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(Exact) symplectic manifold

Symplectic manifold (M,w): M is a smooth manifold, w is a closed,
nondegenerate 2-form on M.

@ closed: dw = 0.

@ nondegenerate: The following is an isomorphism:

™ = T*M
X = ixw :=w(X,e)

= M is even dimensional.

Exact symplectic manifold (M,w, \): X\ is a 1-form on M such that
w=dA\.
= M is noncompact.
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@ Cotangent bundles are exact symplectic manifolds.
M:=T*N={(x1,...,Xn,P1,---,Pn)}
n n
W= Z dx; N\ dp; A= — Z pidx;
i=1 i=1
@ Orientable surfaces with the area form.
o CP" with Fubini-Study symplectic form.
o Complex submanifolds of C".
@ Smooth complex projective varieties.
o .
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(Exact) Lagrangian submanifold

Lagrangian L in (M,w): L is n-dimensional submanifold of M2" such that

w|p=0.

Exact Lagrangian L in (M,w, \):
A =df

for some smooth function f: L — R.
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An example: cylinder

T*St = {(x,p)} with w = dx A dp (area form), A = —pdx.

—

A

& Catayud frbee

775"

o€ d(cosx)

Every curve is a Lagrangian. Some exact Lagrangians are:

@ Zero section {p = 0}.

o Cotangent fibres {x = xp} for any xp € S*.
@ The graph of the differential of f: S' — R. Ex: f(x) = cosx.
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(Exact) symplectomorphism

Symplectomorphism F between (M;,w;) and (M, wy): A
diffeomorphism
F: Ml — M2

such that
F*wy = wq

Exact symplectomorphism F between (M, w1, A1) and (Ma,wa, A2):
F*Ao = A1 + df

for some smooth function f: My — R.

= (Exact) symplectomorphisms preserves (exact) Lagrangians.
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Hamiltonian

Hamiltonian on (M,w): A smooth function H: M — R.

Hamiltonian vector field Xy on M: Defined by
™ = T*M
Xy = dH = 1x,w = w(Xpy, o)

Hamiltonian flow ¢},: R x M — M: The flow of Xu.

Hamiltonian symplectomorphism ¢},: M — M: Why is it an (exact)
symplectomorphism?Cartan’s magic formula:

Lx,w=(tx,0d+douix,)(w) =tx,0dw+douix,w= d’H=0
Lx, A= (tx,0d+doux,)(A) =tx,0dA+doix,A=d(H+1x,\)
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Physical interpretation

Classical mechanics: For simplicity, assume N is 1-dimensional.
@ M:=T*N = {(x,p)} is the phase space: x € N is position, p is
momentum.

e H(x,p) = % + ¢(x) is the total energy of a particle at x with
momentum p, where ¢(x) is the potential energy at x.

@ Path of a particle between time t =0 and t = 1:
v:[0,1] = M
t = (t) = (x(t), p(t))

Newton's 2nd law Hamiltonian equations d
| oM _ _dp yq o0 _dx || g = Xn
F=ma ax — dt op — dt

Conclusion: Hamiltonian vector field tells where the particle will go!
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Stationary-action principle

Define the symplectic action functional
S:Q—->R
v [ Haa
on the space of paths of the form ~: [0,1] — M with some boundary

conditions.

Theorem: Assume that the boundary conditions are given by v(0) € Ly
and v(1) € Ly such that Lo and L are exact Lagrangians, then  solves
the Hamiltonian equations if and only if v is a critical point of S .
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An example

Question: Given a Hamiltonian H, find all paths of motion
~(t) = (x(t), p(t)) in the phase space such that x(0) = xp and x(1) = x1.

An approach: Here, boundary conditions are v(0) € {x = xp} and
(1) € {x = x1} which are cotangent fibres, hence exact Lagrangians.

Solution: Minimise the symplectic action functional to find solutions.
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Minimum number of solutions

Question: Given Lagrangian boundary conditions, is there a lower bound
of solutions?

Equivalent question: Is there a lower bound for the number of critical
points of the symplectic action functional S7

Morse theory: The total dimension of the homology gives a lower bound
for the number of critical points of smooth functions on compact
manifolds.

