B is for **BIRD**

Nobu Katayama IPNS, KEK July 13, 2010 IPMU seminar

Outline

- Introduction
 - CMB Science
- Feasibility studies for LiteBIRD
 - Simple foreground removal (E. Komatsu/nk)
- LiteBIRD project

Lite (light) satellite for the studies of **B**-mode polarization and Inflation from cosmic background **R**adiation **D**etection

- Conceptual design
- Detector, Optics, cooling, scan

CMB is the fossil light from the Big Bang

Afterglow Light Pattern 400,000 yrs.

Inflation

Quantum Fluctuations

NASA/WMAP

2010/7/12

13.7 billion years

WMAP

Spatial anisotropy of CMB

- Primordial temperature fluctuations is link between Inflation and Present Universe
- **Probe of Cosmological Parameters**
 - Parameters describe Origin and Evolutions of CMB

WMAP 5-year

+200

- Observables are used to derive the parameters
 - Angular Power Spectrum
 - Non Gaussianity (not today)
 - Polarization

-200

CMB Experiments

WMAP (2001-2010), Space, D=1.5m, v=23, 33, 41, 61, 96GHz

- I=2-1000; T&Pol, 10 detectors(HEMT)
- PLANCK (2009-), Space, D=1.5m, v=30, 33, 70, 100, 143, 217, 353, 545, 857GHz
 - L=2-3000; T&Pol, 22HEMT, 52bolo
- ACBAR (2001-2005), South Pole, D=2.1m, v=150GHz – I=470-2600; T only, 16 detectors(bolo)
- QUaD (2005-2007), South Pole, D=2.6m, v=100, 150GHz
 - I=200-3000; T&Pol, 31 detectors (bolo)
- ACT (2007-), Chile, D=6m, v=148, 218, 277GHz
 - I=200-8000; T only, 3072 detectors(bolo)

KEK has joined QUIET and POLERBEAR

- 1-2000-9000; 1 only, 900 detectors (bolo)
- QUIET (2009-), Chile, v=40, 90GHz
 - I=50-2500; Pol, 90 detectors (HEMT)
- POLERBEAR (2010-), Chile, v=150, 220GHz
 - I=20-2000; Poly 1284 detectors (bolo)

CMB can be polarized

- Thomson Scattering and CMB quadrupole anisotropies produce linear polarization
- Overlay many hot and cold spots and see polarization around the spots
- A clear correlation of temperature and E-mode seen

Polarization

WMAP 7yr TE correlation

B mode not detected yet

E mode polarization observed at 8σ (WMAP 7yrs)

B mode polarization and inflation

- Quantum fluctuation ⇒ Space-time fluctuation
 ⇒ (thru Inflation) ⇒ Gravitational wave
- Gravitational wave h_x (h₊) produces B (E) mode polarization
- r = ratio of primordial gravitational wave to curvature perturbations
 - Energy scale
 - 0.93 \times 10¹⁶ Gev (r/0.01)^{1/4}
 - Current limit: r < 0.24 (95% C.L.)

WMAP+BAO+H_o

B mode spectrum

- Gravitational wave
 - Models predict different values of r
- Re-ionization
- Lensing
- Noise
- Foreground

2010/7/12

Feasibility studies for r detection

E. Komatsu and nk

Motivation

- Low l very important
 - $-\ell$ to be limited to ~100
 - need exact likelihood distribution for low l
- r is the only cosmological parameter for LiteBIRD
 - In the following study, only r is "measured"
- CMB analysis: new to me
 - write out own pipeline (in Python)
 - CMB analysis is known to be compute intensive
- Eventually, we need to include many systematic effects

Significance of r measurement

- If we could observe B mode polarization with
 - full sky

 - Noise white (and small)
 - No lensing
 - Gaussian approx.

 $l = l_{max}$ $-C_{\ell}^{BB}$ spectrum known $\delta r \propto (\sum (2\ell+1))^{-\frac{1}{2}}$ l=2 $\frac{r}{\delta r} \sim \frac{l_{max}}{\sqrt{2}}$

• With N, and C, lensing (C, BB is for r=1)

Can we observe r? (=100

 Noise: 2µK arcmin Spectra known No foreground • f_{sky}: 0.75 lensing \Rightarrow For r=0.01, ~19 σ \Rightarrow For r=0.001, ~4.3 σ • Saturation at l~100 due to lensing

2010/7/12

Likelihood method

- CMB is Gaussian on pixels
- Pixel space likelihood ⇒ most sensitive, unbiased but computationally intensive (Large factor × n_p³)
- $L(\boldsymbol{m}|r)d\boldsymbol{m} = \frac{\exp\left[-\frac{1}{2}\boldsymbol{m}^{t}(S(r)+N)^{-1}\boldsymbol{m}\right]}{|S(r)+N|^{1/2}}\frac{d\boldsymbol{m}}{(2\pi)^{2n_{p}/2}}$ where
 - *m* is Q and U map vector of length 2n_p
 - S is signal covariance matrix of (2n_p×2n_p)
 S is a function of cosmological parameters
 - N is noise covariance matrix

