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Motivation

* Recently there has been much interest in the study of novel
symmetries.

* Such symmetries may put constraints on RG flows leading to new
insights on the dynamics of field theories.

* Here we shall consider a class of such symmetries, dubbed non-
invertible symmetries, and shall study their appearance in 4d N'=4
super Yang-Mills.

* Apply them to generate new RG flows using twisted compactification,
leading to new 3d V=6 SCFTs.
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Symmetries

 Symmetries play an important role in Physics:

= Conservation laws, Ward identities.

= Selection rules.

= ‘t Hooft anomalies.

* Renewed interest in symmetries recently.



Symmetries = Topological operators

 Symmetries can be associated with
topological operators. M M

* Example: U(1). Have conserved current:
d xj=0.

e Leads to conserved charge:

Q= fjo d?1x. O —— eld?0
* Can use this to build an operator: . ueo) u(e) )

U — ¢9Q — oif $p*J

* Current conservation — Operator is
topological.

* Works similarly for discrete symmetries.

[Frolich, Fuchs, Runkel, Schweigert, 2009; Kapustin, Seiberg, 2014; Gaiotto, Kapustin, Seiberg, Willett, 2014; ...]



Properties of topological operators

* Properties of the topological operators then imply properties of the
associated symmetries.

U6,) @ U(6,) =U(6, + 6,)

U(6,) U(6,) U6, +6,)

* Example: fusion rule - group property.



Generalizations

* The topological operator viewpoint suggests several generalizations of
the notion of symmetries.

* Topological operators of higher codimension - higher form
symmetries (codimension p+1 operator - p-form symmetry).

* Non-invertible symmetries: symmetries that do not form a group.
* Elements don’t necessarily possess an inverse.

a®@a=1 ...



Types of non-invertible symmetries

* There are various known ways to realize non-invertible symmetries:

" Gauging non-abelian discrete symmetries [Bhardwaj, Tachikawa,
2017].

" Gauging a symmetry with a mixed anomaly with another symmetry
[Tachikawa, 2017; Kaidi, Ohmori, Zheng, 2021; Choi, Cordova, Hsin,
Lam, Shao, 2021].

= Symmetries under gauging [Kaidi, Ohmori, Zheng, 2021; Choi,
Cordova, Hsin, Lam, Shao, 2021].

* Here we shall be mostly interested in the last case.

* Many other references [Roumpedakis, Seifnashri, Shao, 2022; Bhardwaj, Bottini,
Schafer-Nameki, Tiwari, 2022; Hayashi, Tanizaki, 2022; Arias-Tamargo, Rodriguez-
Gomez, 2022; ...]



Gauging of symmetries

* Recall that when we gauge a standard symmetry we sum over all
possible holonomies.

* We can formulate the gauging of a symmetry also in the language of
topological operators.

* For discrete symmetries, implemented by summing over all possible
insertions of topological operators associated with the gauged
symmetry.

* Can consider the case when a theory is invariant under the operation
of gauging a discrete symmetry.



Gauging of symmetries

e Given a theory with a discrete (abelian) anomaly free O-form symmetry H,
can consider gauging this symmetry.

* In the resulting theory H is no longer a global symmetry and as such,
naively we end up with a different theory.

* However, we get a d-2 form symmetry instead [Gaiotto, Kapustin, Seiberg,
Willett, 2014]. In particular in d=2 we get a dual O-form symmetry.

* As such, in d=2, theories can be self-dual under gauging.

* Gauging the dual d-2 form symmetry — brings us back to the original
theory.

* Works similarly for higher form symmetries. Gauging a p form symmetry,
we get a dual d-p-2 form symmetry.



Example: 2d critical Ising model

e Consider the 2d critical Ising model. Has two topological operators:
" 7 : Z, O-form symmetry. Spin flip.

= K : Half-space gauging of the Z, 0-form symmetry. Kramers-
Wannier duality defect.

W K K QK
n®n=1
n ® K=¥X —)
KK =18n
Sum over holonomies of the J L Sum over holonomies:

7, symmetry 1®n
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Symmetries under gauging behind 2d

* We have seen that in 2d we can have invariance under gauging of discrete
O-form symmetries. Here we lose the discrete symmetry we gauged but
gain a new discrete symmetry.

* No longer expected to hold beyond 2d, as the new symmetry we gain is no
longer a O-form symmetry.

* However, in 4d if we gauge a 1-form symmetry, we gain a new 1-form
symmetry.

* |[n 4d, possible to have self-duality under gauging a discrete 1-form
symmetry. Recently, many examples of this type have been discovered
[Kaidi, Ohmori, Zheng, 2021; Choi, Cordova, Hsin, Lam, Shao, 2021, 2022;
Choi, Lam, Shao, 2022; Cordova, Ohmori, 2022; ...].

* Example: V=4 SYM.



N=4 SYM

* N'=4 SYM is defined first by a choice of gauge algebra g. Here for simplicity g =
su(2).