Problem: Q is infinite-dimensional.
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Example: Torus T2 with height function h: T2 — R.

h

L tndex 1

1 index 4

ndex O

Morse chain complex:

1-1+1-1 1-1+1-1
R

R2] (RoR)[1] R[0]

Its homology is the singular homology
H.(M;R), which doesn’t depend on h.
Hence,

#crit points of h > dim H,(M;R) = 4

for any smooth h: T2 — R.
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Floer theory

Floer: Morse theory for S: 2 — R on infinite dimensional space Q.

¥ (ndex n)
Ly

Critical points: Paths from Ly to L; satisfying Hamiltonian equations.
They are in fact the intersection points ¢},(Lo) N L;.

Flow lines: Pseudoholomorphic disks (for some almost complex structure
Jon M).

Floer cochain complex: CF*(Lg,L1) for compact Lo, L;. Floer
cohomology HF*(Lo, L1) doesn't depend on H or J. Invariant of M, L, L;.
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Some properties and implications

@ #crit points of S > dim HF* (Lo, L1).

o CF*(L,L)="7
Example: L C T*S! is a zero section, H = cos x = Xy = (sin x)a%.

— T
N

Floer cochain complex CF*(L, L):

R[0] =% R[1]

) =
o Lo Then HF*(L, L) = H*(L;R).
*Gcknn This is true for any compact exact L.

o Implication: Nondisplacibility of compact exact Lagrangians.
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Fukaya categories

Fuk(M) for an exact symplectic manifold M:
@ Objects: Compact exact Lagrangians.
e Morphisms between Ly and L;: CF*(Lo, L1) (with differential).
e Composition: CF*(Lg, L1) ® CF*(Ly, L) — CF*(Lo, L2).

Lv L

\/ L1 contributes a® b — c.

/
Lo

Not associative: (ab)c — a(bc) = d(u3(a, b, ¢))

= Fuk(M) is an A-infinity category with operations ;! (differential), 2
(composition), p3, u#, ... It is an invariant of M.
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Some properties and conjectures

o If we allow noncompact Lagrangians: wrapped Fukaya category
Fuk(M) C WFuk(M). Hamiltonians should be “quadratic at infinity”.
WFuk(T*N) is generated by a cotangent fibre (Abouzaid).

o Homological mirror symmetry conjecture:
Fuk(M) ~ Coh(X)

for some complex variety X, where Coh(X) is coherent sheaves on X
(Kontsevich).

@ Nearby Lagrangian conjecture: If  is a closed manifold, any closed
exact Lagrangian in T*N is Hamiltonian isotopic to the zero section.
Current progress: “simple-homotopic” (Abouzaid-Kragh using
Fukaya categories).

Dogancan Karabas Fukaya category and microlocal sheaf theory 10 November 2022 16 /21



Microlocal sheaf theory

An example: Fuk(T*S!) ~ Loc(S!) =~ Repr( ® Dinv) =~ Coh(C*).

Kashiwara-Schapira, Nadler-Zaslow, Ganatra-Pardon-Shende...

Fuk(T*N,A) ~ Sh(N URxoA)

where Fuk(T*N,A) contains noncompact Lagrangians asymptotic to A,
and uSh(K) is the dg category of microlocal sheaves on K.
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An example

Fuk(T*SY, A = {1 pt}) ~ ,uSh(Sl,]RZO/\) ~ Repr( e D) ~ Coh(C).
T 5/? s'ua,,n
\\\_*_,// ”

- e

L Lol
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Another example

Fuk(T*S?, {2 pts}) ~ uSh(S', R>gA) ~ Repr( o 3 e ) ~ Coh(P?).

T’ 1
h 79’\
A S Um./

— .

(10) (o 1)
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Liouville and Weinstein manifolds

For a more general class of exact symplectic manifolds (Liouville &
Weinstein manifolds):Locally see them as cotangent bundles with stops
and then glue.

An example:
F}-‘\" a—( (]M’rs

= 5’«.[\
thor
0 .
~
Cﬂ’\t(‘( )h(al\a{g)
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Thank you!
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