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Motivation

• Recently there has been much interest in the study of novel 
symmetries.

• Such symmetries may put constraints on RG flows leading to new 
insights on the dynamics of field theories.

• Here we shall consider a class of such symmetries, dubbed non-
invertible symmetries, and shall study their appearance in 4d 𝓝=4 
super Yang-Mills.

• Apply them to generate new RG flows using twisted compactification, 
leading to new 3d 𝓝=6 SCFTs.
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Symmetries

• Symmetries play an important role in Physics:  

• Renewed interest in symmetries recently.
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 Conservation laws, Ward identities.

 Selection rules.

 ‘t Hooft anomalies.



Symmetries = Topological operators

• Symmetries can be associated with 
topological operators.

• Example: 𝑈(1). Have conserved current: 
𝑑 ∗ 𝑗 = 0.

• Leads to conserved charge: 

𝑄 =  𝑗0 𝑑𝑑−1𝑥.

• Can use this to build an operator:

• Current conservation → Operator is 
topological.

• Works similarly for discrete symmetries.
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ℳ

𝑈(𝜃)
𝒪

ℳ

𝑈(𝜃)
𝑒𝑖𝑞𝜃𝒪

[Frolich, Fuchs, Runkel, Schweigert, 2009; Kapustin, Seiberg, 2014; Gaiotto, Kapustin, Seiberg, Willett, 2014; …]



Properties of topological operators

• Properties of the topological operators then imply properties of the 
associated symmetries.

• Example: fusion rule → group property.  
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𝑈(𝜃1) 𝑈(𝜃2) 𝑈(𝜃1 + 𝜃2)

𝑈 𝜃1 ⨂ 𝑈 𝜃2 = 𝑈(𝜃1 + 𝜃2)



Generalizations

• The topological operator viewpoint suggests several generalizations of 
the notion of symmetries.

• Topological operators of higher codimension → higher form 
symmetries (codimension p+1 operator → p-form symmetry).

• Non-invertible symmetries: symmetries that do not form a group.

• Elements don’t necessarily possess an inverse.
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𝑎 ⨂  𝑎 = 1 ⨁ …



Types of non-invertible symmetries

• There are various known ways to realize non-invertible symmetries:  

• Here we shall be mostly interested in the last case.

• Many other references [Roumpedakis, Seifnashri, Shao, 2022; Bhardwaj, Bottini, 
Schafer-Nameki, Tiwari, 2022; Hayashi, Tanizaki, 2022; Arias-Tamargo, Rodriguez-
Gomez, 2022; …]
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 Gauging non-abelian discrete symmetries [Bhardwaj, Tachikawa, 
2017].

 Gauging a symmetry with a mixed anomaly with another symmetry 
[Tachikawa, 2017; Kaidi, Ohmori, Zheng, 2021; Choi, Cordova, Hsin, 
Lam, Shao, 2021].

 Symmetries under gauging [Kaidi, Ohmori, Zheng, 2021; Choi, 
Cordova, Hsin, Lam, Shao, 2021].



Gauging of symmetries

• Recall that when we gauge a standard symmetry we sum over all 
possible holonomies.

• We can formulate the gauging of a symmetry also in the language of 
topological operators.

• For discrete symmetries, implemented by summing over all possible 
insertions of topological operators associated with the gauged 
symmetry.

• Can consider the case when a theory is invariant under the operation 
of gauging a discrete symmetry.
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Gauging of symmetries

• Given a theory with a discrete (abelian) anomaly free 0-form symmetry 𝐻, 
can consider gauging this symmetry.

• In the resulting theory 𝐻 is no longer a global symmetry and as such, 
naively we end up with a different theory.

• However, we get a d-2 form symmetry instead [Gaiotto, Kapustin, Seiberg, 
Willett, 2014]. In particular in d=2 we get a dual 0-form symmetry.

• As such, in d=2, theories can be self-dual under gauging. 