N is not diagonal due to smoothing

2010/7/12

LiteBIRD, N. Katayama

n_p = 3072 (N_{side}=16)

E mode signal

LiteBIRD, N. Kata

- E mode signal ~0.3μK
- E mode dominated by the curvature fluctuation origin
- generate at N_{side}=128
 corresponding to
 LiteBIRD's beam size of 30'
- Smooth down to N_{side}=16
- $\sqrt{Q^2 + U^2}$ plotted
 - same for all figures in this talk
 - WMAP P06 masked

signal (smoothed, Nside=16)

B mode signal

- B mode signal $\sim (0.17 \times \sqrt{r}) \mu K$
- C_l^{BB} (l<10, r=0.01) is less than 1/300 of C_l^{EE}
- B mode is originated from the primordial gravitational wave
- Map using the same scale as E mode (as in previous page)
- For r=0.01, lensing $C_{\ell}^{BB} >> g.w.$ C_{ℓ}^{BB} even for $\ell \approx 100$
- We look at region of $2 \le \ell \le 47$
- No lensing for now 2010/7/12

LiteBIRD, N. Katayama

ΟμΚ

Exact covariance matrix

- Elements of S can be written in terms of spinweighted Y_{lm} and C_l
 - S can be written as r × S^{tensor} + S^{scalar}
 - but need to compute (S+N)⁻¹ each time

$$C_{QQ}(x,y) = \sum_{l} C_{l}^{EE} \sum_{m} W_{lm}(x) W_{lm}^{*}(y) + C_{l}^{BB} \sum_{m} X_{lm}(x) X_{lm}^{*}(y)$$

$$C_{QU}(x,y) = \sum_{l} C_{l}^{EE} \sum_{m} (-W_{lm}(x) X_{lm}^{*}(y)) + C_{l}^{BB} \sum_{m} X_{lm}(x) W_{lm}^{*}(y)$$

$$C_{UQ}(x,y) = \sum_{l} C_{l}^{EE} \sum_{m} (-X_{lm}(x) W_{lm}^{*}(y)) + C_{l}^{BB} \sum_{m} W_{lm}(x) X_{lm}^{*}(y)$$

$$C_{UU}(x,y) = \sum_{l} C_{l}^{EE} \sum_{m} X_{lm}(x) X_{lm}^{*}(y) + C_{l}^{BB} \sum_{m} W_{lm}(x) W_{lm}^{*}(y)$$

$$W_{lm}(x) = (-1)(2Y_{lm}(x) + 2Y_{lm}(x))/2$$

$$X_{lm}(x) = (-i)(2Y_{lm}(x) - 2Y_{lm}(x))/2$$

$$UtteBIRD, N. Katayama$$

Likelihood fit procedure

• Assume r is the only unknown cosmological parameter – Pre-compute $_{+2}Y_{\ell m}$ (p), $C_{\ell}^{[Q,U]}(p,p')$ for $2 \le \ell \le 47$

The results are as expected and will be shown later ③

- Generate map (N_{side}=128) assuming r=r_{input}, add noise, smooth to N_{side}=16, apply P06 mask
- Compute In L(m|r) for r=0.0001, 0.0002, 0.0003 and find r which gives max. In L(m|r)
 - repeat for many realizations
 - get Δr from 0.5 = $\Delta ln L$
- Plot resulting r, compute mean of r and Δr , etc. $\overline{r_{2010}}$ repeat for $r_{input} = 0.001, 0.003, 0.01, ...$

Foregrounds

- Polarized photons everywhere!
- Originated from inside our galaxy
 - Dust
 - Synchrotron
 - Others (not today)
- Measured, modeled but still not well known
- Foregrounds will be the biggest obstacles when observing B mode signal from pgw (by good detector in space)

- Measure at many frequencies
 - Spatial distribution
 - Frequency dependence $\Rightarrow \propto f(\theta, \phi) v^{\beta(\theta, \phi)}$

Spatial dist. of Synch. and Dust

Remove foregrounds with multiband maps assuming morphology

Dust cleaning with 2 bands

Note: These map include both dust and synch

Dust+Synch cleaning

- Try cleaning dust+synch using 3 bands
- Make α_{synch}(θ, φ) dependent
 48 alpha regions
- Maximization using 51 parameters
- (S+N)⁻¹ depends on all parameters because of N/(1-α)²
- It is computationally prohibitive to maximize L using exact (S+N)⁻¹
- Use "nominal alphas" by analytically solving $\frac{\partial \chi^2}{\partial \alpha_i} = 0$ and use it in N/(1- α)²
- $(S+N/(1-\alpha)^2)^{-1}$ is a function of r and s

Results and plan

- Full sky
- Masked
- Dust
- Dust + Synchrotron
 - has an offset
 - r ~> 0.01 OK with this simple cleaning method
- Improve foreground removal
 - Though we think it is not a time to build complicated analysis techniques
- Add experimental details 2010/7/12 LiteBIRD, N. Kat

LiteBIRD

Lite (light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection

Lite (Light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection

Why KEK?