* This does not fix the theory completely. Still have a choice of the precise group
[Aharony, Seiberg, Tachikawa, 2013]:

SU(2) S0(3)4 S0(3)_
Fundamental Wilson Exist None None
line Z., 1-form
Fundamental None Exist None
‘t Hooft line Z., 1-form
Fundamental dyonic None None Exist
line Z., 1-form

* We can move between the different global structures by gauging the 1-form
symmetry. Example: SU(2) —» SO(3),, by gauging the Z, 1-form symmetry.



S-duality

* V=4 SYM possesses the SL(2,7Z) duality relating theories with different values of

Tym 1
S: Tymy 2 ——, T Tym = Typm +1
TyM

* The different global structures are transferred to one another by S-duality
[Aharony, Seiberg, Tachikawa, 2013]:

T CSU(2) = > > SO(3), - ! - SO(B)Q S

* The case of SO(S)_ at Ty, = [ is self-dual under S. As such, at that point the S-
transformation becomes a symmetry.

* What about SU(2) and SO(3); attyy =1i7?




Non-invertible symmetries in N'=4 SYM

e Can still get a symmetry in these cases by gauging the 1-form
symmetry.

SU(2) [Tym]

SO(3) 4 [Tym]

SU(2)[-

1
T™YM

—)  SU(2)[TyMm]

N

o: half-space gauging of the 1-form symmetry, S: S-duality interface, NV =0 S

[Kaidi, Ohmori, Zheng, 2021]



Non-invertible symmetries in N'=4 SYM

7~ N\

Sum over
holonomies of the
Zo 1-form
symmetry

N? ~ Z Ly

Y€ Ha(Ms,Z2)

Ly top operator of Z, 1-form symmetry
N2 wrapped on the 2-cycle X

* Price - symmetry become non-invertible.
[Kaidi, Ohmori, Zheng, 2021]
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Non-invertible symmetries in N'=4 SYM

* The invertible S-duality symmetry in the SO(3)_ theory at Ty, = i
becomes a non-invertible symmetry in SU(2) and SO(3)...

* Are there other such symmetries? Can there be non-invertible
symmetries that are not related to an invertible one?

* We can try to systematically search for such symmetries by studying
the transformation properties of N'=4 SYM under both S-duality and
gauging of the 1-form symmetry.



S-duality and the o and T operations

* We can consider two families of operations on su(2) N'=4 SYM.

1

* The S-duality transformations: St TvM = —

T v —=mvu+1

* These form (P)SL(2,7): S* = (ST)3= 1.
* The o and T operations:
» g: gauging the Z, 1-form symmetry.

= 7: stacking with an invertible phase %fﬁP(B).

* These form SL(2,Z,): 0% = 1% = (07)3= 1.
[Witten, 2003; Gaiotto, Kapustin, Seiberg, Willett, 2014]

B: background gauge field
for the 1-form symmetry.

P (B): Pontryagin square of
B. Analogue of B A B for
forms valued in Z,.



The orbit

5 e T T
SIU{?}I - - - .&'()( )+ | [ 3 5 _}{3)_ 1
TI:T 10 T||S
S | T
SU(2), = > SO(3), .0 > S0(3) o
. »

e Can determine the orbit under the S, T, 0 and 7 transformations.

* Limiting Ty to the fundamental domain, possible symmetries are:
m 7o at Ty = i, given by the S transformation.

27Tl

" 75 at Tyy, = e 3, given by the ST transformation.

* Need to combine with o and 7 to actually form a symmetry.



The possible non-invertible symmetries

Theory Defect | n-ality
SU(2)m, SO3)4m | T™aST™™ 2
SO(3) - m TMrST™™ 1
(Non-)invertible symmetries of su(2) at 7y = i.
Theory Defect n-ality
SU2)m,SO3)—m | T"orSTT™™ 3
SO(3) 4+ m TMragSTr—™ 3

Non-invertible symmetries of su(2) at 7yy = e27/3,

* Can use the orbit to determine the possible non-invertible
symmetries.



The possible non-invertible symmetries

F'. —
G/, ..-d"'--f--____ T -_-_\----""-ﬁ..,_\x
a . A/ _ r . Tu
Spin(N)g «— PSO(N)gg —» PSO(N)gy — PSO(N)ga —» PSO(N)oa SO(N)_g — y
— T ; | I'heory | Defect | n-alily

/ . T P ; Spin(N)m, PSO(N)om T3S ™ 2

’ 0 0 T ' PSO(N)om, SO(N) m | 12mg3Sr2m 2

N o . T - ol ™~ , PSO(N)pm, n=1,3 | 7m0 "aST ™ 2

Sp‘iﬂ[:;'\"}] - l"lbr[){l"'i'h:u -l-—h IJS(_J(N:]L[ — jjer{Jnlr}ll2 —_: I)S(J[:N:][,J 50{1"‘-"}_'3 '|II -
T b ,, III Noo-invertible symmetries of so(/N) with NV € 4E + 2 al Tyy — i
T — — T
a - a — | T o ality
! i s i ~ lll | _ lhmr}r_ | [JL1&H:1. | n-ality |

Spin(N)y +—s PSO(N)yg ——» PSO(N)y; ——» PSO(N)p ——» PSO(N)y3 SO(N) 5 | Spin(N)m, PSO(N)3m | 707 'STT ™ 3

— o \ / PSO(N)gm TRy lgSTr—™ 3

o o/ PSO(N)1m, SO(N) g | 7™ 207 1STr ™| 3

a T / FPSO(N)am ™ lgr?STr ™ 3

y o . T r PR el
Spin(N); <— PSO(N)zp —— PSO(N)3 1 —— | "S5O(N)32 — PSO(N)33 SO(N)-4 Non-invertible symmetries of so(N) with N € 4Z + 2 at 7y — 73,
T el
f,#’?]