• Gauging the dual d-2 form symmetry → brings us back to the original 
theory.

• Works similarly for higher form symmetries. Gauging a p form symmetry, 
we get a dual d-p-2 form symmetry.
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Example: 2d critical Ising model

• Consider the 2d critical Ising model. Has two topological operators: 
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 𝜂 : ℤ2 0-form symmetry. Spin flip.

 𝒦 : Half-space gauging of the ℤ2 0-form symmetry. Kramers-
Wannier duality defect.

𝜂 ⨂ 𝜂 = 1

𝜂 ⨂ 𝒦 = 𝒦

𝒦 ⨂ 𝒦 = 1 ⨁ 𝜂

Sum over holonomies of the 
ℤ2 symmetry 

Sum over holonomies: 
1 ⨁ 𝜂

𝒦 𝒦 𝒦 ⨂ 𝒦



Symmetries under gauging behind 2d

• We have seen that in 2d we can have invariance under gauging of discrete 
0-form symmetries. Here we lose the discrete symmetry we gauged but 
gain a new discrete symmetry.

• No longer expected to hold beyond 2d, as the new symmetry we gain is no 
longer a 0-form symmetry.

• However, in 4d if we gauge a 1-form symmetry, we gain a new 1-form 
symmetry.

• In 4d, possible to have self-duality under gauging a discrete 1-form 
symmetry. Recently, many examples of this type have been discovered 
[Kaidi, Ohmori, Zheng, 2021; Choi, Cordova, Hsin, Lam, Shao, 2021, 2022; 
Choi, Lam, Shao, 2022; Cordova, Ohmori, 2022; …].

• Example: 𝓝=4 SYM. 
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𝓝=4 SYM

• 𝓝=4 SYM is defined first by a choice of gauge algebra 𝑔. Here for simplicity 𝑔 =
𝑠𝑢(2).

• This does not fix the theory completely. Still have a choice of the precise group 
[Aharony, Seiberg, Tachikawa, 2013]:

• We can move between the different global structures by gauging the 1-form 
symmetry. Example: 𝑆𝑈(2) → 𝑆𝑂(3)+, by gauging the ℤ2 1-form symmetry.
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𝑆𝑈(2) 𝑆𝑂(3)+ 𝑆𝑂(3)−

Fundamental Wilson 
line

Exist
ℤ2 1-form

None None

Fundamental 
‘t Hooft line

None Exist
ℤ2 1-form

None

Fundamental dyonic
line

None None Exist
ℤ2 1-form



S-duality

• 𝓝=4 SYM possesses the 𝑆𝐿(2, ℤ) duality relating theories with different values of 
𝜏𝑌𝑀

• The different global structures are transferred to one another by S-duality 
[Aharony, Seiberg, Tachikawa, 2013]:

• The case of 𝑆𝑂(3)− at 𝜏𝑌𝑀 = 𝑖 is self-dual under S. As such, at that point the S-
transformation becomes a symmetry.

• What about 𝑆𝑈(2) and 𝑆𝑂(3)+ at 𝜏𝑌𝑀 = 𝑖 ?
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S: 𝜏𝑌𝑀 → −
1

𝜏𝑌𝑀
, T:  𝜏𝑌𝑀 → 𝜏𝑌𝑀 + 1



Non-invertible symmetries in 𝓝=4 SYM

• Can still get a symmetry in these cases by gauging the 1-form 
symmetry. 
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𝜎: half-space gauging of the 1-form symmetry , S: S-duality interface , = 𝜎 S

[Kaidi, Ohmori, Zheng, 2021]



Non-invertible symmetries in 𝓝=4 SYM
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Sum over 
holonomies of the 

ℤ2 1-form 
symmetry 

𝐿Σ top operator of ℤ2 1-form symmetry 
wrapped on the 2-cycle Σ

• Price → symmetry become non-invertible.
[Kaidi, Ohmori, Zheng, 2021]



Non-invertible symmetries in 𝓝=4 SYM
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• The invertible S-duality symmetry in the 𝑆𝑂(3)− theory at 𝜏𝑌𝑀 = 𝑖
becomes a non-invertible symmetry in 𝑆𝑈(2) and 𝑆𝑂(3)+.