- Physics interests
- Technologies
 - Experiment
 - Sensor/Detector
 - DAQ (in radiation environment!)
 - Computing
 - Data Analysis
 - Accelerator
 - RF
 - Superconducting/cooling
 - Optics
 - Vacuum
 - Gravitational wave experiment at Kamioka

300

The LiteBIRD concept

- Use latest detector and cooling technologies
- ⇒ Very low noise, multichroic detector
- Limit ourselves to $2 \le l \le \sim 100$
- ⇒ Compact optics, warm launch
- Launch as soon as possible before American and European flagships go up
- \Rightarrow Be the first to claim **r** is non-zero

LiteBIRD: Project History

- 1. Approved as a small satellite working group (Sep. 2008)
- 2. JPS: CMB session (Mar. 2009)
- Kaken-hi H21-25 (Research on Innovative Areas) (Jul. 2009) "The Physical Origin of the Universe viewed through the Cosmic Background Radiation" (From Cosmological Inflation to Dark Ages)
 - 1. Main objectives are the scientific outcome from ground based experiments
 - 2. R&D for focal plane detectors of LiteBIRD
- 4. Approved to continue as a small satellite working group (Jan. 2010)
- 5. JPS: CMB symposium (Mar. 2010)
- 6. Ground based CMB experiments (QUIET, POLARBEAR)
 - Detector technologies, systematic errors
- 7. Collaborations with other projects
 - DIOS : Cooling systems
 - ASTE: TES bolometer readout

8. Science Council of Japan mentioned in the perspectives and long-term plan report for astronomy and cosmology

LiteBIRD Working Group

- Y. Sato, K.. Shinozaki, H. Sugita (ARD/JAXA)
- T. Matsumura (Caltech)
- H. Fukuya, H. Matsuhara, K. Mitsuta, T. Yoshida (ISAS/JAXA)
- N. Katayama, M. Kimura, N. Sato, T. Suzuki, K. Sumisawa, O. Tajima, T. Tomaru, <u>M. Hazumi</u>, M. Hasegawa. T. Higuchi, H. Nishino, M. Yoshida (KEK)
- I. Ohta (Kinki U.)
- Y. Uzawa, Y. Sekimoto, T. Noguchi (NAOJ)
- Julian Borrill (LBNL)
- H. Ishino, A. Kibayashi, K. Hattori, S. Mima, T. Misawa (Okayama U.) ALMA
- T. Ohtani (Riken)
- E. Yaginuma (Soken-dai)
- Y. Chinone, M. Hattori (Tohoku U.)
- T. Takada (U. Tsukuba)
- William L. Holzapfel, Bradley R. Johnson, Adrian T. Lee, Paul L. Richards, Huan T. Tran, Aritoki Suzuki (UC Berkeley)
- E. Komatsu (UT Austin) Consultants
- H. Kodama (KEK), T. Nakagawa (JAXA), Y. Kawabe (NAOJ)

Some are members of: ALMA APEX BICEP EBEX Planck PolarBear QUIET SPT WMAP

Advances in detector technology

- TES bolometer
 Berkeley group
- MKID, STJ – Riken + KEK
- 10^{3~5} detectors
- Multichroic
- Lower threshold(freq.)
- Low power read out
- Very low noise

Plot from J. Zmuidzinas

Compact antenna, focal plane

⇒Technology has matured to get down to ~µK arcmin noise level

2010/7/12

N.B.: I'used 2 µK arcmin in my simulation

South Pole Telescope Spider TES Arrays Berkeley, CWRU, Cardiff, Chicago, Colorado, Davis, Illinois, JPL, McGill, SAO

Digital FPGA fMUX

M. Dobbs (McGill University)

 Primary motivation for DfMUX was power consumption → goal was 1/10 power reduction.