 Can similarly do this for other gauge groups (example SO(N = 4n + 2)).
* Provides an extensive understanding of non-invertible symmetries in N'=4 SYM.
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Twisted compactification with non-invertible
symmetries

* Given a symmetry we can consider inserting a holonomy around a
cycle.

* In the context of circle reduction: twisted compactification. Take
R% - R%~1 x S1 and enforce O(8 + 2m) - g - O(8), where g is the
symmetry operation.

* In the language of topological operators: insert the operator localized

on the S*'.
. O— (=

0O N g-0



Twisted compactification with non-invertible
symmetries

* Expect to also be able to perform twisted compactifications with non-
invertible symmetries.

e Generically analyzing compactification of strongly interacting theories
is difficult.

* N'=4 SYM provides a good case study due to ample SUSY.

* However, this only helps us if the compactification preserves SUSY.
Want to determine how much SUSY can be preserved by the non-
invertible symmetries we discussed.



Preserving supersymmetry

* Consider the 4 operations we mentioned previously. How do these
act on the supercharges?

* g, T: only act non-trivially on extended operators. Should act trivially
on the supercharges.

S, T: have non-trivial action on the supercharges [Kapustin, Witten,
2006]

atymy+b _id
Tym = , Q—oe 20 ,0 =arg(ctyy +d)
ctypm+d

* As such the non-invertible symmetries built from these operations
will not preserve any SUSY.



Conjecturing the resulting theories

* Can preserve some SUSY by combining with an SU(4) R-symmetry
transformation [Ganor, Hong, 2008].

(e 0 0 0 )
0 €2 0 0
- o; =0
0 0 e 0 2;
\ 0 0 0 ¢¥)
i(}i—3)
* Under the combined action: Q; — e " 2°0Q);.

* If we take 91 = @, = @3 = g, can preserve 12 supercharges.

* Here the phases are going to be Z; with k related to the order of the
transformation (n-ality in the non-invertible case).



Conjecturing the resulting theories

* We expect the resulting 3d theory to be an N'=6 SCFT.

* We can get more information by considering what happens to the moduli
space.

* In 4d V=4 SCFTs, the moduli space is spanned by vevs of the adjoint
scalars. These can be described schematically as the vevs of the
independent gauge invariants u,, = Tr(®").

* Their number is given by the rank of the gauge group, and their dimensions
are given in terms of the dimensions of invariant polynomials of the group.

* For the W=4 SCFTs considered here, the moduli space is freely generated
by these basic invariants.



Conjecturing the resulting theories

* Consider the action of the symmetry on the u,, operators.

* These are invariant under S-duality and gauging the 1-form symmetry, but
not under the R-symmetry transformation were we have:
21Tin
U, > e k U,.

* When performing the twisted compactification, non-invariant u,, operators
would be projected out.

* As such we expect to get a 3d V=6 SCFT whose moduli space is freely
generated by the subset of the invariant u,,.

* Can use these to formulate conjectures on the identity of these SCFTs. In
many cases these appear to be ABJM and ABJ type theories [Aharony,
Bergman, Jafferis, Maldacena, 2008; Aharony, Bergman, Jafferis, 2008].



New N =6 SCFTs

* This construction can be used to generate new N'=6 SCFTs. Some
cases necessitate the use of non-invertible symmetries.

* For example, consider the case of g = e,. Here the 1-form symmetry
is Z, and the spectrum of possible global structures and relations

between them is the same as in the g = su(2) case.
* As such, we have the same spectrum of non-invertible symmetries.

= Z, symmetry at Tyy = i, which is invertible for G = (E,/Z,)_.
Expected to give V=6 SCFT with moduli space C®/Gs.

27T

" “Z3” symmetry at Ty); = e 3, no variant where it is invertible.
Expected to give V=6 SCFT with moduli space C'? /G,.

Gg, Gog: Two of
the exceptional
complex reflection
groups .



Conclusions

* Recently there as been a renewed interest in novel types of
symmetries. Examples include non-invertible symmetries that do not
form a group.

* These exist in 4d where they can appear as invariance under gauging
1-form symmetries.

* Appear in N'=4 SYM and can be studied systematically.
e Can perform twisted compactification by these symmetries.
* Can be used to realize new N'=6 SCFTs.



Open questions

e Other implications of the non-invertible symmetries.

* Can this be generalized to other V=2 SCFTs with a geometric
construction?

* General description of the space of twisted compactifications.
e Can we say more about the resulting N'=6 SCFTs?



Thank you