• Are there other such symmetries? Can there be non-invertible 
symmetries that are not related to an invertible one?

• We can try to systematically search for such symmetries by studying 
the transformation properties of 𝓝=4 SYM under both S-duality and 
gauging of the 1-form symmetry.  



S-duality and the 𝜎 and 𝜏 operations

• We can consider two families of operations on 𝑠𝑢(2) 𝓝=4 SYM.

• The S-duality transformations:

• These form 𝑃 𝑆𝐿(2, ℤ): 𝑆2 = (𝑆𝑇)3= 1.

• The 𝜎 and 𝜏 operations:

• These form 𝑆𝐿(2, ℤ2): 𝜎2 = 𝜏2 = (𝜎𝜏)3= 1.
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 𝜎: gauging the ℤ2 1-form symmetry.

 𝜏: stacking with an invertible phase 
𝜋

2
 𝒫(𝐵).

S:

T:

𝐵: background gauge field 
for the 1-form symmetry.
𝒫(𝐵): Pontryagin square of 
𝐵. Analogue of 𝐵 ∧ 𝐵 for 
forms valued in ℤ2.

[Witten, 2003; Gaiotto, Kapustin, Seiberg, Willett, 2014]



The orbit

• Can determine the orbit under the S, T, 𝜎 and 𝜏 transformations.

• Limiting 𝜏𝑌𝑀 to the fundamental domain, possible symmetries are:

• Need to combine with 𝜎 and 𝜏 to actually form a symmetry.   
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 ℤ2 at 𝜏𝑌𝑀 = 𝑖, given by the S transformation.

 ℤ3 at 𝜏𝑌𝑀 = 𝑒
2𝜋𝑖

3 , given by the ST transformation.



The possible non-invertible symmetries

• Can use the orbit to determine the possible non-invertible 
symmetries.
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The possible non-invertible symmetries

• Can similarly do this for other gauge groups (example 𝑆𝑂(𝑁 = 4𝑛 + 2)).

• Provides an extensive understanding of non-invertible symmetries in 𝓝=4 SYM.
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Twisted compactification with non-invertible 
symmetries

• Given a symmetry we can consider inserting a holonomy around a 
cycle.

• In the context of circle reduction: twisted compactification. Take 
𝑅𝑑 → 𝑅𝑑−1 × 𝑆1 and enforce 𝒪(𝜃 + 2𝜋) → 𝑔 ∙ 𝒪(𝜃), where 𝑔 is the 
symmetry operation.

• In the language of topological operators: insert the operator localized 
on the 𝑆1.
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𝒪 𝑔 ∙ 𝒪



Twisted compactification with non-invertible 
symmetries

• Expect to also be able to perform twisted compactifications with non-
invertible symmetries.

• Generically analyzing compactification of strongly interacting theories 
is difficult.

• 𝓝=4 SYM provides a good case study due to ample SUSY.

• However, this only helps us if the compactification preserves SUSY. 
Want to determine how much SUSY can be preserved by the non-
invertible symmetries we discussed.
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Preserving supersymmetry

• Consider the 4 operations we mentioned previously. How do these 
act on the supercharges?

• 𝜎, 𝜏: only act non-trivially on extended operators. Should act trivially 
on the supercharges.