LiteBIRD, N. Katayama

POLARBEAR: Antenna-coupled Arrays

Antenna

- Monolithic wafer
 Scalable
 - 1284 bolos (PB-I)

Adrian Lee (Berkeley) 34

3 GitteBlidd, N. KatayamaLenslet

Dual-pol. Multichroic Sinuous Antenna

- Opposite arms couple to linear polarizations
- Adjustable parameters: Geometric scaling factor, arm opening angle
- Self-complimentary: Constant impedance, "wire" or "slot" operation

Receiver end-to-end efficiency

4:1 Bandwichth Symmetric beams, low cross-pol

STJ (Superconducting Tunnel Junction)

- Advantages of STJ
 - Large dynamic range
 - Small NEP expected $\sim 10^{-18}$ W/ \sqrt{Hz}
 - Fast time constant ~µsec

First STJ built at KEK

Image by optical microscope

2010/7/12

LiteBIRD, N. Katayama

Microwave Kinetic Inductance Detector

(Experimental Photo Mask for MKIDs)

Advantages for a Satellite Application:

- Multi channel readout by one HEMT.
- No bias required.
- Easy structure avoids defects at satellite operation.

Resonance of MKIDs

Pulse Response of MKIDs

Focal plane design

• Effective use of focal plane:60-250GHz detectors

Traditional detector 1 pixel \rightarrow 1 band LiteBIRD 1 pixel \rightarrow N band

- Focal plane Optimization
- Pixel size
- No. pixels
- Areas for each set of bands
- What to optimize ?
- r significance (discussed later)
 - (Noise/Foregrounds vs Signal)

30 cm dia. focal plane with 1000 sensors at 100mK in space possible !!

Satellite design

- Size, weight and power consumption of the satellite is limited by the specification of the rocket for small satellites
- Compact optics and focal plane
- Cooling, DAQ
- Bus (other things)

Sun

25m

N. Ka

LiteBird Cooling system design

Cooling system diagram and heat flow

Overall satellite design: Refracting optics

Scan at L2

14

L1

L5

月

Crosslink:= $<\sin 2\alpha >^2 + <\cos 2\alpha >^2$

Boresight

B

14.7 degs

 ϕ

L2

0.38 Mkm

Earth \leftrightarrow Moon

1.5 Mkm

Earth \leftrightarrow L2

0 good, 1 bad

θ

Better (stable) environment Sun, moon, earth can entirely be out of view

2010/7/12

L3

LiteBIRD, N. Katayama

Earth

CMB

Anti-Sun

 f_a

Scan at L2

Cross link

clfom, liteBIRD_L2_365days_nside64_7Hz_clfom

Planck's cross link

Low earth orbit

Scan for Orbit like COBE

Low earth orbit

Summary

- LiteBIRD is a small satellite dedicated to detect CMB B mode polarization originated from primordial gravitational wave
 - We are hoping to launch in 2018-2020
 - Basic detector technologies have become matured
 - STJ/MKID/Cooling system actively being developed
- Simple simulation study has begun
 - It looks promising
 - Very important for optimization of the conceptual design of the satellite

LiteBIRD Specifications

Item	Specification		
Lifetime	> 2 years (5 years for the mission part)		
Orbit	Sun-Earth L2, or near-earth sun-synchronous orbit		
Attitude control	< 5 arcmin (i.e. < 1/10 x beamsize)		
Telemetry	2Mbps		
Weight	Mission part < 200kg, total < 400kg		
Power	Mission part < 200W, total < 500W		
Cooling	100mK w/ SPICA-type JT+starling (+ He3 sorption) + ADR		
Focal plane	Superconducting detector (TES, STJ or MKID)		
Sensitivity	Total NET < 1μK√s		
Frequencies	90GHz and 150GHz with a sufficient number of pixels and angular resolution (< 1 deg), + 45GHz + 300GHz as much as possible		
Modulation	Satellite rotation + more modulation methods		
2010/7/12	LiteRIRD N. Katavama		

Power and weight guesstimation

Mission part	Weight(kg)	Power (W)						
Focal plane (detector,optics)	60							
Mission part electronics (for detector)	20	100						
Baffle,								
Cryo-h Requirements for small satellite								
2K refr		160						
Total for mission part	175	280						
Bus part	Weight(kg)	Power (W)						
Structure, thermal control, etc.	50	30						
Solar panel, electronics	30	20						
Data acquisition, telemetry	20	60						
Attitude control (AC)	50	100						
Total for bus part	150	210						
Total (mission + bus)	325	⁴⁹ 490						

Comparison of cross link

Sampling rate and telemetry

Freq [GHz]	Beam [arcmin]	N _{det} [#]	t _{req} [ms]	sample rate [Hz]	data rate [kbps]
60	77	400	14	92	147.2
100	46	600	8	154	369.6
250	19	200	3	384	307.2
total		1200			824

4 bit/bolometer; data compression at the same rate as Planck
2 × Nyquist sampling spin rate 6 rpm
1/fknee ~ 100 mHz (TES bolometer assumed)

✓L2

L2

Sampling rate

6 hours/day down link possible X band 4 Mbps; detector data rate < 1 Mbps

✓ LEO 40 min./day/Tracking station Using two stations, datarate < 10 Mbps × 2 × 40/(60 × 24) = 0.56 Mbps