N} =6 SCFTs

- This construction can be used to generate new \mathcal{N} =6 SCFTs. Some cases necessitate the use of non-invertible symmetries.
- For example, consider the case of $g = e_7$. Here the 1-form symmetry is \mathbb{Z}_2 and the spectrum of possible global structures and relations between them is the same as in the g = su(2) case.
- As such, we have the same spectrum of non-invertible symmetries.
 - \mathbb{Z}_2 symmetry at $\tau_{YM} = i$, which is invertible for $G = (E_7/\mathbb{Z}_2)_-$. Expected to give \mathcal{N} =6 SCFT with moduli space \mathbb{C}^8/G_8 .
 - "Z₃" symmetry at $\tau_{YM} = e^{\frac{2\pi i}{3}}$, no variant where it is invertible. Expected to give \mathcal{N} =6 SCFT with moduli space \mathbb{C}^{12}/G_{26} .

 G_8, G_{26} : Two of the exceptional complex reflection groups .

Conclusions

- Recently there as been a renewed interest in novel types of symmetries. Examples include non-invertible symmetries that do not form a group.
- These exist in 4d where they can appear as invariance under gauging 1-form symmetries.
- Appear in \mathcal{N} =4 SYM and can be studied systematically.
- Can perform twisted compactification by these symmetries.
- Can be used to realize new \mathcal{N} =6 SCFTs.

Open questions

- Other implications of the non-invertible symmetries.
- Can this be generalized to other $\mathcal{N}=2$ SCFTs with a geometric construction?
- General description of the space of twisted compactifications.
- Can we say more about the resulting \mathcal{N} =6 SCFTs?

Thank you