• S, T: have non-trivial action on the supercharges [Kapustin, Witten, 
2006]

• As such the non-invertible symmetries built from these operations 
will not preserve any SUSY.  
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𝜏𝑌𝑀 →
𝑎 𝜏𝑌𝑀+𝑏

𝑐 𝜏𝑌𝑀+𝑑
,  𝒬 → 𝑒−

𝑖 𝜗

2 𝒬 , 𝜗 = arg(𝑐 𝜏𝑌𝑀 + 𝑑)



Conjecturing the resulting theories

• Can preserve some SUSY by combining with an 𝑆𝑈(4) R-symmetry 
transformation [Ganor, Hong, 2008].

• Under the combined action: 𝒬𝑖 → 𝑒𝑖(𝜙𝑖−
𝜗

2
)𝒬𝑖.

• If we take 𝜙1 = 𝜙2 = 𝜙3 =
𝜗

2
, can preserve 12 supercharges.

• Here the phases are going to be ℤ𝑘 with k related to the order of the 
transformation (n-ality in the non-invertible case).
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Conjecturing the resulting theories

• We expect the resulting 3d theory to be an 𝓝=6 SCFT.

• We can get more information by considering what happens to the moduli 
space.

• In 4d 𝓝=4 SCFTs, the moduli space is spanned by vevs of the adjoint
scalars. These can be described schematically as the vevs of the 
independent gauge invariants 𝑢𝑛 = 𝑇𝑟(Φ𝑛). 

• Their number is given by the rank of the gauge group, and their dimensions 
are given in terms of the dimensions of invariant polynomials of the group.

• For the 𝓝=4 SCFTs considered here, the moduli space is freely generated 
by these basic invariants.  
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Conjecturing the resulting theories

• Consider the action of the symmetry on the 𝑢𝑛 operators.

• These are invariant under S-duality and gauging the 1-form symmetry, but 
not under the R-symmetry transformation were we have: 

𝑢𝑛 → 𝑒
2𝜋𝑖𝑛

𝑘 𝑢𝑛.

• When performing the twisted compactification, non-invariant 𝑢𝑛 operators 
would be projected out.

• As such we expect to get a 3d 𝓝=6 SCFT whose moduli space is freely 
generated by the subset of the invariant 𝑢𝑛.

• Can use these to formulate conjectures on the identity of these SCFTs. In 
many cases these appear to be ABJM and ABJ type theories [Aharony, 
Bergman, Jafferis, Maldacena, 2008; Aharony, Bergman, Jafferis, 2008].
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New 𝓝=6 SCFTs 

• This construction can be used to generate new 𝓝=6 SCFTs. Some 
cases necessitate the use of non-invertible symmetries.

• For example, consider the case of 𝑔 = 𝑒7. Here the 1-form symmetry 
is ℤ2 and the spectrum of possible global structures and relations 
between them is the same as in the 𝑔 = 𝑠𝑢(2) case.

• As such, we have the same spectrum of non-invertible symmetries.
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 ℤ2 symmetry at 𝜏𝑌𝑀 = 𝑖, which is invertible for 𝐺 = (𝐸7/ℤ2)−. 
Expected to give 𝓝=6 SCFT with moduli space ℂ8/𝐺8. 

 “ℤ3” symmetry at 𝜏𝑌𝑀 = 𝑒
2𝜋𝑖

3 , no variant where it is invertible. 
Expected to give 𝓝=6 SCFT with moduli space ℂ12/𝐺26.

𝐺8, 𝐺26: Two of 
the exceptional 
complex reflection 
groups .



Conclusions

• Recently there as been a renewed interest in novel types of 
symmetries. Examples include non-invertible symmetries that do not 
form a group.

• These exist in 4d where they can appear as invariance under gauging 
1-form symmetries. 

• Appear in 𝓝=4 SYM and can be studied systematically.

• Can perform twisted compactification by these symmetries.

• Can be used to realize new 𝓝=6 SCFTs.



Open questions

• Other implications of the non-invertible symmetries.

• Can this be generalized to other 𝓝=2 SCFTs with a geometric 
construction?

• General description of the space of twisted compactifications.

• Can we say more about the resulting 𝓝=6 SCFTs?



Thank you
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